Spaces:
Running
Running
Update components/question_answering.py
Browse files- components/question_answering.py +529 -498
components/question_answering.py
CHANGED
|
@@ -1,498 +1,529 @@
|
|
| 1 |
-
import matplotlib.pyplot as plt
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
-
from transformers import pipeline
|
| 5 |
-
import nltk
|
| 6 |
-
from collections import Counter
|
| 7 |
-
import re
|
| 8 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 9 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
-
|
| 11 |
-
from utils.model_loader import load_qa_pipeline
|
| 12 |
-
from utils.helpers import fig_to_html, df_to_html_table
|
| 13 |
-
|
| 14 |
-
def question_answering_handler(context_text, question, answer_type="extractive", confidence_threshold=0.5):
|
| 15 |
-
"""Show question answering capabilities with comprehensive analysis."""
|
| 16 |
-
output_html = []
|
| 17 |
-
|
| 18 |
-
# Add result area container
|
| 19 |
-
output_html.append('<div class="result-area">')
|
| 20 |
-
output_html.append('<h2 class="task-header">Question Answering System</h2>')
|
| 21 |
-
|
| 22 |
-
output_html.append("""
|
| 23 |
-
<div class="alert alert-info">
|
| 24 |
-
<i class="fas fa-info-circle"></i>
|
| 25 |
-
Question Answering (QA) systems extract or generate answers to questions based on a given context or knowledge base.
|
| 26 |
-
This system can handle both extractive (finding answers in text) and abstractive (generating new answers) approaches.
|
| 27 |
-
</div>
|
| 28 |
-
""")
|
| 29 |
-
|
| 30 |
-
# Model info
|
| 31 |
-
output_html.append("""
|
| 32 |
-
<div class="alert alert-info">
|
| 33 |
-
<h4><i class="fas fa-tools"></i> Models & Techniques Used:</h4>
|
| 34 |
-
<ul>
|
| 35 |
-
<li><b>RoBERTa-SQuAD2</b> - Fine-tuned transformer model for extractive QA (F1: ~83.7 on SQuAD 2.0)</li>
|
| 36 |
-
<li><b>BERT-based QA</b> - Bidirectional encoder representations for understanding context</li>
|
| 37 |
-
<li><b>TF-IDF Similarity</b> - Traditional approach for finding relevant text spans</li>
|
| 38 |
-
<li><b>Confidence Scoring</b> - Model uncertainty estimation for answer reliability</li>
|
| 39 |
-
</ul>
|
| 40 |
-
</div>
|
| 41 |
-
""")
|
| 42 |
-
|
| 43 |
-
try:
|
| 44 |
-
# Validate inputs
|
| 45 |
-
if not context_text or not context_text.strip():
|
| 46 |
-
output_html.append('<div class="alert alert-warning">⚠️ Please provide a context text for question answering.</div>')
|
| 47 |
-
output_html.append('</div>')
|
| 48 |
-
return "\n".join(output_html)
|
| 49 |
-
|
| 50 |
-
if not question or not question.strip():
|
| 51 |
-
output_html.append('<div class="alert alert-warning">⚠️ Please provide a question to answer.</div>')
|
| 52 |
-
output_html.append('</div>')
|
| 53 |
-
return "\n".join(output_html)
|
| 54 |
-
|
| 55 |
-
# Display input information
|
| 56 |
-
output_html.append('<h3 class="task-subheader">Input Analysis</h3>')
|
| 57 |
-
|
| 58 |
-
context_stats = {
|
| 59 |
-
"Context Length": len(context_text),
|
| 60 |
-
"Word Count": len(context_text.split()),
|
| 61 |
-
"Sentence Count": len(nltk.sent_tokenize(context_text)),
|
| 62 |
-
"Question Length": len(question),
|
| 63 |
-
"Question Words": len(question.split())
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
stats_df = pd.DataFrame(list(context_stats.items()), columns=['Metric', 'Value'])
|
| 67 |
-
output_html.append('<h4>Input Statistics</h4>')
|
| 68 |
-
output_html.append(df_to_html_table(stats_df))
|
| 69 |
-
|
| 70 |
-
# Question Analysis
|
| 71 |
-
output_html.append('<h3 class="task-subheader">Question Analysis</h3>')
|
| 72 |
-
|
| 73 |
-
# Classify question type
|
| 74 |
-
question_lower = question.lower().strip()
|
| 75 |
-
question_type = classify_question_type(question_lower)
|
| 76 |
-
|
| 77 |
-
output_html.append(f"""
|
| 78 |
-
<div class="card">
|
| 79 |
-
<div class="card-header">
|
| 80 |
-
<h4 class="mb-0">Question Classification</h4>
|
| 81 |
-
</div>
|
| 82 |
-
<div class="card-body">
|
| 83 |
-
<p><strong>Question:</strong> {question}</p>
|
| 84 |
-
<p><strong>Type:</strong> {question_type['type']}</p>
|
| 85 |
-
<p><strong>Expected Answer:</strong> {question_type['expected']}</p>
|
| 86 |
-
<p><strong>Keywords:</strong> {', '.join(question_type['keywords'])}</p>
|
| 87 |
-
</div>
|
| 88 |
-
</div>
|
| 89 |
-
""")
|
| 90 |
-
|
| 91 |
-
# Extractive Question Answering using Transformer
|
| 92 |
-
output_html.append('<h3 class="task-subheader">Transformer-based Answer Extraction</h3>')
|
| 93 |
-
|
| 94 |
-
try:
|
| 95 |
-
qa_pipeline = load_qa_pipeline()
|
| 96 |
-
|
| 97 |
-
# Get answer from the model
|
| 98 |
-
