Spaces:
Sleeping
Sleeping
File size: 8,498 Bytes
dbd1ab1 e8b7d0c dbd1ab1 c7a4de3 dbd1ab1 e8b7d0c dbd1ab1 e8b7d0c c4ddff0 e8b7d0c c4ddff0 e8b7d0c c4ddff0 dbd1ab1 e8b7d0c dbd1ab1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from pathlib import Path
import io
import zipfile
import tempfile
from functools import lru_cache
import numpy as np
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import imageio.v2 as imageio
from mpl_toolkits.axes_grid1 import make_axes_locatable
from einops import rearrange
from models.geometric_deeponet.geometric_deeponet import GeometricDeepONetTime
# ---------------- Config ----------------
REPO_ID = "arabeh/DeepONet-FlowBench-FPO"
CKPTS = {
"1": "checkpoints/time-dependent-deeponet_1in.ckpt",
"4": "checkpoints/time-dependent-deeponet_4in.ckpt",
"8": "checkpoints/time-dependent-deeponet_8in.ckpt",
"16": "checkpoints/time-dependent-deeponet_16in.ckpt",
}
SAMPLES_DIR = Path("sample_cases")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
TMP = Path(tempfile.gettempdir())
RANGES = {
"u": (-2.0, 2.0),
"v": (-1.0, 1.0),
}
def _tag() -> str:
# unique per request (avoids filename collisions across sessions)
return next(tempfile._get_candidate_names())
def _tmp(tag: str, name: str) -> str:
out_dir = TMP / f"deeponet_fpo_{tag}"
out_dir.mkdir(parents=True, exist_ok=True)
return str(out_dir / name)
# ---------------- Samples ----------------
def list_samples():
if not SAMPLES_DIR.is_dir():
return []
ids = []
for p in SAMPLES_DIR.glob("sample_*_input.npy"):
# sample_{id}_input.npy
sid = p.stem.split("_")[1]
if sid.isdigit():
ids.append(sid)
return sorted(set(ids), key=int)
def load_sample(sample_id: str):
sdf = np.load(SAMPLES_DIR / f"sample_{sample_id}_input.npy").astype(np.float32) # [1,H,W]
y = np.load(SAMPLES_DIR / f"sample_{sample_id}_output.npy").astype(np.float32) # [T,2,H,W]
return sdf, y
# ---------------- Model ----------------
@lru_cache(maxsize=4)
def load_model(history_s: int) -> GeometricDeepONetTime:
ckpt_path = hf_hub_download(REPO_ID, CKPTS[str(history_s)])
model = GeometricDeepONetTime.load_from_checkpoint(ckpt_path, map_location=DEVICE)
return model.eval().to(DEVICE)
def static_tensors(hparams, sdf_np: np.ndarray):
_, H, W = sdf_np.shape
x = np.linspace(0.0, float(hparams.domain_length_x), W, dtype=np.float32)
y = np.linspace(0.0, float(hparams.domain_length_y), H, dtype=np.float32)
yv, xv = np.meshgrid(y, x, indexing="ij")
coords = np.stack([xv, yv], axis=0)[None] # [1,2,H,W]
sdf_t = torch.from_numpy(sdf_np)[None].to(DEVICE) # [1,1,H,W]
coords_t = torch.from_numpy(coords).to(DEVICE) # [1,2,H,W]
re_t = torch.zeros_like(sdf_t) # [1,1,H,W]
return sdf_t, coords_t, re_t, H, W
# ---------------- Rollout + metrics ----------------
def rollout(sample_id: str, history_s: str):
s = int(history_s)
model = load_model(s)
sdf, y_true = load_sample(sample_id)
T, C, H, W = y_true.shape
if C != 2:
raise ValueError(f"Expected 2 channels (u,v), got {C}")
s = min(s, T - 1) # ensure s < T
sdf_t, coords_t, re_t, _, _ = static_tensors(model.hparams, sdf)
y_pred = np.zeros_like(y_true)
y_pred[:s] = y_true[:s]
history = y_true[:s].copy() # [s,2,H,W]
for t in range(s, T):
branch = rearrange(history, "nb c h w -> (nb c) h w")[None] # [1,s*2,H,W]
branch_t = torch.from_numpy(branch).to(DEVICE)
with torch.no_grad():
y_hat = model((branch_t, re_t, coords_t, sdf_t)) # [1,1,p,2]
frame = y_hat[0, 0].view(H, W, 2).permute(2, 0, 1).cpu().numpy() # [2,H,W]
y_pred[t] = frame
history = frame[None] if s == 1 else np.concatenate([history[1:], frame[None]], axis=0)
return y_true, y_pred, s
def rollout_errors(y_true: np.ndarray, y_pred: np.ndarray, s: int):
yt = y_true[s:]
yp = y_pred[s:]
diff = yp - yt
ts = np.arange(s, y_true.shape[0])
def rel(comp: int):
d = diff[:, comp].reshape(len(ts), -1)
t = yt[:, comp].reshape(len(ts), -1)
