Spaces:
Running
Running
Upload 3 files
Browse files- .streamlit/config.toml +7 -0
- app.py +203 -0
- requirements.txt +5 -0
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
base = "light"
|
| 3 |
+
primaryColor = "#4a90e2"
|
| 4 |
+
backgroundColor = "#ffffff"
|
| 5 |
+
secondaryBackgroundColor = "#f0f2f6"
|
| 6 |
+
textColor = "#000000"
|
| 7 |
+
font = "roboto"
|
app.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
import re
|
| 6 |
+
import logging # Optional: Add logging for better debugging
|
| 7 |
+
|
| 8 |
+
# Set up logging (optional but helpful)
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
# Set the page configuration
|
| 13 |
+
st.set_page_config(
|
| 14 |
+
page_title="AI Article Detection by DEJAN",
|
| 15 |
+
page_icon="🧠",
|
| 16 |
+
layout="wide"
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Logo as provided
|
| 20 |
+
st.logo(
|
| 21 |
+
image="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png",
|
| 22 |
+
link="https://dejan.ai/",
|
| 23 |
+
# size="large" # 'size' is not a valid argument for st.logo as of Streamlit 1.34 - remove or adjust if needed
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Font styling
|
| 27 |
+
st.markdown("""
|
| 28 |
+
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
|
| 29 |
+
<style>
|
| 30 |
+
html, body, [class*="css"] {
|
| 31 |
+
font-family: 'Roboto', sans-serif;
|
| 32 |
+
}
|
| 33 |
+
</style>
|
| 34 |
+
""", unsafe_allow_html=True)
|
| 35 |
+
|
| 36 |
+
@st.cache_resource # Cache the model and tokenizer to avoid reloading on every interaction
|
| 37 |
+
def load_model_and_tokenizer(model_name):
|
| 38 |
+
"""Loads the model and tokenizer."""
|
| 39 |
+
logger.info(f"Loading tokenizer: {model_name}")
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 41 |
+
|
| 42 |
+
# Determine device
|
| 43 |
+
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
| 44 |
+
# Use bfloat16 if available on CUDA for potential speedup/memory saving, else float32
|
| 45 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
| 46 |
+
logger.info(f"Using device: {device_type} with dtype: {dtype}")
|
| 47 |
+
|
| 48 |
+
logger.info(f"Loading model: {model_name}")
|
| 49 |
+
# Load model onto CPU first, then move to target device
|
| 50 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 51 |
+
model_name,
|
| 52 |
+
torch_dtype=dtype # Use the determined dtype
|
| 53 |
+
# Removed device_map="auto"
|
| 54 |
+
)
|
| 55 |
+
logger.info("Moving model to target device...")
|
| 56 |
+
model.to(torch.device(device_type)) # Move the entire model to the target device
|
| 57 |
+
model.eval() # Set model to evaluation mode
|
| 58 |
+
logger.info("Model loaded successfully.")