result = qa_pipeline(question=question, context=context_text)
|
| 99 |
-
|
| 100 |
-
answer = result['answer']
|
| 101 |
-
confidence = result['score']
|
| 102 |
-
start_pos = result['start']
|
| 103 |
-
end_pos = result['end']
|
| 104 |
-
|
| 105 |
-
# Create confidence visualization
|
| 106 |
-
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
|
| 107 |
-
|
| 108 |
-
# Confidence bar
|
| 109 |
-
colors = ['red' if confidence < 0.3 else 'orange' if confidence < 0.7 else 'green']
|
| 110 |
-
bars = ax.barh(['Confidence'], [confidence], color=colors[0])
|
| 111 |
-
ax.set_xlim(0, 1)
|
| 112 |
-
ax.set_xlabel('Confidence Score')
|
| 113 |
-
ax.set_title('Answer Confidence')
|
| 114 |
-
|
| 115 |
-
# Add confidence threshold line
|
| 116 |
-
ax.axvline(x=confidence_threshold, color='red', linestyle='--', label=f'Threshold ({confidence_threshold})')
|
| 117 |
-
ax.legend()
|
| 118 |
-
|
| 119 |
-
# Add value labels
|
| 120 |
-
for bar in bars:
|
| 121 |
-
width = bar.get_width()
|
| 122 |
-
ax.text(width/2, bar.get_y() + bar.get_height()/2,
|
| 123 |
-
f'{width:.3f}', ha='center', va='center', fontweight='bold')
|
| 124 |
-
|
| 125 |
-
plt.tight_layout()
|
| 126 |
-
output_html.append(fig_to_html(fig))
|
| 127 |
-
plt.close()
|
| 128 |
-
|
| 129 |
-
# Display answer with context highlighting
|
| 130 |
-
confidence_status = "High" if confidence >= 0.7 else "Medium" if confidence >= 0.3 else "Low"
|
| 131 |
-
confidence_color = "#4CAF50" if confidence >= 0.7 else "#FF9800" if confidence >= 0.3 else "#F44336"
|
| 132 |
-
|
| 133 |
-
output_html.append(f"""
|
| 134 |
-
<div class="card" style="border-color: {confidence_color};">
|
| 135 |
-
<div class="card-header" style="background-color: {confidence_color}22;">
|
| 136 |
-
<h4 class="mb-0">📝 Extracted Answer</h4>
|
| 137 |
-
</div>
|
| 138 |
-
<div class="card-body">
|
| 139 |
-
<div class="alert alert-light">
|
| 140 |
-
<strong>Answer:</strong> <span class="badge bg-warning text-dark fs-6">{answer}</span>
|
| 141 |
-
</div>
|
| 142 |
-
<p><strong>Confidence:</strong> {confidence:.3f} ({confidence_status})</p>
|
| 143 |
-
<p><strong>Position in Text:</strong> Characters {start_pos}-{end_pos}</p>
|
| 144 |
-
</div>
|
| 145 |
-
</div>
|
| 146 |
-
""")
|
| 147 |
-
|
| 148 |
-
# Show context with answer highlighted
|
| 149 |
-
highlighted_context = highlight_answer_in_context(context_text, start_pos, end_pos)
|
| 150 |
-
output_html.append(f"""
|
| 151 |
-
<div class="card">
|
| 152 |
-
<div class="card-header">
|
| 153 |
-
<h4 class="mb-0">📄 Context with Highlighted Answer</h4>
|
| 154 |
-
</div>
|
| 155 |
-
<div class="card-body">
|
| 156 |
-
<div style="line-height: 1.6; border: 1px solid #ddd; padding: 1rem; border-radius: 5px;">
|
| 157 |
-
{highlighted_context}
|
| 158 |
-
</div>
|
| 159 |
-
</div>
|
| 160 |
-
</div>
|
| 161 |
-
""")
|
| 162 |
-
|
| 163 |
-
except Exception as e:
|
| 164 |
-
output_html.append(f'<div class="alert alert-danger">❌ Error in transformer QA: {str(e)}</div>')
|
| 165 |
-
|
| 166 |
-
# Alternative: TF-IDF based answer extraction
|
| 167 |
-
output_html.append('<h3 class="task-subheader">TF-IDF Based Answer Extraction</h3>')
|
| 168 |
-
|
| 169 |
-
try:
|
| 170 |
-
tfidf_answer = extract_answer_tfidf(context_text, question)
|
| 171 |
-
|
| 172 |
-
output_html.append(f"""
|
| 173 |
-
<div class="alert alert-success">
|
| 174 |
-
<h4>🔍 TF-IDF Based Answer</h4>
|
| 175 |
-
<div class="alert alert-light">
|
| 176 |
-
<strong>Most Relevant Sentence:</strong> {tfidf_answer['sentence']}
|
| 177 |
-
</div>
|
| 178 |
-
<p><strong>Similarity Score:</strong> {tfidf_answer['score']:.3f}</p>
|
| 179 |
-
<p><strong>Method:</strong> Cosine similarity between question and context sentences using TF-IDF vectors</p>
|
| 180 |
-
</div>
|
| 181 |
-
""")
|
| 182 |
-
|
| 183 |
-
except Exception as e:
|
| 184 |
-
output_html.append(f'<div class="alert alert-danger">❌ Error in TF-IDF QA: {str(e)}</div>')
|
| 185 |
-
|
| 186 |
-
# Answer Quality Assessment
|
| 187 |
-
output_html.append('<h3 class="task-subheader">Answer Quality Assessment</h3>')
|
| 188 |
-
|
| 189 |
-
if 'confidence' in locals():
|
| 190 |
-
quality_metrics = assess_answer_quality(question, answer, confidence, context_text)
|
| 191 |
-
|
| 192 |
-
# Create quality assessment visualization
|
| 193 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
| 194 |
-
|
| 195 |
-
# Quality metrics radar chart
|
| 196 |
-
categories = list(quality_metrics.keys())
|
| 197 |
-
values = list(quality_metrics.values())
|
| 198 |
-
|
| 199 |
-
ax1.bar(categories, values, color=['#4CAF50', '#2196F3', '#FF9800', '#9C27B0'])
|
| 200 |
-
ax1.set_ylim(0, 1)
|
