Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,69 +1,70 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
from paddleocr import PaddleOCR
|
| 4 |
from PIL import Image
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
model_path="./deepseek-v3-0324.Q4_K_M.gguf", # Make sure this file is in your repo
|
| 9 |
-
n_ctx=2048,
|
| 10 |
-
n_threads=8,
|
| 11 |
-
n_gpu_layers=20 # Set to 0 if you are on CPU-only
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
# OCR Function
|
| 15 |
-
def ocr_inference(img, lang):
|
| 16 |
-
ocr = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=False)
|
| 17 |
-
result = ocr.ocr(img, cls=True)[0]
|
| 18 |
-
txts = [line[1][0] for line in result]
|
| 19 |
-
return " ".join(txts)
|
| 20 |
|
| 21 |
-
#
|
| 22 |
def text_inference(text, language):
|
| 23 |
prompt = (
|
| 24 |
f"Given the following {language} text, convert each word into its base form. "
|
| 25 |
f"Remove all duplicates. Return the base form words as a comma-separated list.\n\n"
|
| 26 |
f"Text:\n{text}"
|
| 27 |
)
|
| 28 |
-
response =
|
| 29 |
-
|
| 30 |
-
words = [w.strip() for w in output_text.split(",") if w.strip()]
|
| 31 |
return words
|
| 32 |
|
| 33 |
-
#
|
| 34 |
def make_flashcards(words, language):
|
| 35 |
prompt = (
|
| 36 |
f"For each {language} word in the list, write a flashcard in this format:\n"
|
| 37 |
-
f"word
|
| 38 |
f"Words:\n{', '.join(words)}"
|
| 39 |
)
|
| 40 |
-
response =
|
| 41 |
-
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
#
|
| 44 |
def flashcard_pipeline(text, image, language):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
if image:
|
| 46 |
-
text = ocr_inference(image,
|
| 47 |
if not text:
|
| 48 |
return "", "Please provide either text or an image."
|
|
|
|
| 49 |
words = text_inference(text, language)
|
| 50 |
flashcards = make_flashcards(words, language)
|
| 51 |
return "\n".join(words), flashcards
|
| 52 |
|
| 53 |
-
# Gradio
|
| 54 |
demo = gr.Interface(
|
| 55 |
fn=flashcard_pipeline,
|
| 56 |
inputs=[
|
| 57 |
-
gr.Textbox(label="Input Text (leave
|
| 58 |
-
gr.Image(label="Upload Image for OCR
|
| 59 |
-
gr.Dropdown(
|
| 60 |
],
|
| 61 |
outputs=[
|
| 62 |
gr.Textbox(label="Base Form Words"),
|
| 63 |
gr.Textbox(label="Flashcards"),
|
| 64 |
],
|
| 65 |
-
title="Language Flashcard Generator (
|
| 66 |
-
description="
|
| 67 |
)
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
from paddleocr import PaddleOCR
|
| 4 |
from PIL import Image
|
| 5 |
|
| 6 |
+
# Use the hosted model
|
| 7 |
+
client = InferenceClient("unsloth/DeepSeek-V3-0324-GGUF")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Extract words in base form
|
| 10 |
def text_inference(text, language):
|
| 11 |
prompt = (
|
| 12 |
f"Given the following {language} text, convert each word into its base form. "
|
| 13 |
f"Remove all duplicates. Return the base form words as a comma-separated list.\n\n"
|
| 14 |
f"Text:\n{text}"
|
| 15 |
)
|
| 16 |
+
response = client.text_generation(prompt, max_new_tokens=256, temperature=0.7)
|
| 17 |
+
words = [w.strip() for w in response.strip().split(",") if w.strip()]
|
|
|
|
| 18 |
return words
|
| 19 |
|
| 20 |
+
# Create flashcards
|
| 21 |
def make_flashcards(words, language):
|
| 22 |
prompt = (
|
| 23 |
f"For each {language} word in the list, write a flashcard in this format:\n"
|
| 24 |
+
f"Word: <word>\nDefinition: <definition>\nExample: <sentence>\nTranslation: <translation>\n\n"
|
| 25 |
f"Words:\n{', '.join(words)}"
|
| 26 |
)
|
| 27 |
+
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7)
|
| 28 |
+
return response.strip()
|
| 29 |
+
|
| 30 |
+
# OCR from image
|
| 31 |
+
def ocr_inference(img_path, lang_code):
|
| 32 |
+
ocr = PaddleOCR(use_angle_cls=True, lang=lang_code, use_gpu=False)
|
| 33 |
+
result = ocr.ocr(img_path, cls=True)[0]
|
| 34 |
+
return " ".join([line[1][0] for line in result])
|
| 35 |
|
| 36 |
+
# Combined pipeline
|
| 37 |
def flashcard_pipeline(text, image, language):
|
| 38 |
+
lang_code = {
|
| 39 |
+
"korean": "korean",
|
| 40 |
+
"japanese": "japan",
|
| 41 |
+
"chinese": "ch",
|
| 42 |
+
"english": "en",
|
| 43 |
+
}.get(language.lower(), "en")
|
| 44 |
+
|
| 45 |
if image:
|
| 46 |
+
text = ocr_inference(image, lang_code)
|
| 47 |
if not text:
|
| 48 |
return "", "Please provide either text or an image."
|
| 49 |
+
|
| 50 |
words = text_inference(text, language)
|
| 51 |
flashcards = make_flashcards(words, language)
|
| 52 |
return "\n".join(words), flashcards
|
| 53 |
|
| 54 |
+
# Gradio app
|
| 55 |
demo = gr.Interface(
|
| 56 |
fn=flashcard_pipeline,
|
| 57 |
inputs=[
|
| 58 |
+
gr.Textbox(label="Input Text (leave blank if using image)", lines=4, placeholder="e.g. ννμ΄ μν° κ²λ μλͺ»μΈκ°μ..."),
|
| 59 |
+
gr.Image(type="filepath", label="Upload Image (optional, for OCR)"),
|
| 60 |
+
gr.Dropdown(["korean", "japanese", "chinese", "english"], label="Language"),
|
| 61 |
],
|
| 62 |
outputs=[
|
| 63 |
gr.Textbox(label="Base Form Words"),
|
| 64 |
gr.Textbox(label="Flashcards"),
|
| 65 |
],
|
| 66 |
+
title="π Language Flashcard Generator (OCR + LLM)",
|
| 67 |
+
description="Input text or image. It extracts words, finds base forms, and generates flashcards using DeepSeek-V3-0324.",
|
| 68 |
)
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|