Spaces:
Runtime error
Runtime error
| from typing import List, Dict | |
| import httpx | |
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import HfApi, ModelCard | |
| def search_hub(query: str, search_type: str) -> pd.DataFrame: | |
| api = HfApi() | |
| if search_type == "Models": | |
| results = api.list_models(search=query) | |
| data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads} for model in results] | |
| elif search_type == "Datasets": | |
| results = api.list_datasets(search=query) | |
| data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads} for dataset in results] | |
| elif search_type == "Spaces": | |
| results = api.list_spaces(search=query) | |
| data = [{"id": space.id, "author": space.author} for space in results] | |
| else: | |
| data = [] | |
| return pd.DataFrame(data) | |
| def open_url(row): | |
| if row is not None and not row.empty: | |
| url = f"https://huggingface.co/{row.iloc[0]['id']}" | |
| return f'<a href="{url}" target="_blank">{url}</a>' | |
| else: | |
| return "" | |
| def load_metadata(row, search_type): | |
| if row is not None and not row.empty: | |
| item_id = row.iloc[0]['id'] | |
| if search_type == "Models": | |
| try: | |
| card = ModelCard.load(item_id) | |
| return card | |
| except Exception as e: | |
| return f"Error loading model card: {str(e)}" | |
| elif search_type == "Datasets": | |
| api = HfApi() | |
| metadata = api.dataset_info(item_id) | |
| return str(metadata) | |
| elif search_type == "Spaces": | |
| api = HfApi() | |
| metadata = api.space_info(item_id) | |
| return str(metadata) | |
| else: | |
| return "" | |
| else: | |
| return "" | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Search the Hugging Face Hub") | |
| with gr.Row(): | |
| search_query = gr.Textbox(label="Search Query") | |
| search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models") | |
| search_button = gr.Button("Search") | |
| results_df = gr.DataFrame(label="Search Results", wrap=True, interactive=True) | |
| url_output = gr.HTML(label="URL") | |
| metadata_output = gr.Textbox(label="Metadata", lines=10) | |
| search_button.click(search_hub, inputs=[search_query, search_type], outputs=[results_df]) | |
| results_df.select(open_url, outputs=[url_output]) | |
| results_df.select(load_metadata, inputs=[results_df, search_type], outputs=[metadata_output]) | |
| demo.launch(debug=True) |