| 201 |
-
ax1.set_title('Answer Quality Metrics')
|
| 202 |
-
ax1.set_ylabel('Score')
|
| 203 |
-
plt.setp(ax1.get_xticklabels(), rotation=45, ha='right')
|
| 204 |
-
|
| 205 |
-
# Overall quality score
|
| 206 |
-
overall_score = sum(values) / len(values)
|
| 207 |
-
quality_label = "Excellent" if overall_score >= 0.8 else "Good" if overall_score >= 0.6 else "Fair" if overall_score >= 0.4 else "Poor"
|
| 208 |
-
|
| 209 |
-
ax2.pie([overall_score, 1-overall_score], labels=[f'{quality_label}\n({overall_score:.2f})', 'Room for Improvement'],
|
| 210 |
-
colors=['#4CAF50', '#E0E0E0'], startangle=90)
|
| 211 |
-
ax2.set_title('Overall Answer Quality')
|
| 212 |
-
|
| 213 |
-
plt.tight_layout()
|
| 214 |
-
output_html.append(fig_to_html(fig))
|
| 215 |
-
plt.close()
|
| 216 |
-
|
| 217 |
-
# Quality metrics table
|
| 218 |
-
quality_df = pd.DataFrame([
|
| 219 |
-
{'Metric': 'Confidence', 'Score': f"{quality_metrics['Confidence']:.3f}", 'Description': 'Model confidence in the answer'},
|
| 220 |
-
{'Metric': 'Relevance', 'Score': f"{quality_metrics['Relevance']:.3f}", 'Description': 'Semantic similarity to question'},
|
| 221 |
-
{'Metric': 'Completeness', 'Score': f"{quality_metrics['Completeness']:.3f}", 'Description': 'Answer length appropriateness'},
|
| 222 |
-
{'Metric': 'Context Match', 'Score': f"{quality_metrics['Context_Match']:.3f}", 'Description': 'How well answer fits context'}
|
| 223 |
-
])
|
| 224 |
-
|
| 225 |
-
output_html.append('<h4>Quality Assessment Details</h4>')
|
| 226 |
-
output_html.append(df_to_html_table(quality_df))
|
| 227 |
-
|
| 228 |
-
# Question-Answer Pairs Suggestions
|
| 229 |
-
output_html.append('<h3 class="task-subheader">Suggested Follow-up Questions</h3>')
|
| 230 |
-
|
| 231 |
-
try:
|
| 232 |
-
suggested_questions = generate_followup_questions(context_text, question, answer if 'answer' in locals() else "")
|
| 233 |
-
|
| 234 |
-
output_html.append('<div class="alert alert-warning">')
|
| 235 |
-
output_html.append('<h4>💡 Follow-up Questions:</h4>')
|
| 236 |
-
output_html.append('<ul>')
|
| 237 |
-
for i, q in enumerate(suggested_questions, 1):
|
| 238 |
-
output_html.append(f'<li><strong>Q{i}:</strong> {q}</li>')
|
| 239 |
-
output_html.append('</ul>')
|
| 240 |
-
output_html.append('</div>')
|
| 241 |
-
|
| 242 |
-
except Exception as e:
|
| 243 |
-
output_html.append(f'<div class="alert alert-danger">❌ Error generating suggestions: {str(e)}</div>')
|
| 244 |
-
|
| 245 |
-
except Exception as e:
|
| 246 |
-
output_html.append(f'<div class="alert alert-danger">❌ Unexpected error: {str(e)}</div>')
|
| 247 |
-
|
| 248 |
-
output_html.append('</div>')
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
'
|
| 262 |
-
'
|
| 263 |
-
'
|
| 264 |
-
'
|
| 265 |
-
'
|
| 266 |
-
'
|
| 267 |
-
'
|
| 268 |
-
'
|
| 269 |
-
'
|
| 270 |
-
'
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
#
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
#
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
metrics['Completeness'] =
|
| 355 |
-
|
| 356 |
-
metrics['Completeness'] = 0.
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
"What
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
"
|
| 409 |
-
"
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
"
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
"
|
| 418 |
-
"
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
#
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
<
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import nltk
|
| 6 |
+
from collections import Counter
|
| 7 |
+
import re
|
| 8 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 9 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
+
|
| 11 |
+
from utils.model_loader import load_qa_pipeline
|
| 12 |
+
from utils.helpers import fig_to_html, df_to_html_table
|
| 13 |
+
|
| 14 |
+
def question_answering_handler(context_text, question, answer_type="extractive", confidence_threshold=0.5):
|
| 15 |
+
"""Show question answering capabilities with comprehensive analysis."""
|
| 16 |
+
output_html = []
|
| 17 |
+
|
| 18 |
+
# Add result area container
|
| 19 |
+
output_html.append('<div class="result-area">')
|
| 20 |
+
output_html.append('<h2 class="task-header">Question Answering System</h2>')
|
| 21 |
+
|
| 22 |
+
output_html.append("""
|
| 23 |
+
<div class="alert alert-info">
|
| 24 |
+
<i class="fas fa-info-circle"></i>
|
| 25 |
+
Question Answering (QA) systems extract or generate answers to questions based on a given context or knowledge base.
|
| 26 |
+
This system can handle both extractive (finding answers in text) and abstractive (generating new answers) approaches.