|
| 59 |
+
return tokenizer, model, torch.device(device_type)
|
| 60 |
+
|
| 61 |
+
# Load model and tokenizer using the cached function
|
| 62 |
+
MODEL_NAME = "dejanseo/ai-detection-base"
|
| 63 |
+
try:
|
| 64 |
+
tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
|
| 65 |
+
except Exception as e:
|
| 66 |
+
st.error(f"Error loading model: {e}")
|
| 67 |
+
logger.error(f"Failed to load model or tokenizer: {e}", exc_info=True)
|
| 68 |
+
st.stop() # Stop execution if model loading fails
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Static settings
|
| 72 |
+
LABELS = ["AI Content", "Human Content"]
|
| 73 |
+
COLORS = ["#ffe5e5", "#e6ffe6"] # light red, light green
|
| 74 |
+
|
| 75 |
+
# Regex-based sentence splitter (improved slightly for robustness)
|
| 76 |
+
def sent_tokenize(text):
|
| 77 |
+
# Split by '.', '!', '?' followed by space(s) or end of string
|
| 78 |
+
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
|
| 79 |
+
# Filter out empty strings that might result from splitting
|
| 80 |
+
return [s for s in sentences if s]
|
| 81 |
+
|
| 82 |
+
def split_into_chunks(text, tokenizer, max_length=512):
|
| 83 |
+
sentences = sent_tokenize(text)
|
| 84 |
+
if not sentences:
|
| 85 |
+
return [] # Handle empty input after tokenization
|
| 86 |
+
|
| 87 |
+
chunks, current_chunk_sentences, current_len = [], [], 0
|
| 88 |
+
max_tokens = max_length - 2 # Account for [CLS] and [SEP] tokens
|
| 89 |
+
|
| 90 |
+
for sent in sentences:
|
| 91 |
+
# Use tokenizer.encode to get accurate token count (more reliable than tokenize)
|
| 92 |
+
token_ids = tokenizer.encode(sent, add_special_tokens=False)
|
| 93 |
+
token_len = len(token_ids)
|
| 94 |
+
|
| 95 |
+
if token_len > max_tokens:
|
| 96 |
+
# Sentence is too long even by itself, handle appropriately
|
| 97 |
+
# Option 1: Truncate the sentence (simplest)
|
| 98 |
+
logger.warning(f"Sentence truncated as it exceeds max_length: '{sent[:100]}...'")
|
| 99 |
+
truncated_sent = tokenizer.decode(token_ids[:max_tokens])
|
| 100 |
+
# If there was a previous chunk, add it first
|
| 101 |
+
if current_chunk_sentences:
|
| 102 |
+
chunks.append(" ".join(current_chunk_sentences))
|
| 103 |
+
chunks.append(truncated_sent) # Add the single truncated sentence as its own chunk
|
| 104 |
+
current_chunk_sentences, current_len = [], 0 # Reset chunk
|
| 105 |
+
continue # Move to the next sentence
|
| 106 |
+
|
| 107 |
+
if current_len + token_len <= max_tokens:
|
| 108 |
+
current_chunk_sentences.append(sent)
|
| 109 |
+
current_len += token_len
|
| 110 |
+
else:
|
| 111 |
+
# Current chunk is full, finalize it
|
| 112 |
+
if current_chunk_sentences:
|
| 113 |
+
chunks.append(" ".join(current_chunk_sentences))
|
| 114 |
+
# Start a new chunk with the current sentence
|
| 115 |
+
current_chunk_sentences = [sent]
|
| 116 |
+
current_len = token_len
|
| 117 |
+
|
| 118 |
+
# Add the last remaining chunk
|
| 119 |
+
if current_chunk_sentences:
|
| 120 |
+
chunks.append(" ".join(current_chunk_sentences))
|
| 121 |
+
|
| 122 |
+
return chunks
|
| 123 |
+
|
| 124 |
+
# --- UI ---
|
| 125 |
+
st.title("AI Article Detection")
|
| 126 |
+
text = st.text_area("Enter text to classify", height=150, placeholder="Paste your text here...")
|
| 127 |
+
|
| 128 |
+
if st.button("Classify", type="primary"):
|
| 129 |
+
if not text or not text.strip():
|
| 130 |
+
st.warning("Please enter some text.")
|
| 131 |
+
else:
|
| 132 |
+
with st.spinner("Analyzing... Please wait."):
|
| 133 |
+
try:
|
| 134 |
+
# Split text using the tokenizer reference
|
| 135 |
+
chunks = split_into_chunks(text, tokenizer, max_length=model.config.max_position_embeddings)
|
| 136 |
+
logger.info(f"Split text into {len(chunks)} chunks.")
|
| 137 |
+
|
| 138 |
+
if not chunks:
|
| 139 |
+
st.warning("Could not process the input text (perhaps it's too short or contains only delimiters?).")
