Spaces:
Sleeping
Sleeping
File size: 7,391 Bytes
dbd1ab1 c7a4de3 dbd1ab1 e8b7d0c c4ddff0 e8b7d0c c4ddff0 dbd1ab1 e8b7d0c c4ddff0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from pathlib import Path
import io
import zipfile
import tempfile
from functools import lru_cache
import numpy as np
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import imageio.v2 as imageio
from mpl_toolkits.axes_grid1 import make_axes_locatable
from einops import rearrange
from models.geometric_deeponet.geometric_deeponet import GeometricDeepONetTime
# ---------------- Config ----------------
REPO_ID = "arabeh/DeepONet-FlowBench-FPO"
CKPTS = {
"1": "checkpoints/time-dependent-deeponet_1in.ckpt",
"4": "checkpoints/time-dependent-deeponet_4in.ckpt",
"8": "checkpoints/time-dependent-deeponet_8in.ckpt",
"16": "checkpoints/time-dependent-deeponet_16in.ckpt",
}
# v2 samples live here (only 16 GT timesteps per sample)
SAMPLES_DIR = Path("sample_cases") / "few_timesteps"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
TMP = Path(tempfile.gettempdir())
RANGES = {
"u": (-2.0, 2.0),
"v": (-1.0, 1.0),
}
def _tag() -> str:
return next(tempfile._get_candidate_names())
def _tmp(tag: str, name: str) -> str:
out_dir = TMP / f"deeponet_fpo_{tag}"
out_dir.mkdir(parents=True, exist_ok=True)
return str(out_dir / name)
# ---------------- Samples ----------------
def list_samples():
if not SAMPLES_DIR.is_dir():
return []
ids = []
for p in SAMPLES_DIR.glob("sample_*_input.npy"):
sid = p.stem.split("_")[1]
if sid.isdigit():
ids.append(sid)
return sorted(set(ids), key=int)
def load_sample(sample_id: str):
sdf = np.load(SAMPLES_DIR / f"sample_{sample_id}_input.npy").astype(np.float32) # [1,H,W]
y16 = np.load(SAMPLES_DIR / f"sample_{sample_id}_output.npy").astype(np.float32) # [16,2,H,W]
return sdf, y16
# ---------------- Model ----------------
@lru_cache(maxsize=4)
def load_model(history_s: int) -> GeometricDeepONetTime:
ckpt_path = hf_hub_download(REPO_ID, CKPTS[str(history_s)])
model = GeometricDeepONetTime.load_from_checkpoint(ckpt_path, map_location=DEVICE)
return model.eval().to(DEVICE)
def static_tensors(hparams, sdf_np: np.ndarray):
_, H, W = sdf_np.shape
x = np.linspace(0.0, float(hparams.domain_length_x), W, dtype=np.float32)
y = np.linspace(0.0, float(hparams.domain_length_y), H, dtype=np.float32)
yv, xv = np.meshgrid(y, x, indexing="ij")
coords = np.stack([xv, yv], axis=0)[None] # [1,2,H,W]
sdf_t = torch.from_numpy(sdf_np)[None].to(DEVICE) # [1,1,H,W]
coords_t = torch.from_numpy(coords).to(DEVICE) # [1,2,H,W]
re_t = torch.zeros_like(sdf_t) # [1,1,H,W]
return sdf_t, coords_t, re_t, H, W
# ---------------- Rollout ----------------
def rollout_pred(sample_id: str, history_s: str, n_steps: int):
s = int(history_s)
n_steps = int(n_steps)
if n_steps <= 0:
raise ValueError("Number of rollout steps must be a positive integer.")
if n_steps < s:
n_steps = s # must have at least s frames to seed
model = load_model(s)
sdf, y16 = load_sample(sample_id)
# Expect [16,2,H,W] (or more), but we ONLY use first s to seed the model.
if y16.ndim != 4 or y16.shape[1] != 2:
raise ValueError(f"Expected y shape [T,2,H,W], got {y16.shape}")
if y16.shape[0] < s:
raise ValueError(f"Sample only has {y16.shape[0]} timesteps, but checkpoint needs s={s}.")
