import sys sys.path.append("..") import os import numpy as np from rdkit import Chem from rdkit.Chem import rdchem from rdkit.Chem import ChemicalFeatures from rdkit import RDConfig ATOM_FAMILIES = ['Acceptor', 'Donor', 'Aromatic', 'Hydrophobe', 'LumpedHydrophobe', 'NegIonizable', 'PosIonizable', 'ZnBinder'] ATOM_FAMILIES_ID = {s: i for i, s in enumerate(ATOM_FAMILIES)} BOND_TYPES = {t: i for i, t in enumerate(rdchem.BondType.names.values())} BOND_NAMES = {i: t for i, t in enumerate(rdchem.BondType.names.keys())} RESTYPE_1to3 = { "A": "ALA", "R": "ARG", "N": "ASN", "D": "ASP", "C": "CYS", "Q": "GLN", "E": "GLU", "G": "GLY", "H": "HIS", "I": "ILE", "L": "LEU", "K": "LYS", "M": "MET", "F": "PHE", "P": "PRO", "S": "SER", "T": "THR", "W": "TRP", "Y": "TYR", "V": "VAL", } ALPHABET = ['#', 'A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'] ATOM_TYPES = [ '', 'N', 'CA', 'C', 'O', 'CB', 'CG', 'CG1', 'CG2', 'OG', 'OG1', 'SG', 'CD', 'CD1', 'CD2', 'ND1', 'ND2', 'OD1', 'OD2', 'SD', 'CE', 'CE1', 'CE2', 'CE3', 'NE', 'NE1', 'NE2', 'OE1', 'OE2', 'CH2', 'NH1', 'NH2', 'OH', 'CZ', 'CZ2', 'CZ3', 'NZ', 'OXT' ] RES_ATOM14 = [ [''] * 14, ['N', 'CA', 'C', 'O', 'CB', '', '', '', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'NE', 'CZ', 'NH1', 'NH2', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'ND2', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'OD2', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'SG', '', '', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'NE2', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'OE2', '', '', '', '', ''], ['N', 'CA', 'C', 'O', '', '', '', '', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'ND1', 'CD2', 'CE1', 'NE2', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', 'CD1', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'CE', 'NZ', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'SD', 'CE', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', '', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'OG', '', '', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'OG1', 'CG2', '', '', '', '', '', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'NE1', 'CE2', 'CE3', 'CZ2', 'CZ3', 'CH2'], ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'OH', '', ''], ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', '', '', '', '', '', '', ''], ] NUM_ATOMS = [4, 5, 11, 8, 8, 6, 9, 9, 4, 10, 8, 8, 9, 8, 11, 7, 6, 7, 14, 12, 7] class PDBProtein(object): AA_NAME_SYM = {'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C', 'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P', 'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'} AA_NAME_NUMBER = { k: i + 1 for i, (k, _) in enumerate(AA_NAME_SYM.items()) } BACKBONE_NAMES = ["CA", "C", "N", "O"] def __init__(self, data, mode='auto'): super().__init__() if (data[-4:].lower() == '.pdb' and mode == 'auto') or mode == 'path': with open(data, 'r') as f: self.block = f.read() else: self.block = data self.ptable = Chem.GetPeriodicTable() # Molecule properties self.title = None # Atom properties self.atoms = [] self.element = [] self.atomic_weight = [] self.pos = [] self.atom_name = [] self.is_backbone = [] self.atom_to_aa_type = [] self.atom2residue = [] # Residue properties self.residues = [] self.amino_acid = [] self.amino_idx = [] self.center_of_mass = [] self.pos_CA = [] self.pos_C = [] self.pos_N = [] self.pos_O = [] self.residue_natoms = [] self.seq = [] self._parse() def _enum_formatted_atom_lines(self): for line in self.block.splitlines(): if line[0:6].strip() == 'ATOM': element_symb = line[76:78].strip().capitalize() if len(element_symb) == 0: element_symb = line[13:14] yield { 'line': line, 'type': 'ATOM', 'atom_id': int(line[6:11]), 'atom_name': line[12:16].strip(), 'res_name': line[17:20].strip(), 'chain': line[21:22].strip(), 'res_id': int(line[22:26]), 'res_insert_id': line[26:27].strip(), 