|
| 140 |
+
st.stop()
|
| 141 |
+
|
| 142 |
+
# Tokenize chunks and move tensors to the correct device
|
| 143 |
+
inputs = tokenizer(
|
| 144 |
+
chunks,
|
| 145 |
+
return_tensors="pt",
|
| 146 |
+
padding=True, # Pad sequences to the longest in the batch
|
| 147 |
+
truncation=True, # Truncate sequences longer than max_length
|
| 148 |
+
max_length=model.config.max_position_embeddings # Use model's max length
|
| 149 |
+
).to(device) # Move inputs to the same device as the model
|
| 150 |
+
|
| 151 |
+
# Perform inference
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
outputs = model(**inputs)
|
| 154 |
+
logits = outputs.logits
|
| 155 |
+
# Ensure probabilities are calculated on CPU if needed for aggregation later
|
| 156 |
+
probs = F.softmax(logits, dim=-1).cpu() # Move probs to CPU
|
| 157 |
+
preds = torch.argmax(probs, dim=-1) # Argmax on CPU probabilities
|
| 158 |
+
|
| 159 |
+
# Process results
|
| 160 |
+
chunk_results = []
|
| 161 |
+
for i, chunk in enumerate(chunks):
|
| 162 |
+
pred_index = preds[i].item() # Get prediction index for this chunk
|
| 163 |
+
chunk_results.append({
|
| 164 |
+
"text": chunk,
|
| 165 |
+
"label": LABELS[pred_index],
|
| 166 |
+
"color": COLORS[pred_index],
|
| 167 |
+
"conf": probs[i, pred_index].item() * 100, # Get confidence for the predicted class
|
| 168 |
+
})
|
| 169 |
+
|
| 170 |
+
# Calculate overall prediction based on average probability across chunks
|
| 171 |
+
if probs.numel() > 0: # Check if probs tensor is not empty
|
| 172 |
+
avg_probs = torch.mean(probs, dim=0) # Average probabilities across the batch dimension
|
| 173 |
+
final_class_index = torch.argmax(avg_probs).item()
|
| 174 |
+
final_label = LABELS[final_class_index]
|
| 175 |
+
final_conf = avg_probs[final_class_index].item() * 100
|
| 176 |
+
|
| 177 |
+
# Display final prediction
|
| 178 |
+
st.subheader("📊 Final Prediction")
|
| 179 |
+
st.markdown(
|
| 180 |
+
f"<div style='background-color:{COLORS[final_class_index]}; padding:1rem; border-radius:0.5rem; border: 1px solid #ccc;'>"
|
| 181 |
+
f"Based on the analysis, the text is most likely: <b>{final_label}</b> (Confidence: {final_conf:.1f}%)</div>",
|
| 182 |
+
unsafe_allow_html=True
|
| 183 |
+
)
|
| 184 |
+
else:
|
| 185 |
+
st.warning("Could not generate predictions for the provided text.")
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# Display per-chunk predictions in an expander
|
| 189 |
+
with st.expander("See per-chunk predictions and confidence"):
|
| 190 |
+
if chunk_results:
|
| 191 |
+
for result in chunk_results:
|
| 192 |
+
st.markdown(
|
| 193 |
+
f"<div title='Confidence: {result['conf']:.1f}%' "
|
| 194 |
+
f"style='background-color:{result['color']}; padding:0.75rem; margin-bottom:0.5rem; border-radius:0.5rem; border: 1px solid #ddd;'>"
|
| 195 |
+
f"<i>({result['label']} - {result['conf']:.1f}%)</i><br>{result['text']}</div>",
|
| 196 |
+
unsafe_allow_html=True
|
| 197 |
+
)
|
| 198 |
+
else:
|
| 199 |
+
st.write("No chunk predictions were generated.")
|
| 200 |
+
|
| 201 |
+
except Exception as e:
|
| 202 |
+
st.error(f"An error occurred during analysis: {e}")
|
| 203 |
+
logger.error(f"Analysis failed: {e}", exc_info=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
nltk
|
| 5 |
+
accelerate
|