return np.linalg.norm(d, axis=1) / np.linalg.norm(t, axis=1)
err_u = rel(0)
err_v = rel(1)
return ts, err_u, err_v, float(err_u.mean()), float(err_v.mean())
def pair_png(gt2d: np.ndarray, pred2d: np.ndarray, label: str, t: int) -> bytes:
vmin, vmax = RANGES.get(label, (-1.0, 1.0)) # fallback if label changes
fig, ax = plt.subplots(1, 2, figsize=(6.5, 2.6))
ax[0].imshow(gt2d, origin="lower", vmin=vmin, vmax=vmax)
ax[0].set_title(f"{label} GT – t={t}")
ax[0].axis("off")
im2 = ax[1].imshow(pred2d, origin="lower", vmin=vmin, vmax=vmax)
ax[1].set_title(f"{label} Pred – t={t}")
ax[1].axis("off")
# Colorbar height == ax[1] image height
divider = make_axes_locatable(ax[1])
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(im2, cax=cax)
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight", dpi=110)
plt.close(fig)
return buf.getvalue()
def write_gif(tag: str, y_true: np.ndarray, y_pred: np.ndarray, comp: int, label: str) -> str:
path = _tmp(tag, f"{label}_rollout.gif")
with imageio.get_writer(path, mode="I", duration=0.1, loop=0) as w:
for t in range(y_true.shape[0]):
png = pair_png(y_true[t, comp], y_pred[t, comp], label, t)
w.append_data(imageio.imread(io.BytesIO(png)))
return path
def write_zip(tag: str, y_true: np.ndarray, y_pred: np.ndarray, comp: int, label: str) -> str:
path = _tmp(tag, f"{label}_frames.zip")
with zipfile.ZipFile(path, "w", compression=zipfile.ZIP_DEFLATED) as zf:
for t in range(y_true.shape[0]):
zf.writestr(f"{label}_frame_{t:03d}.png", pair_png(y_true[t, comp], y_pred[t, comp], label, t))
return path
def write_error_assets(tag: str, ts: np.ndarray, err_u: np.ndarray, err_v: np.ndarray):
png = _tmp(tag, "relL2_vs_time.png")
csv = _tmp(tag, "relL2_vs_time.csv")
np.savetxt(
csv,
np.c_[ts, err_u, err_v],
delimiter=",",
header="timestep,rel_L2_u,rel_L2_v",
comments="",
)
fig, ax = plt.subplots(figsize=(5, 3))
ax.plot(ts, err_u, label="u")
ax.plot(ts, err_v, label="v")
ax.set_xlabel("Timestep")
ax.set_ylabel("Relative L2")
ax.set_title("Rollout rel. L2 vs time")
ax.legend()
ax.grid(True, alpha=0.3)
fig.savefig(png, dpi=120, bbox_inches="tight")
plt.close(fig)
return png, csv
# ---------------- Gradio callback ----------------
def predict_rollout(sample_id: str, history_s: str):
tag = _tag()
y_true, y_pred, s = rollout(sample_id, history_s)
ts, err_u, err_v, avg_u, avg_v = rollout_errors(y_true, y_pred, s)
u_gif = write_gif(tag, y_true, y_pred, 0, "u")
v_gif = write_gif(tag, y_true, y_pred, 1, "v")
u_zip = write_zip(tag, y_true, y_pred, 0, "u")
v_zip = write_zip(tag, y_true, y_pred, 1, "v")
err_png, csv = write_error_assets(tag, ts, err_u, err_v)
metrics = (
f"Rollout relative L2 error (averaged over t ≥ {s}):\n"
f" u: {avg_u:.3e}\n"
f" v: {avg_v:.3e}"
)
return (u_gif, u_gif, u_zip, v_gif, v_gif, v_zip, err_png, csv, metrics)
# ---------------- UI builder ----------------
def build_demo():
sample_choices = list_samples() or ["0"]
return gr.Interface(
fn=predict_rollout,
inputs=[
gr.Radio(sample_choices, value=sample_choices[0], label="Sample ID"),
gr.Radio(["1", "4", "8", "16"], value="16", label="History length s"),
],
outputs=[
gr.Image(type="filepath", label="u rollout (GIF)"),
gr.File(label="Download u rollout (GIF)"),
gr.File(label="Download all u frames (ZIP)"),
gr.Image(type="filepath", label="v rollout (GIF)"),
gr.File(label="Download v rollout (GIF)"),
gr.File(label="Download all v frames (ZIP)"),
gr.Image(type="filepath", label="Relative L2 vs time"),
gr.File(label="Download L2 vs time (CSV)"),
gr.Textbox(label="Summary metrics"),
],
title="Time-Dependent DeepONet – FPO Rollout Demo",
description=(
"Auto-regressive 60-step rollout of u and v fields for a selected sample. "
"Choose history length s (1, 4, 8, 16). Download videos/frames and relative error vs time (CSV)."
),
)
if __name__ == "__main__":
build_demo().launch()
|