Spaces:
Running
on
Zero
Running
on
Zero
Update utils/hooks.py
Browse files- utils/hooks.py +79 -5
utils/hooks.py
CHANGED
|
@@ -1,5 +1,31 @@
|
|
| 1 |
import torch
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
@torch.no_grad()
|
| 5 |
def add_feature(sae, feature_idx, value, module, input, output):
|
|
@@ -10,9 +36,14 @@ def add_feature(sae, feature_idx, value, module, input, output):
|
|
| 10 |
to_add = mask @ sae.decoder.weight.T
|
| 11 |
return (output[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
@torch.no_grad()
|
| 15 |
-
def
|
|
|
|
|
|
|
| 16 |
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
|
| 17 |
activated = sae.encode(diff)
|
| 18 |
mask = torch.zeros_like(activated, device=diff.device)
|
|
@@ -20,11 +51,54 @@ def add_feature_on_area(sae, feature_idx, activation_map, module, input, output)
|
|
| 20 |
activation_map = activation_map.unsqueeze(0)
|
| 21 |
mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
|
| 22 |
to_add = mask @ sae.decoder.weight.T
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
@torch.no_grad()
|
| 27 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
|
| 29 |
activated = sae.encode(diff)
|
| 30 |
mask = torch.zeros_like(activated, device=diff.device)
|
|
@@ -43,4 +117,4 @@ def reconstruct_sae_hook(sae, module, input, output):
|
|
| 43 |
|
| 44 |
@torch.no_grad()
|
| 45 |
def ablate_block(module, input, output):
|
| 46 |
-
return input
|
|
|
|
| 1 |
import torch
|
| 2 |
+
|
| 3 |
+
class TimedHook:
|
| 4 |
+
def __init__(self, hook_fn, total_steps, apply_at_steps=None):
|
| 5 |
+
self.hook_fn = hook_fn
|
| 6 |
+
self.total_steps = total_steps
|
| 7 |
+
self.apply_at_steps = apply_at_steps
|
| 8 |
+
self.current_step = 0
|
| 9 |
+
|
| 10 |
+
def identity(self, module, input, output):
|
| 11 |
+
return output
|
| 12 |
+
|
| 13 |
+
def __call__(self, module, input, output):
|
| 14 |
+
if self.apply_at_steps is not None:
|
| 15 |
+
if self.current_step in self.apply_at_steps:
|
| 16 |
+
self.__increment()
|
| 17 |
+
return self.hook_fn(module, input, output)
|
| 18 |
+
else:
|
| 19 |
+
self.__increment()
|
| 20 |
+
return self.identity(module, input, output)
|
| 21 |
+
|
| 22 |
+
return self.identity(module, input, output)
|
| 23 |
+
|
| 24 |
+
def __increment(self):
|
| 25 |
+
if self.current_step < self.total_steps:
|
| 26 |
+
self.current_step += 1
|
| 27 |
+
else:
|
| 28 |
+
self.current_step = 0
|
| 29 |
|
| 30 |
@torch.no_grad()
|
| 31 |
def add_feature(sae, feature_idx, value, module, input, output):
|
|
|
|
| 36 |
to_add = mask @ sae.decoder.weight.T
|
| 37 |
return (output[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)
|
| 38 |
|
| 39 |
+
@torch.no_grad()
|
| 40 |
+
def add_feature_on_area_base(sae, feature_idx, activation_map, module, input, output):
|
| 41 |
+
return add_feature_on_area_base_both(sae, feature_idx, activation_map, module, input, output)
|
| 42 |
|
| 43 |
@torch.no_grad()
|
| 44 |
+
def add_feature_on_area_base_both(sae, feature_idx, activation_map, module, input, output):
|
| 45 |
+
# add the feature to cond and subtract from uncond
|
| 46 |
+
# this assumes diff.shape[0] == 2
|
| 47 |
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
|
| 48 |
activated = sae.encode(diff)
|
| 49 |
mask = torch.zeros_like(activated, device=diff.device)
|
|
|
|
| 51 |
activation_map = activation_map.unsqueeze(0)
|
| 52 |
mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
|
| 53 |
to_add = mask @ sae.decoder.weight.T
|
| 54 |
+
to_add = to_add.chunk(2)
|
| 55 |
+
output[0][0] -= to_add[0].permute(0, 3, 1, 2).to(output[0].device)[0]
|
| 56 |
+
output[0][1] += to_add[1].permute(0, 3, 1, 2).to(output[0].device)[0]
|
| 57 |
+
return output
|
| 58 |
|
| 59 |
|
| 60 |
@torch.no_grad()
|
| 61 |
+
def add_feature_on_area_base_cond(sae, feature_idx, activation_map, module, input, output):
|
| 62 |
+
# add the feature to cond
|
| 63 |
+
# this assumes diff.shape[0] == 2
|
| 64 |
+
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
|
| 65 |
+
diff_uncond, diff_cond = diff.chunk(2)
|
| 66 |
+
activated = sae.encode(diff_cond)
|
| 67 |
+
mask = torch.zeros_like(activated, device=diff_cond.device)
|
| 68 |
+
if len(activation_map) == 2:
|
| 69 |
+
activation_map = activation_map.unsqueeze(0)
|
| 70 |
+
mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
|
| 71 |
+
to_add = mask @ sae.decoder.weight.T
|
| 72 |
+
output[0][1] += to_add.permute(0, 3, 1, 2).to(output[0].device)[0]
|
| 73 |
+
return output
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
@torch.no_grad()
|
| 77 |
+
def replace_with_feature_base(sae, feature_idx, value, module, input, output):
|
| 78 |
+
# this assumes diff.shape[0] == 2
|
| 79 |
+
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
|
| 80 |
+
diff_uncond, diff_cond = diff.chunk(2)
|
| 81 |
+
activated = sae.encode(diff_cond)
|
| 82 |
+
mask = torch.zeros_like(activated, device=diff_cond.device)
|
| 83 |
+
mask[..., feature_idx] = value
|
| 84 |
+
to_add = mask @ sae.decoder.weight.T
|
| 85 |
+
input[0][1] += to_add.permute(0, 3, 1, 2).to(output[0].device)[0]
|
| 86 |
+
return input
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@torch.no_grad()
|
| 90 |
+
def add_feature_on_area_turbo(sae, feature_idx, activation_map, module, input, output):
|
| 91 |
+
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
|
| 92 |
+
activated = sae.encode(diff)
|
| 93 |
+
mask = torch.zeros_like(activated, device=diff.device)
|
| 94 |
+
if len(activation_map) == 2:
|
| 95 |
+
activation_map = activation_map.unsqueeze(0)
|
| 96 |
+
mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
|
| 97 |
+
to_add = mask @ sae.decoder.weight.T
|
| 98 |
+
return (output[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)
|
| 99 |
+
|
| 100 |
+
@torch.no_grad()
|
| 101 |
+
def replace_with_feature_turbo(sae, feature_idx, value, module, input, output):
|
| 102 |
diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
|
| 103 |
activated = sae.encode(diff)
|
| 104 |
mask = torch.zeros_like(activated, device=diff.device)
|
|
|
|
| 117 |
|
| 118 |
@torch.no_grad()
|
| 119 |
def ablate_block(module, input, output):
|
| 120 |
+
return input
|