Spaces:
Build error
Build error
Upload 4 files
Browse files- README.md +6 -7
- app.py +126 -1
- packages.txt +3 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,13 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Background Remover
|
| 3 |
+
emoji: 🦀
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.1.4
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
CHANGED
|
@@ -1 +1,126 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnxruntime
|
| 5 |
+
import requests
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Get x_scale_factor & y_scale_factor to resize image
|
| 11 |
+
def get_scale_factor(im_h, im_w, ref_size=512):
|
| 12 |
+
|
| 13 |
+
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
|
| 14 |
+
if im_w >= im_h:
|
| 15 |
+
im_rh = ref_size
|
| 16 |
+
im_rw = int(im_w / im_h * ref_size)
|
| 17 |
+
elif im_w < im_h:
|
| 18 |
+
im_rw = ref_size
|
| 19 |
+
im_rh = int(im_h / im_w * ref_size)
|
| 20 |
+
else:
|
| 21 |
+
im_rh = im_h
|
| 22 |
+
im_rw = im_w
|
| 23 |
+
|
| 24 |
+
im_rw = im_rw - im_rw % 32
|
| 25 |
+
im_rh = im_rh - im_rh % 32
|
| 26 |
+
|
| 27 |
+
x_scale_factor = im_rw / im_w
|
| 28 |
+
y_scale_factor = im_rh / im_h
|
| 29 |
+
|
| 30 |
+
return x_scale_factor, y_scale_factor
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
MODEL_PATH = hf_hub_download('nateraw/background-remover-files', 'modnet.onnx', repo_type='dataset')
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def main(image_path, threshold):
|
| 37 |
+
|
| 38 |
+
# read image
|
| 39 |
+
im = cv2.imread(image_path)
|
| 40 |
+
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
| 41 |
+
|
| 42 |
+
# unify image channels to 3
|
| 43 |
+
if len(im.shape) == 2:
|
| 44 |
+
im = im[:, :, None]
|
| 45 |
+
if im.shape[2] == 1:
|
| 46 |
+
im = np.repeat(im, 3, axis=2)
|
| 47 |
+
elif im.shape[2] == 4:
|
| 48 |
+
im = im[:, :, 0:3]
|
| 49 |
+
|
| 50 |
+
# normalize values to scale it between -1 to 1
|
| 51 |
+
im = (im - 127.5) / 127.5
|
| 52 |
+
|
| 53 |
+
im_h, im_w, im_c = im.shape
|
| 54 |
+
x, y = get_scale_factor(im_h, im_w)
|
| 55 |
+
|
| 56 |
+
# resize image
|
| 57 |
+
im = cv2.resize(im, None, fx=x, fy=y, interpolation=cv2.INTER_AREA)
|
| 58 |
+
|
| 59 |
+
# prepare input shape
|
| 60 |
+
im = np.transpose(im)
|
| 61 |
+
im = np.swapaxes(im, 1, 2)
|
| 62 |
+
im = np.expand_dims(im, axis=0).astype('float32')
|
| 63 |
+
|
| 64 |
+
# Initialize session and get prediction
|
| 65 |
+
session = onnxruntime.InferenceSession(MODEL_PATH, None)
|
| 66 |
+
input_name = session.get_inputs()[0].name
|
| 67 |
+
output_name = session.get_outputs()[0].name
|
| 68 |
+
result = session.run([output_name], {input_name: im})
|
| 69 |
+
|
| 70 |
+
# refine matte
|
| 71 |
+
matte = (np.squeeze(result[0]) * 255).astype('uint8')
|
| 72 |
+
matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation=cv2.INTER_AREA)
|
| 73 |
+
|
| 74 |
+
# HACK - Could probably just convert this to PIL instead of writing
|
| 75 |
+
cv2.imwrite('out.png', matte)
|
| 76 |
+
|
| 77 |
+
image = Image.open(image_path)
|
| 78 |
+
matte = Image.open('out.png')
|
| 79 |
+
|
| 80 |
+
# obtain predicted foreground
|
| 81 |
+
image = np.asarray(image)
|
| 82 |
+
if len(image.shape) == 2:
|
| 83 |
+
image = image[:, :, None]
|
| 84 |
+
if image.shape[2] == 1:
|
| 85 |
+
image = np.repeat(image, 3, axis=2)
|
| 86 |
+
elif image.shape[2] == 4:
|
| 87 |
+
image = image[:, :, 0:3]
|
| 88 |
+
|
| 89 |
+
b, g, r = cv2.split(image)
|
| 90 |
+
|
| 91 |
+
mask = np.asarray(matte)
|
| 92 |
+
a = np.ones(mask.shape, dtype='uint8') * 255
|
| 93 |
+
alpha_im = cv2.merge([b, g, r, a], 4)
|
| 94 |
+
bg = np.zeros(alpha_im.shape)
|
| 95 |
+
new_mask = np.stack([mask, mask, mask, mask], axis=2)
|
| 96 |
+
foreground = np.where(new_mask > threshold, alpha_im, bg).astype(np.uint8)
|
| 97 |
+
|
| 98 |
+
return Image.fromarray(foreground)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
title = "MODNet Background Remover"
|
| 102 |
+
description = "Gradio demo for MODNet, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
| 103 |
+
article = "<div style='text-align: center;'> <a href='https://github.com/ZHKKKe/MODNet' target='_blank'>Github Repo</a> | <a href='https://arxiv.org/abs/2011.11961' target='_blank'>MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition</a> </div>"
|
| 104 |
+
|
| 105 |
+
url = "https://huggingface.co/datasets/nateraw/background-remover-files/resolve/main/twitter_profile_pic.jpeg"
|
| 106 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 107 |
+
image.save('twitter_profile_pic.jpg')
|
| 108 |
+
|
| 109 |
+
url = "https://upload.wikimedia.org/wikipedia/commons/8/8d/President_Barack_Obama.jpg"
|
| 110 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 111 |
+
image.save('obama.jpg')
|
| 112 |
+
|
| 113 |
+
interface = gr.Interface(
|
| 114 |
+
fn=main,
|
| 115 |
+
inputs=[
|
| 116 |
+
gr.inputs.Image(type='filepath'),
|
| 117 |
+
gr.inputs.Slider(minimum=0, maximum=250, default=100, step=5, label='Mask Cutoff Threshold'),
|
| 118 |
+
],
|
| 119 |
+
outputs='image',
|
| 120 |
+
examples=[['twitter_profile_pic.jpg', 120], ['obama.jpg', 155]],
|
| 121 |
+
title=title,
|
| 122 |
+
description=description,
|
| 123 |
+
article=article,
|
| 124 |
+
allow_flagging='never',
|
| 125 |
+
theme="default",
|
| 126 |
+
).launch(enable_queue=True, debug=True)
|
packages.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
libsm6
|
| 3 |
+
libxext6
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
onnxruntime==1.6.0
|
| 2 |
+
onnx
|
| 3 |
+
opencv-python
|
| 4 |
+
numpy
|
| 5 |
+
huggingface_hub
|