_, _, H, W = y16.shape
sdf_t, coords_t, re_t, _, _ = static_tensors(model.hparams, sdf)
seed = y16[:s].copy() # [s,2,H,W] (GT seed only)
y_out = np.zeros((n_steps, 2, H, W), dtype=np.float32)
y_out[:s] = seed
history = seed.copy()
for t in range(s, n_steps):
branch = rearrange(history, "nb c h w -> (nb c) h w")[None] # [1,s*2,H,W]
branch_t = torch.from_numpy(branch).to(DEVICE)
with torch.no_grad():
y_hat = model((branch_t, re_t, coords_t, sdf_t)) # [1,1,p,2]
frame = y_hat[0, 0].view(H, W, 2).permute(2, 0, 1).cpu().numpy().astype(np.float32) # [2,H,W]
y_out[t] = frame
history = frame[None] if s == 1 else np.concatenate([history[1:], frame[None]], axis=0)
return y_out, s
# ---------------- Rendering (prediction-only) ----------------
def single_png(field2d: np.ndarray, label: str, t: int) -> bytes:
vmin, vmax = RANGES.get(label, (-1.0, 1.0))
fig, ax = plt.subplots(1, 1, figsize=(3.4, 2.8))
im = ax.imshow(field2d, origin="lower", vmin=vmin, vmax=vmax)
ax.set_title(f"{label} – t={t}")
ax.axis("off")
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="6%", pad=0.05)
fig.colorbar(im, cax=cax)
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight", dpi=120)
plt.close(fig)
return buf.getvalue()
def write_gif(tag: str, y: np.ndarray, comp: int, label: str) -> str:
path = _tmp(tag, f"{label}_rollout.gif")
with imageio.get_writer(path, mode="I", duration=0.1, loop=0) as w:
for t in range(y.shape[0]):
png = single_png(y[t, comp], label, t)
w.append_data(imageio.imread(io.BytesIO(png)))
return path
def write_zip(tag: str, y: np.ndarray, comp: int, label: str) -> str:
path = _tmp(tag, f"{label}_frames.zip")
with zipfile.ZipFile(path, "w", compression=zipfile.ZIP_DEFLATED) as zf:
for t in range(y.shape[0]):
zf.writestr(f"{label}_frame_{t:03d}.png", single_png(y[t, comp], label, t))
return path
# ---------------- Gradio callback ----------------
def run_v2(sample_id: str, history_s: str, n_steps: int):
tag = _tag()
y, s = rollout_pred(sample_id, history_s, n_steps)
u_gif = write_gif(tag, y, comp=0, label="u")
v_gif = write_gif(tag, y, comp=1, label="v")
u_zip = write_zip(tag, y, comp=0, label="u")
v_zip = write_zip(tag, y, comp=1, label="v")
summary = (
f"Seeded with s={s} timesteps from {SAMPLES_DIR}.\n"
f"Generated rollout length N={y.shape[0]} (frames labeled seed for t<s, pred for t≥s)."
)
return (
u_gif, u_gif, u_zip,
v_gif, v_gif, v_zip,
summary,
)
# ---------------- UI builder ----------------
def build_demo():
sample_choices = list_samples() or ["0"]
history_choices = ["1", "4", "8", "16"]
return gr.Interface(
fn=run_v2,
inputs=[
gr.Radio(sample_choices, value=sample_choices[0], label="Sample ID"),
gr.Radio(history_choices, value="16", label="History length s (checkpoint)"),
gr.Number(value=60, precision=0, label="Rollout steps N (total frames)"),
],
outputs=[
gr.Image(type="filepath", label="u rollout (GIF)"),
gr.File(label="Download u rollout (GIF)"),
gr.File(label="Download all u frames (ZIP)"),
gr.Image(type="filepath", label="v rollout (GIF)"),
gr.File(label="Download v rollout (GIF)"),
gr.File(label="Download all v frames (ZIP)"),
gr.Textbox(label="Run summary"),
],
title="Time-Dependent DeepONet – FPO Rollout Demo",
description=(
"Auto-regressive rollout of u and v fields for a selected sample. "
"Choose history length s (1, 4, 8, 16). Download videos/frames."
),
)
if __name__ == "__main__":
build_demo().launch()
|