|
| 27 |
+
</div>
|
| 28 |
+
""")
|
| 29 |
+
|
| 30 |
+
# Model info
|
| 31 |
+
output_html.append("""
|
| 32 |
+
<div class="alert alert-info">
|
| 33 |
+
<h4><i class="fas fa-tools"></i> Models & Techniques Used:</h4>
|
| 34 |
+
<ul>
|
| 35 |
+
<li><b>RoBERTa-SQuAD2</b> - Fine-tuned transformer model for extractive QA (F1: ~83.7 on SQuAD 2.0)</li>
|
| 36 |
+
<li><b>BERT-based QA</b> - Bidirectional encoder representations for understanding context</li>
|
| 37 |
+
<li><b>TF-IDF Similarity</b> - Traditional approach for finding relevant text spans</li>
|
| 38 |
+
<li><b>Confidence Scoring</b> - Model uncertainty estimation for answer reliability</li>
|
| 39 |
+
</ul>
|
| 40 |
+
</div>
|
| 41 |
+
""")
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
# Validate inputs
|
| 45 |
+
if not context_text or not context_text.strip():
|
| 46 |
+
output_html.append('<div class="alert alert-warning">⚠️ Please provide a context text for question answering.</div>')
|
| 47 |
+
output_html.append('</div>')
|
| 48 |
+
return "\n".join(output_html)
|
| 49 |
+
|
| 50 |
+
if not question or not question.strip():
|
| 51 |
+
output_html.append('<div class="alert alert-warning">⚠️ Please provide a question to answer.</div>')
|
| 52 |
+
output_html.append('</div>')
|
| 53 |
+
return "\n".join(output_html)
|
| 54 |
+
|
| 55 |
+
# Display input information
|
| 56 |
+
output_html.append('<h3 class="task-subheader">Input Analysis</h3>')
|
| 57 |
+
|
| 58 |
+
context_stats = {
|
| 59 |
+
"Context Length": len(context_text),
|
| 60 |
+
"Word Count": len(context_text.split()),
|
| 61 |
+
"Sentence Count": len(nltk.sent_tokenize(context_text)),
|
| 62 |
+
"Question Length": len(question),
|
| 63 |
+
"Question Words": len(question.split())
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
stats_df = pd.DataFrame(list(context_stats.items()), columns=['Metric', 'Value'])
|
| 67 |
+
output_html.append('<h4>Input Statistics</h4>')
|
| 68 |
+
output_html.append(df_to_html_table(stats_df))
|
| 69 |
+
|
| 70 |
+
# Question Analysis
|
| 71 |
+
output_html.append('<h3 class="task-subheader">Question Analysis</h3>')
|
| 72 |
+
|
| 73 |
+
# Classify question type
|
| 74 |
+
question_lower = question.lower().strip()
|
| 75 |
+
question_type = classify_question_type(question_lower)
|
| 76 |
+
|
| 77 |
+
output_html.append(f"""
|
| 78 |
+
<div class="card">
|
| 79 |
+
<div class="card-header">
|
| 80 |
+
<h4 class="mb-0">Question Classification</h4>
|
| 81 |
+
</div>
|
| 82 |
+
<div class="card-body">
|
| 83 |
+
<p><strong>Question:</strong> {question}</p>
|
| 84 |
+
<p><strong>Type:</strong> {question_type['type']}</p>
|
| 85 |
+
<p><strong>Expected Answer:</strong> {question_type['expected']}</p>
|
| 86 |
+
<p><strong>Keywords:</strong> {', '.join(question_type['keywords'])}</p>
|
| 87 |
+
</div>
|
| 88 |
+
</div>
|
| 89 |
+
""")
|
| 90 |
+
|
| 91 |
+
# Extractive Question Answering using Transformer
|
| 92 |
+
output_html.append('<h3 class="task-subheader">Transformer-based Answer Extraction</h3>')
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
qa_pipeline = load_qa_pipeline()
|
| 96 |
+
|
| 97 |
+
# Get answer from the model
|
| 98 |
+
result = qa_pipeline(question=question, context=context_text)
|
| 99 |
+
|
| 100 |
+
answer = result['answer']
|
| 101 |
+
confidence = result['score']
|
| 102 |
+
start_pos = result['start']
|
| 103 |
+
end_pos = result['end']
|
| 104 |
+
|
| 105 |
+
# Create confidence visualization
|
| 106 |
+
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
|
| 107 |
+
|
| 108 |
+
# Confidence bar
|
| 109 |
+
colors = ['red' if confidence < 0.3 else 'orange' if confidence < 0.7 else 'green']
|
| 110 |
+
bars = ax.barh(['Confidence'], [confidence], color=colors[0])
|
| 111 |
+
ax.set_xlim(0, 1)
|
| 112 |
+
ax.set_xlabel('Confidence Score')
|
| 113 |
+
ax.set_title('Answer Confidence')
|
| 114 |
+
|
| 115 |
+
# Add confidence threshold line
|
| 116 |
+
ax.axvline(x=confidence_threshold, color='red', linestyle='--', label=f'Threshold ({confidence_threshold})')
|
| 117 |
+
ax.legend()
|
| 118 |
+
|
| 119 |
+
# Add value labels
|
| 120 |
+
for bar in bars:
|
| 121 |
+
width = bar.get_width()
|
| 122 |
+
ax.text(width/2, bar.get_y() + bar.get_height()/2,
|
| 123 |
+
f'{width:.3f}', ha='center', va='center', fontweight='bold')
|
| 124 |
+
|
| 125 |
+
plt.tight_layout()
|
| 126 |
+
output_html.append(fig_to_html(fig))
|
| 127 |
+
plt.close()
|
| 128 |
+
|
| 129 |
+
# Display answer with context highlighting
|
| 130 |
+
confidence_status = "High" if confidence >= 0.7 else "Medium" if confidence >= 0.3 else "Low"
|
| 131 |
+
confidence_color = "#4CAF50" if confidence >= 0.7 else "#FF9800" if confidence >= 0.3 else "#F44336"
|
| 132 |
+
|
| 133 |
+
output_html.append(f"""
|
