DeepONet-FPO-demo / app_v1.py
arabeh's picture
minor edits
c7a4de3
raw
history blame
8.5 kB
from pathlib import Path
import io
import zipfile
import tempfile
from functools import lru_cache
import numpy as np
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import imageio.v2 as imageio
from mpl_toolkits.axes_grid1 import make_axes_locatable
from einops import rearrange
from models.geometric_deeponet.geometric_deeponet import GeometricDeepONetTime
# ---------------- Config ----------------
REPO_ID = "arabeh/DeepONet-FlowBench-FPO"
CKPTS = {
"1": "checkpoints/time-dependent-deeponet_1in.ckpt",
"4": "checkpoints/time-dependent-deeponet_4in.ckpt",
"8": "checkpoints/time-dependent-deeponet_8in.ckpt",
"16": "checkpoints/time-dependent-deeponet_16in.ckpt",
}
SAMPLES_DIR = Path("sample_cases")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
TMP = Path(tempfile.gettempdir())
RANGES = {
"u": (-2.0, 2.0),
"v": (-1.0, 1.0),
}
def _tag() -> str:
# unique per request (avoids filename collisions across sessions)
return next(tempfile._get_candidate_names())
def _tmp(tag: str, name: str) -> str:
out_dir = TMP / f"deeponet_fpo_{tag}"
out_dir.mkdir(parents=True, exist_ok=True)
return str(out_dir / name)
# ---------------- Samples ----------------
def list_samples():
if not SAMPLES_DIR.is_dir():
return []
ids = []
for p in SAMPLES_DIR.glob("sample_*_input.npy"):
# sample_{id}_input.npy
sid = p.stem.split("_")[1]
if sid.isdigit():
ids.append(sid)
return sorted(set(ids), key=int)
def load_sample(sample_id: str):
sdf = np.load(SAMPLES_DIR / f"sample_{sample_id}_input.npy").astype(np.float32) # [1,H,W]
y = np.load(SAMPLES_DIR / f"sample_{sample_id}_output.npy").astype(np.float32) # [T,2,H,W]
return sdf, y
# ---------------- Model ----------------
@lru_cache(maxsize=4)
def load_model(history_s: int) -> GeometricDeepONetTime:
ckpt_path = hf_hub_download(REPO_ID, CKPTS[str(history_s)])
model = GeometricDeepONetTime.load_from_checkpoint(ckpt_path, map_location=DEVICE)
return model.eval().to(DEVICE)
def static_tensors(hparams, sdf_np: np.ndarray):
_, H, W = sdf_np.shape
x = np.linspace(0.0, float(hparams.domain_length_x), W, dtype=np.float32)
y = np.linspace(0.0, float(hparams.domain_length_y), H, dtype=np.float32)
yv, xv = np.meshgrid(y, x, indexing="ij")
coords = np.stack([xv, yv], axis=0)[None] # [1,2,H,W]
sdf_t = torch.from_numpy(sdf_np)[None].to(DEVICE) # [1,1,H,W]
coords_t = torch.from_numpy(coords).to(DEVICE) # [1,2,H,W]
re_t = torch.zeros_like(sdf_t) # [1,1,H,W]
return sdf_t, coords_t, re_t, H, W
# ---------------- Rollout + metrics ----------------
def rollout(sample_id: str, history_s: str):
s = int(history_s)
model = load_model(s)
sdf, y_true = load_sample(sample_id)
T, C, H, W = y_true.shape
if C != 2:
raise ValueError(f"Expected 2 channels (u,v), got {C}")
s = min(s, T - 1) # ensure s < T
sdf_t, coords_t, re_t, _, _ = static_tensors(model.hparams, sdf)
y_pred = np.zeros_like(y_true)
y_pred[:s] = y_true[:s]
history = y_true[:s].copy() # [s,2,H,W]
for t in range(s, T):
branch = rearrange(history, "nb c h w -> (nb c) h w")[None] # [1,s*2,H,W]
branch_t = torch.from_numpy(branch).to(DEVICE)
with torch.no_grad():
y_hat = model((branch_t, re_t, coords_t, sdf_t)) # [1,1,p,2]
frame = y_hat[0, 0].view(H, W, 2).permute(2, 0, 1).cpu().numpy() # [2,H,W]
y_pred[t] = frame
history = frame[None] if s == 1 else np.concatenate([history[1:], frame[None]], axis=0)
return y_true, y_pred, s
def rollout_errors(y_true: np.ndarray, y_pred: np.ndarray, s: int):
yt = y_true[s:]
yp = y_pred[s:]
diff = yp - yt
ts = np.arange(s, y_true.shape[0])
def rel(comp: int):
d = diff[:, comp].reshape(len(ts), -1)
t = yt[:, comp].reshape(len(ts), -1)
return np.linalg.norm(d, axis=1) / np.linalg.norm(t, axis=1)
err_u = rel(0)