'x': float(line[30:38]), 'y': float(line[38:46]), 'z': float(line[46:54]), 'occupancy': float(line[54:60]), 'segment': line[72:76].strip(), 'element_symb': element_symb, 'charge': line[78:80].strip(), } elif line[0:6].strip() == 'HEADER': yield { 'type': 'HEADER', 'value': line[10:].strip() } elif line[0:6].strip() == 'ENDMDL': break # Some PDBs have more than 1 model. else: yield { 'type': 'others' } def _parse(self): # Process atoms residues_tmp = {} num_residue = -1 for atom in self._enum_formatted_atom_lines(): if atom['type'] == 'HEADER': self.title = atom['value'].lower() continue if atom['type'] == 'others': continue if atom['atom_name'][0] == 'H' or atom['atom_name'] == 'OXT': continue self.atoms.append(atom) atomic_number = self.ptable.GetAtomicNumber(atom['element_symb']) next_ptr = len(self.element) self.element.append(atomic_number) self.atomic_weight.append(self.ptable.GetAtomicWeight(atomic_number)) self.pos.append(np.array([atom['x'], atom['y'], atom['z']], dtype=np.float32)) self.atom_name.append(atom['atom_name']) self.is_backbone.append(atom['atom_name'] in self.BACKBONE_NAMES) self.atom_to_aa_type.append(self.AA_NAME_NUMBER[atom['res_name']]) chain_res_id = '%s_%s_%d_%s' % (atom['chain'], atom['segment'], atom['res_id'], atom['res_insert_id']) if chain_res_id not in residues_tmp: num_residue += 1 residues_tmp[chain_res_id] = { 'name': atom['res_name'], 'atoms': [next_ptr], 'chain': atom['chain'], 'segment': atom['segment'], 'res_id': atom['res_id'], 'full_seq_idx': num_residue, } else: assert residues_tmp[chain_res_id]['name'] == atom['res_name'] assert residues_tmp[chain_res_id]['chain'] == atom['chain'] residues_tmp[chain_res_id]['atoms'].append(next_ptr) self.atom2residue.append(num_residue) # Process residues self.residues = [r for _, r in residues_tmp.items()] for residue in self.residues: sum_pos = np.zeros([3], dtype=np.float32) sum_mass = 0.0 for atom_idx in residue['atoms']: sum_pos += self.pos[atom_idx] * self.atomic_weight[atom_idx] sum_mass += self.atomic_weight[atom_idx] if self.atom_name[atom_idx] in self.BACKBONE_NAMES: residue['pos_%s' % self.atom_name[atom_idx]] = self.pos[atom_idx] residue['center_of_mass'] = sum_pos / sum_mass self.residue_natoms.append(len(residue['atoms'])) assert len(residue['atoms']) <= NUM_ATOMS[self.AA_NAME_NUMBER[residue['name']]] # Process backbone atoms of residues self.amino_acid.append(self.AA_NAME_NUMBER[residue['name']]) self.center_of_mass.append(residue['center_of_mass']) self.amino_idx.append(residue['res_id']) self.seq.append(self.AA_NAME_SYM[residue['name']]) for name in self.BACKBONE_NAMES: pos_key = 'pos_%s' % name # pos_CA, pos_C, pos_N, pos_O if pos_key in residue: getattr(self, pos_key).append(residue[pos_key]) else: getattr(self, pos_key).append(residue['center_of_mass']) # convert atom_name to number self.atom_name = np.array([ATOM_TYPES.index(atom) for atom in self.atom_name]) self.pos = np.array(self.pos, dtype=np.float32) def to_dict_atom(self): return { 'element': np.array(self.element, dtype=np.longlong), 'molecule_name': self.title, 'pos': self.pos, 'is_backbone': np.array(self.is_backbone, dtype=bool), 'atom_name': self.atom_name, 'atom_to_aa_type': np.array(self.atom_to_aa_type, dtype=np.longlong), 'atom2residue': np.array(self.atom2residue, dtype=np.longlong) } def to_dict_residue(self): return { 'seq': self.seq, 'res_idx': np.array(self.amino_idx, dtype=np.longlong), 'amino_acid': np.array(self.amino_acid, dtype=np.longlong), 'center_of_mass': np.array(self.center_of_mass, dtype=np.float32), 'pos_CA': np.array(self.pos_CA, dtype=np.float32), 'pos_C': np.array(self.pos_C, dtype=np.float32), 'pos_N': np.array(self.pos_N, dtype=np.float32), 'pos_O': np.array(self.pos_O, dtype=np.float32), 'residue_natoms': np.array(self.residue_natoms, dtype=np.longlong), } def query_residues_radius(self, center, radius, criterion='center_of_mass'): center = np.array(center).reshape(3) selected = [] for residue in self.residues: distance = np.linalg.norm(residue[criterion] - center, ord=2) print(residue[criterion], distance) if distance < radius: selected.append(residue) return selected def query_residues_ligand(self, ligand, radius=3.5, selected_residue=None, return_mask=True): selected = [] sel_idx = set() selected_mask = np.zeros(len(self.residues), dtype=bool) full_seq_idx = set() if selected_residue is None: selected_residue = self.residues # The time-complexity is O(mn). for i, residue in enumerate(selected_residue): for center in ligand['pos']: distance = np.min(np.linalg.norm(self.pos[residue['atoms']] - center, ord=2, axis=1)) if distance <= radius and i not in sel_idx: selected.append(residue) sel_idx.add(i) full_seq_idx.add(residue['full_seq_idx']) break selected_mask[list(sel_idx)] = 1 if return_mask: return list(full_seq_idx), selected_mask return list(full_seq_idx), selected # can be used for select pocket residues def residues_to_pdb_block(self, residues, name='POCKET'): block = "HEADER %s\n" % name block += "COMPND %s\n" % name for residue in residues: for atom_idx in residue['atoms']: block += self.atoms[atom_idx]['line'] + "\n" block += "END\n" return block def return_residues(self): return self.residues, self.atoms def parse_pdbbind_index_file(path): pdb_id = [] with open(path, 'r') as f: lines = f.readlines() for line in lines: if line.startswith('#'): continue pdb_id.append(line.split()[0]) return pdb_id def parse_sdf_file(path, feat=True): mol = Chem.MolFromMolFile(path, sanitize=False) fdefName = os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef') factory = ChemicalFeatures.BuildFeatureFactory(fdefName) rd_num_atoms = mol.GetNumAtoms() feat_mat = np.zeros([rd_num_atoms, len(ATOM_FAMILIES)], dtype=np.longlong) if feat: rdmol = next(iter(Chem.SDMolSupplier(path, removeHs=True))) for feat in factory.GetFeaturesForMol(rdmol): feat_mat[feat.GetAtomIds(), ATOM_FAMILIES_ID[feat.GetFamily()]] = 1 with open(path, 'r') as f: sdf = f.read() sdf = sdf.splitlines() num_atoms, num_bonds = map(int, [sdf[3][0:3], sdf[3][3:6]]) assert num_atoms == rd_num_atoms ptable = Chem.GetPeriodicTable() element, pos = [], [] accum_pos = np.array([0.0, 0.0, 0.0], dtype=np.float32) accum_mass = 0.0 for atom_line in map(lambda x: x.split(), sdf[4:4 + num_atoms]): x, y, z = map(float, atom_line[:3]) symb = atom_line[3] atomic_number = ptable.GetAtomicNumber(symb.capitalize()) element.append(atomic_number) pos.append([x, y, z]) atomic_weight = ptable.GetAtomicWeight(atomic_number) accum_pos += np.array([x, y, z]) * atomic_weight accum_mass += atomic_weight center_of_mass = np.array(accum_pos / accum_mass, dtype=np.float32) element = np.array(element, dtype=np.int32) pos = np.array(pos, dtype=np.float32) BOND_TYPES = {t: i for i, t in enumerate(rdchem.BondType.names.values())} bond_type_map = { 1: BOND_TYPES[rdchem.BondType.SINGLE], 2: BOND_TYPES[rdchem.BondType.DOUBLE], 3: BOND_TYPES[rdchem.BondType.TRIPLE], 4: BOND_TYPES[rdchem.BondType.AROMATIC], } row, col, edge_type = [], [], [] for bond_line in sdf[4 + num_atoms:4 + num_atoms + num_bonds]: start, end = int(bond_line[0:3]) - 1, int(bond_line[3:6]) - 1 row += [start, end] col += [end, start] edge_type += 2 * [bond_type_map[int(bond_line[6:9])]] edge_index = np.array([row, col], dtype=np.longlong) edge_type = np.array(edge_type, dtype=np.longlong) perm = (edge_index[0] * num_atoms + edge_index[1]).argsort() edge_index = edge_index[:, perm] edge_type = edge_type[perm] neighbor_dict = {} # used in rotation angle prediction for i, atom in enumerate(mol.GetAtoms()): neighbor_dict[i] = [n.GetIdx() for n in atom.GetNeighbors()] data = { 'element': element, 'pos': pos, 'bond_index': edge_index, 'bond_type': edge_type, 'center_of_mass': center_of_mass, 'atom_feature': feat_mat, 'neighbors': neighbor_dict } return data