| 134 |
+
<div class="card" style="border-color: {confidence_color};">
|
| 135 |
+
<div class="card-header" style="background-color: {confidence_color}22;">
|
| 136 |
+
<h4 class="mb-0">📝 Extracted Answer</h4>
|
| 137 |
+
</div>
|
| 138 |
+
<div class="card-body">
|
| 139 |
+
<div class="alert alert-light">
|
| 140 |
+
<strong>Answer:</strong> <span class="badge bg-warning text-dark fs-6">{answer}</span>
|
| 141 |
+
</div>
|
| 142 |
+
<p><strong>Confidence:</strong> {confidence:.3f} ({confidence_status})</p>
|
| 143 |
+
<p><strong>Position in Text:</strong> Characters {start_pos}-{end_pos}</p>
|
| 144 |
+
</div>
|
| 145 |
+
</div>
|
| 146 |
+
""")
|
| 147 |
+
|
| 148 |
+
# Show context with answer highlighted
|
| 149 |
+
highlighted_context = highlight_answer_in_context(context_text, start_pos, end_pos)
|
| 150 |
+
output_html.append(f"""
|
| 151 |
+
<div class="card">
|
| 152 |
+
<div class="card-header">
|
| 153 |
+
<h4 class="mb-0">📄 Context with Highlighted Answer</h4>
|
| 154 |
+
</div>
|
| 155 |
+
<div class="card-body">
|
| 156 |
+
<div style="line-height: 1.6; border: 1px solid #ddd; padding: 1rem; border-radius: 5px;">
|
| 157 |
+
{highlighted_context}
|
| 158 |
+
</div>
|
| 159 |
+
</div>
|
| 160 |
+
</div>
|
| 161 |
+
""")
|
| 162 |
+
|
| 163 |
+
except Exception as e:
|
| 164 |
+
output_html.append(f'<div class="alert alert-danger">❌ Error in transformer QA: {str(e)}</div>')
|
| 165 |
+
|
| 166 |
+
# Alternative: TF-IDF based answer extraction
|
| 167 |
+
output_html.append('<h3 class="task-subheader">TF-IDF Based Answer Extraction</h3>')
|
| 168 |
+
|
| 169 |
+
try:
|
| 170 |
+
tfidf_answer = extract_answer_tfidf(context_text, question)
|
| 171 |
+
|
| 172 |
+
output_html.append(f"""
|
| 173 |
+
<div class="alert alert-success">
|
| 174 |
+
<h4>🔍 TF-IDF Based Answer</h4>
|
| 175 |
+
<div class="alert alert-light">
|
| 176 |
+
<strong>Most Relevant Sentence:</strong> {tfidf_answer['sentence']}
|
| 177 |
+
</div>
|
| 178 |
+
<p><strong>Similarity Score:</strong> {tfidf_answer['score']:.3f}</p>
|
| 179 |
+
<p><strong>Method:</strong> Cosine similarity between question and context sentences using TF-IDF vectors</p>
|
| 180 |
+
</div>
|
| 181 |
+
""")
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
output_html.append(f'<div class="alert alert-danger">❌ Error in TF-IDF QA: {str(e)}</div>')
|
| 185 |
+
|
| 186 |
+
# Answer Quality Assessment
|
| 187 |
+
output_html.append('<h3 class="task-subheader">Answer Quality Assessment</h3>')
|
| 188 |
+
|
| 189 |
+
if 'confidence' in locals():
|
| 190 |
+
quality_metrics = assess_answer_quality(question, answer, confidence, context_text)
|
| 191 |
+
|
| 192 |
+
# Create quality assessment visualization
|
| 193 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
| 194 |
+
|
| 195 |
+
# Quality metrics radar chart
|
| 196 |
+
categories = list(quality_metrics.keys())
|
| 197 |
+
values = list(quality_metrics.values())
|
| 198 |
+
|
| 199 |
+
ax1.bar(categories, values, color=['#4CAF50', '#2196F3', '#FF9800', '#9C27B0'])
|
| 200 |
+
ax1.set_ylim(0, 1)
|
| 201 |
+
ax1.set_title('Answer Quality Metrics')
|
| 202 |
+
ax1.set_ylabel('Score')
|
| 203 |
+
plt.setp(ax1.get_xticklabels(), rotation=45, ha='right')
|
| 204 |
+
|
| 205 |
+
# Overall quality score
|
| 206 |
+
overall_score = sum(values) / len(values)
|
| 207 |
+
quality_label = "Excellent" if overall_score >= 0.8 else "Good" if overall_score >= 0.6 else "Fair" if overall_score >= 0.4 else "Poor"
|
| 208 |
+
|
| 209 |
+
ax2.pie([overall_score, 1-overall_score], labels=[f'{quality_label}\n({overall_score:.2f})', 'Room for Improvement'],
|
| 210 |
+
colors=['#4CAF50', '#E0E0E0'], startangle=90)
|
| 211 |
+
ax2.set_title('Overall Answer Quality')
|
| 212 |
+
|
| 213 |
+
plt.tight_layout()
|
| 214 |
+
output_html.append(fig_to_html(fig))
|
| 215 |
+
plt.close()
|
| 216 |
+
|
| 217 |
+
# Quality metrics table
|
| 218 |
+
quality_df = pd.DataFrame([
|
| 219 |
+
{'Metric': 'Confidence', 'Score': f"{quality_metrics['Confidence']:.3f}", 'Description': 'Model confidence in the answer'},
|
| 220 |
+
{'Metric': 'Relevance', 'Score': f"{quality_metrics['Relevance']:.3f}", 'Description': 'Semantic similarity to question'},
|
| 221 |
+
{'Metric': 'Completeness', 'Score': f"{quality_metrics['Completeness']:.3f}", 'Description': 'Answer length appropriateness'},
|
| 222 |
+
{'Metric': 'Context Match', 'Score': f"{quality_metrics['Context_Match']:.3f}", 'Description': 'How well answer fits context'}
|
| 223 |
+
])
|
| 224 |
+
|
| 225 |
+
output_html.append('<h4>Quality Assessment Details</h4>')
|
| 226 |
+
output_html.append(df_to_html_table(quality_df))
|
| 227 |
+
|
| 228 |
+
# Question-Answer Pairs Suggestions
|
| 229 |
+
output_html.append('<h3 class="task-subheader">Suggested Follow-up Questions</h3>')