err_v = rel(1)
return ts, err_u, err_v, float(err_u.mean()), float(err_v.mean())
def pair_png(gt2d: np.ndarray, pred2d: np.ndarray, label: str, t: int) -> bytes:
vmin, vmax = RANGES.get(label, (-1.0, 1.0)) # fallback if label changes
fig, ax = plt.subplots(1, 2, figsize=(6.5, 2.6))
ax[0].imshow(gt2d, origin="lower", vmin=vmin, vmax=vmax)
ax[0].set_title(f"{label} GT – t={t}")
ax[0].axis("off")
im2 = ax[1].imshow(pred2d, origin="lower", vmin=vmin, vmax=vmax)
ax[1].set_title(f"{label} Pred – t={t}")
ax[1].axis("off")
# Colorbar height == ax[1] image height
divider = make_axes_locatable(ax[1])
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(im2, cax=cax)
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight", dpi=110)
plt.close(fig)
return buf.getvalue()
def write_gif(tag: str, y_true: np.ndarray, y_pred: np.ndarray, comp: int, label: str) -> str:
path = _tmp(tag, f"{label}_rollout.gif")
with imageio.get_writer(path, mode="I", duration=0.1, loop=0) as w:
for t in range(y_true.shape[0]):
png = pair_png(y_true[t, comp], y_pred[t, comp], label, t)
w.append_data(imageio.imread(io.BytesIO(png)))
return path
def write_zip(tag: str, y_true: np.ndarray, y_pred: np.ndarray, comp: int, label: str) -> str:
path = _tmp(tag, f"{label}_frames.zip")
with zipfile.ZipFile(path, "w", compression=zipfile.ZIP_DEFLATED) as zf:
for t in range(y_true.shape[0]):
zf.writestr(f"{label}_frame_{t:03d}.png", pair_png(y_true[t, comp], y_pred[t, comp], label, t))
return path
def write_error_assets(tag: str, ts: np.ndarray, err_u: np.ndarray, err_v: np.ndarray):
png = _tmp(tag, "relL2_vs_time.png")
csv = _tmp(tag, "relL2_vs_time.csv")
np.savetxt(
csv,
np.c_[ts, err_u, err_v],
delimiter=",",
header="timestep,rel_L2_u,rel_L2_v",
comments="",
)
fig, ax = plt.subplots(figsize=(5, 3))
ax.plot(ts, err_u, label="u")
ax.plot(ts, err_v, label="v")
ax.set_xlabel("Timestep")
ax.set_ylabel("Relative L2")
ax.set_title("Rollout rel. L2 vs time")
ax.legend()
ax.grid(True, alpha=0.3)
fig.savefig(png, dpi=120, bbox_inches="tight")
plt.close(fig)
return png, csv
# ---------------- Gradio callback ----------------
def predict_rollout(sample_id: str, history_s: str):
tag = _tag()
y_true, y_pred, s = rollout(sample_id, history_s)
ts, err_u, err_v, avg_u, avg_v = rollout_errors(y_true, y_pred, s)
u_gif = write_gif(tag, y_true, y_pred, 0, "u")
v_gif = write_gif(tag, y_true, y_pred, 1, "v")
u_zip = write_zip(tag, y_true, y_pred, 0, "u")
v_zip = write_zip(tag, y_true, y_pred, 1, "v")
err_png, csv = write_error_assets(tag, ts, err_u, err_v)
metrics = (
f"Rollout relative L2 error (averaged over t β‰₯ {s}):\n"
f" u: {avg_u:.3e}\n"
f" v: {avg_v:.3e}"
)
return (u_gif, u_gif, u_zip, v_gif, v_gif, v_zip, err_png, csv, metrics)
# ---------------- UI builder ----------------
def build_demo():
sample_choices = list_samples() or ["0"]
return gr.Interface(
fn=predict_rollout,
inputs=[
gr.Radio(sample_choices, value=sample_choices[0], label="Sample ID"),
gr.Radio(["1", "4", "8", "16"], value="16", label="History length s"),
],
outputs=[
gr.Image(type="filepath", label="u rollout (GIF)"),
gr.File(label="Download u rollout (GIF)"),
gr.File(label="Download all u frames (ZIP)"),
gr.Image(type="filepath", label="v rollout (GIF)"),
gr.File(label="Download v rollout (GIF)"),
gr.File(label="Download all v frames (ZIP)"),
gr.Image(type="filepath", label="Relative L2 vs time"),
gr.File(label="Download L2 vs time (CSV)"),
gr.Textbox(label="Summary metrics"),
],
title="Time-Dependent DeepONet – FPO Rollout Demo",
description=(
"Auto-regressive 60-step rollout of u and v fields for a selected sample. "
"Choose history length s (1, 4, 8, 16). Download videos/frames and relative error vs time (CSV)."
),
)
if __name__ == "__main__":
build_demo().launch()