|
| 230 |
+
|
| 231 |
+
try:
|
| 232 |
+
suggested_questions = generate_followup_questions(context_text, question, answer if 'answer' in locals() else "")
|
| 233 |
+
|
| 234 |
+
output_html.append('<div class="alert alert-warning">')
|
| 235 |
+
output_html.append('<h4>💡 Follow-up Questions:</h4>')
|
| 236 |
+
output_html.append('<ul>')
|
| 237 |
+
for i, q in enumerate(suggested_questions, 1):
|
| 238 |
+
output_html.append(f'<li><strong>Q{i}:</strong> {q}</li>')
|
| 239 |
+
output_html.append('</ul>')
|
| 240 |
+
output_html.append('</div>')
|
| 241 |
+
|
| 242 |
+
except Exception as e:
|
| 243 |
+
output_html.append(f'<div class="alert alert-danger">❌ Error generating suggestions: {str(e)}</div>')
|
| 244 |
+
|
| 245 |
+
except Exception as e:
|
| 246 |
+
output_html.append(f'<div class="alert alert-danger">❌ Unexpected error: {str(e)}</div>')
|
| 247 |
+
|
| 248 |
+
output_html.append('</div>')
|
| 249 |
+
|
| 250 |
+
# Add About section at the end
|
| 251 |
+
output_html.append(get_about_section())
|
| 252 |
+
|
| 253 |
+
return "\n".join(output_html)
|
| 254 |
+
|
| 255 |
+
def classify_question_type(question):
|
| 256 |
+
"""Classify the type of question and expected answer format."""
|
| 257 |
+
question = question.lower().strip()
|
| 258 |
+
|
| 259 |
+
# Question word patterns
|
| 260 |
+
patterns = {
|
| 261 |
+
'what': {'type': 'Definition/Fact', 'expected': 'Entity, concept, or description'},
|
| 262 |
+
'who': {'type': 'Person', 'expected': 'Person name or group'},
|
| 263 |
+
'when': {'type': 'Time', 'expected': 'Date, time, or temporal expression'},
|
| 264 |
+
'where': {'type': 'Location', 'expected': 'Place, location, or spatial reference'},
|
| 265 |
+
'why': {'type': 'Reason/Cause', 'expected': 'Explanation or causal relationship'},
|
| 266 |
+
'how': {'type': 'Method/Process', 'expected': 'Process, method, or manner'},
|
| 267 |
+
'which': {'type': 'Selection', 'expected': 'Specific choice from options'},
|
| 268 |
+
'how much': {'type': 'Quantity', 'expected': 'Numerical amount or quantity'},
|
| 269 |
+
'how many': {'type': 'Count', 'expected': 'Numerical count'},
|
| 270 |
+
'is': {'type': 'Yes/No', 'expected': 'Boolean answer'},
|
| 271 |
+
'are': {'type': 'Yes/No', 'expected': 'Boolean answer'},
|
| 272 |
+
'can': {'type': 'Ability/Possibility', 'expected': 'Yes/No with explanation'},
|
| 273 |
+
'will': {'type': 'Future/Prediction', 'expected': 'Future state or prediction'},
|
| 274 |
+
'did': {'type': 'Past Action', 'expected': 'Yes/No about past events'}
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
# Extract keywords from question
|
| 278 |
+
words = question.split()
|
| 279 |
+
keywords = [word for word in words if len(word) > 2 and word not in ['the', 'and', 'but', 'for']]
|
| 280 |
+
|
| 281 |
+
# Determine question type
|
| 282 |
+
for pattern, info in patterns.items():
|
| 283 |
+
if question.startswith(pattern):
|
| 284 |
+
return {
|
| 285 |
+
'type': info['type'],
|
| 286 |
+
'expected': info['expected'],
|
| 287 |
+
'keywords': keywords[:5] # Top 5 keywords
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
+
# Default classification
|
| 291 |
+
return {
|
| 292 |
+
'type': 'General',
|
| 293 |
+
'expected': 'Text span or explanation',
|
| 294 |
+
'keywords': keywords[:5]
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
def extract_answer_tfidf(context, question):
|
| 298 |
+
"""Extract answer using TF-IDF similarity."""
|
| 299 |
+
# Split context into sentences
|
| 300 |
+
sentences = nltk.sent_tokenize(context)
|
| 301 |
+
|
| 302 |
+
if len(sentences) == 0:
|
| 303 |
+
return {'sentence': 'No sentences found', 'score': 0.0}
|
| 304 |
+
|
| 305 |
+
# Create TF-IDF vectors
|
| 306 |
+
vectorizer = TfidfVectorizer(stop_words='english', lowercase=True)
|
| 307 |
+
|
| 308 |
+
# Combine question with sentences for vectorization
|
| 309 |
+
texts = [question] + sentences
|
| 310 |
+
tfidf_matrix = vectorizer.fit_transform(texts)
|
| 311 |
+
|
| 312 |
+
# Calculate cosine similarity between question and each sentence
|
| 313 |
+
question_vector = tfidf_matrix[0:1]
|
| 314 |
+
sentence_vectors = tfidf_matrix[1:]
|
| 315 |
+
|
| 316 |
+
similarities = cosine_similarity(question_vector, sentence_vectors).flatten()
|
| 317 |
+
|
| 318 |
+
# Find the most similar sentence
|
| 319 |
+
best_idx = np.argmax(similarities)
|
| 320 |
+
best_sentence = sentences[best_idx]
|
| 321 |
+
best_score = similarities[best_idx]
|
| 322 |
+
|
| 323 |
+
return {
|
| 324 |
+
'sentence': best_sentence,
|
| 325 |
+
'score': best_score
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
def highlight_answer_in_context(context, start_pos, end_pos):
|
| 329 |
+
"""Highlight the answer span in the context."""
|
| 330 |
+
before = context[:start_pos]
|
| 331 |
+
answer = context[start_pos:end_pos]
|
| 332 |
+
after = context[end_pos:]
|
| 333 |
+
|
| 334 |
+
highlighted = f'{before}<mark style="background-color: #FFEB3B; padding: 2px 4px; border-radius: 3px; font-weight: bold;">{answer}</mark>{after}'
|
| 335 |
+
|
| 336 |
+
return highlighted
|
| 337 |
+
|
| 338 |
+
def assess_answer_quality(question, answer, confidence, context):
|
| 339 |
+
"""Assess the quality of the extracted answer."""
|
| 340 |
+
metrics = {}
|
| 341 |
+
|
| 342 |
+
# Confidence score (from model)
|
| 343 |
+
metrics['Confidence'] = confidence
|
| 344 |
+
|
| 345 |
+
# Relevance (simple keyword overlap)
|
| 346 |
+
question_words = set(question.lower().split())
|
| 347 |
+
answer_words = set(answer.lower().split())
|
| 348 |
+
overlap = len(question_words.intersection(answer_words))
|
| 349 |
+
metrics['Relevance'] = min(overlap / max(len(question_words), 1), 1.0)
|
| 350 |
+
|
| 351 |
+
# Completeness (answer length appropriateness)
|
| 352 |
+
answer_length = len(answer.split())
|
| 353 |
+
if answer_length == 0:
|
| 354 |
+
metrics['Completeness'] = 0.0
|
| 355 |
+
elif answer_length < 3:
|
| 356 |
+
metrics['Completeness'] = 0.6
|
| 357 |
+
elif answer_length <= 20:
|
| 358 |
+
metrics['Completeness'] = 1.0
|
| 359 |
+
else:
|
| 360 |
+
metrics['Completeness'] = 0.8 # Very long answers might be too verbose
|
| 361 |
+
|
| 362 |
+
# Context match (how well the answer fits in context)
|
| 363 |
+
answer_in_context = answer.lower() in context.lower()
|
| 364 |
+
metrics['Context_Match'] = 1.0 if answer_in_context else 0.5
|
| 365 |
+
|
| 366 |
+
return metrics
|
| 367 |
+
|
| 368 |
+
def generate_followup_questions(context, original_question, answer):
|
| 369 |
+
"""Generate relevant follow-up questions based on the context and answer."""
|
| 370 |
+
suggestions = []
|
| 371 |
+
|
| 372 |
+
# Extract key entities and concepts from context
|
| 373 |
+
words = context.split()
|
| 374 |
+
|
| 375 |
+
# Template-based question generation
|
| 376 |
+
templates = [
|
| 377 |
+
f"What else can you tell me about {answer}?",
|
| 378 |
+
"Can you provide more details about this topic?",
|
| 379 |
+
"What are the implications of this information?",
|
| 380 |
+
"How does this relate to other concepts mentioned?",
|
| 381 |
+
"What evidence supports this answer?"
|
| 382 |
+
]
|
| 383 |
+
|
| 384 |
+
# Add context-specific questions
|
| 385 |
+
if "when" not in original_question.lower():
|
| 386 |
+
suggestions.append("When did this happen?")
|
| 387 |
+
|
| 388 |
+
if "where" not in original_question.lower():
|
| 389 |
+
suggestions.append("Where did this take place?")
|
| 390 |
+
|
| 391 |
+
if "why" not in original_question.lower():
|
| 392 |
+
suggestions.append("Why is this significant?")
|
| 393 |
+
|
| 394 |
+
if "how" not in original_question.lower():
|
| 395 |
+
suggestions.append("How does this work?")
|
| 396 |
+
|
| 397 |
+
# Combine and limit suggestions
|
| 398 |
+
all_suggestions = templates + suggestions
|
| 399 |
+
return all_suggestions[:5] # Return top 5 suggestions
|
| 400 |
+
|
| 401 |
+
def qa_api_handler(context, question):
|
| 402 |
+
"""API handler for question answering that returns structured data."""
|
| 403 |
+
try:
|
| 404 |
+
qa_pipeline = load_qa_pipeline()
|
| 405 |
+
result = qa_pipeline(question=question, context=context)
|
| 406 |
+
|
| 407 |
+
return {
|
| 408 |
+
"answer": result['answer'],
|
| 409 |
+
"confidence": result['score'],
|
| 410 |
+
"start_position": result['start'],
|
| 411 |
+
"end_position": result['end'],
|
| 412 |
+
"success": True,
|
| 413 |
+
"error": None
|
| 414 |
+
}
|
| 415 |
+
except Exception as e:
|
| 416 |
+
return {
|
| 417 |
+
"answer": "",
|
| 418 |
+
"confidence": 0.0,
|
| 419 |
+
"start_position": 0,
|
| 420 |
+
"end_position": 0,
|
| 421 |
+
"success": False,
|
| 422 |
+
"error": str(e)
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
def process_question_with_context(context_text, question):
|
| 426 |
+
"""Process a question with the given context and return a formatted result."""
|
| 427 |
+
if not context_text or not context_text.strip():
|
| 428 |
+
return {
|
| 429 |
+
"success": False,
|
| 430 |
+
"error": "No context text provided",
|
| 431 |
+
"html": '<div class="alert alert-warning">⚠️ No context text provided.</div>'
|
| 432 |
+
}
|
| 433 |
+
|
| 434 |
+
if not question or not question.strip():
|
| 435 |
+
return {
|
| 436 |
+
"success": False,
|
| 437 |
+
"error": "No question provided",
|
| 438 |
+
"html": '<div class="alert alert-warning">⚠️ Please enter a question.</div>'
|
| 439 |
+
}
|
| 440 |
+
|
| 441 |
+
try:
|
| 442 |
+
qa_pipeline = load_qa_pipeline()
|
| 443 |
+
result = qa_pipeline(question=question, context=context_text)
|
| 444 |
+
|
| 445 |
+
answer = result['answer']
|
| 446 |
+
confidence = result['score']
|
| 447 |
+
start_pos = result['start']
|
| 448 |
+
end_pos = result['end']
|
| 449 |
+
|
| 450 |
+
# Determine confidence level
|
| 451 |
+
confidence_status = "High" if confidence >= 0.7 else "Medium" if confidence >= 0.3 else "Low"
|
| 452 |
+
confidence_color = "#4CAF50" if confidence >= 0.7 else "#FF9800" if confidence >= 0.3 else "#F44336"
|
| 453 |
+
|
| 454 |
+
# Highlight answer in context
|
| 455 |
+
highlighted_context = highlight_answer_in_context(context_text, start_pos, end_pos)
|
| 456 |
+
|
| 457 |
+
# Create formatted HTML result
|
| 458 |
+
html_result = f"""
|
| 459 |
+
<div class="card">
|
| 460 |
+
<div class="card-header">
|
| 461 |
+
<h5 class="mb-0">📝 Answer Found!</h5>
|
| 462 |
+
</div>
|
| 463 |
+
<div class="card-body">
|
| 464 |
+
<div class="alert alert-light">
|
| 465 |
+
<p><strong>Question:</strong> {question}</p>
|
| 466 |
+
<p><strong>Answer:</strong> <span class="badge bg-warning text-dark fs-6">{answer}</span></p>
|
| 467 |
+
<p><strong>Confidence:</strong> {confidence:.3f} ({confidence_status})</p>
|
| 468 |
+
</div>
|
| 469 |
+
|
| 470 |
+
<div class="alert alert-light">
|
| 471 |
+
<h6>📄 Context with Highlighted Answer:</h6>
|
| 472 |
+
<div style="line-height: 1.6; font-size: 0.9rem; max-height: 200px; overflow-y: auto;">
|
| 473 |
+
{highlighted_context}
|
| 474 |
+
</div>
|
| 475 |
+
</div>
|
| 476 |
+
|
| 477 |
+
<div class="alert alert-info">
|
| 478 |
+
<strong>Quality Assessment:</strong>
|
| 479 |
+
<ul class="mb-0">
|
| 480 |
+
<li>Confidence: {confidence_status} ({confidence:.1%})</li>
|
| 481 |
+
<li>Answer found at position: {start_pos}-{end_pos}</li>
|
| 482 |
+
<li>Answer length: {len(answer.split())} words</li>
|
| 483 |
+
</ul>
|
| 484 |
+
</div>
|
| 485 |
+
</div>
|
| 486 |
+
</div>
|
| 487 |
+
"""
|
| 488 |
+
|
| 489 |
+
return {
|
| 490 |
+
"success": True,
|
| 491 |
+
"answer": answer,
|
| 492 |
+
"confidence": confidence,
|
| 493 |
+
"html": html_result
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
except Exception as e:
|
| 497 |
+
error_html = f'<div class="alert alert-danger">❌ Error processing question: {str(e)}</div>'
|
| 498 |
+
return {
|
| 499 |
+
"success": False,
|
| 500 |
+
"error": str(e),
|
| 501 |
+
"html": error_html
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
def get_about_section():
|
| 505 |
+
"""Generate the About Question Answering section"""
|
| 506 |
+
return """
|
| 507 |
+
<div class="card mt-4">
|
| 508 |
+
<div class="card-header bg-primary text-white">
|
| 509 |
+
<h4><i class="fas fa-info-circle me-2"></i>About Question Answering</h4>
|
| 510 |
+
</div>
|
| 511 |
+
<div class="card-body">
|
| 512 |
+
<h5>What is Question Answering?</h5>
|
| 513 |
+
<p>Question Answering (QA) is an NLP technique that automatically finds answers to questions posed in natural language. It involves understanding both the question and the context to extract or generate relevant answers.</p>
|
| 514 |
+
|
| 515 |
+
<h5>Applications of Question Answering:</h5>
|
| 516 |
+
<ul>
|
| 517 |
+
<li><strong>Customer Support</strong> - Automatically answering customer queries from knowledge bases</li>
|
| 518 |
+
<li><strong>Educational Systems</strong> - Helping students find answers in textbooks and materials</li>
|
| 519 |
+
<li><strong>Information Retrieval</strong> - Extracting specific information from large documents</li>
|
| 520 |
+
<li><strong>Virtual Assistants</strong> - Powering AI assistants like Siri, Alexa, and Google Assistant</li>
|
| 521 |
+
<li><strong>Research Tools</strong> - Helping researchers quickly find relevant information in papers</li>
|
| 522 |
+
<li><strong>Legal Analysis</strong> - Finding relevant clauses and information in legal documents</li>
|
| 523 |
+
</ul>
|
| 524 |
+
|
| 525 |
+
<h5>How It Works:</h5>
|
| 526 |
+
<p>Our system uses transformer-based models to understand questions and find relevant answers in the provided context. It analyzes question types, extracts key information, and provides confidence scores for the answers found.</p>
|
| 527 |
+
</div>
|
| 528 |
+
</div>
|
| 529 |
+
"""
|