Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -58,8 +58,8 @@ if torch.cuda.is_available():
|
|
| 58 |
supported_languages = config.languages
|
| 59 |
if not "vi" in supported_languages:
|
| 60 |
supported_languages.append("vi")
|
| 61 |
-
if not "es-
|
| 62 |
-
supported_languages.append("es-
|
| 63 |
|
| 64 |
def normalize_vietnamese_text(text):
|
| 65 |
text = (
|
|
@@ -76,20 +76,6 @@ def normalize_vietnamese_text(text):
|
|
| 76 |
)
|
| 77 |
return text
|
| 78 |
|
| 79 |
-
|
| 80 |
-
def calculate_keep_len(text, lang):
|
| 81 |
-
if lang in ["ja", "zh-cn"]:
|
| 82 |
-
return -1
|
| 83 |
-
|
| 84 |
-
word_count = len(text.split())
|
| 85 |
-
num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
|
| 86 |
-
|
| 87 |
-
if word_count < 5:
|
| 88 |
-
return 15000 * word_count + 2000 * num_punct
|
| 89 |
-
elif word_count < 10:
|
| 90 |
-
return 13000 * word_count + 2000 * num_punct
|
| 91 |
-
return -1
|
| 92 |
-
|
| 93 |
def analyze_sentiment(text):
|
| 94 |
sia = SentimentIntensityAnalyzer()
|
| 95 |
scores = sia.polarity_scores(text)
|
|
@@ -99,6 +85,10 @@ def change_pitch(audio_data, sampling_rate, sentiment):
|
|
| 99 |
semitones = sentiment * 2
|
| 100 |
return pyrubberband.pitch_shift(audio_data, sampling_rate, semitones)
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
@spaces.GPU(duration=0)
|
| 103 |
def predict(
|
| 104 |
prompt,
|
|
@@ -118,12 +108,6 @@ def predict(
|
|
| 118 |
metrics_text = gr.Warning("Por favor, introduce un texto más largo.")
|
| 119 |
return (None, metrics_text)
|
| 120 |
|
| 121 |
-
if len(prompt) > 250000000:
|
| 122 |
-
metrics_text = gr.Warning(
|
| 123 |
-
f"El texto tiene {len(prompt)} caracteres. Es demasiado largo, por favor, mantenlo por debajo de 250000000 caracteres."
|
| 124 |
-
)
|
| 125 |
-
return (None, metrics_text)
|
| 126 |
-
|
| 127 |
try:
|
| 128 |
metrics_text = ""
|
| 129 |
t_latent = time.time()
|
|
@@ -173,13 +157,12 @@ def predict(
|
|
| 173 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
| 174 |
metrics_text += f"Factor de tiempo real (RTF): {real_time_factor:.2f}\n"
|
| 175 |
|
| 176 |
-
keep_len = calculate_keep_len(prompt, language)
|
| 177 |
-
out["wav"] = out["wav"][:keep_len]
|
| 178 |
-
|
| 179 |
audio_data = np.array(out["wav"])
|
| 180 |
|
| 181 |
modified_audio = change_pitch(audio_data, 24000, sentiment)
|
| 182 |
|
|
|
|
|
|
|
| 183 |
torchaudio.save("output.wav", torch.tensor(modified_audio).unsqueeze(0), 24000)
|
| 184 |
|
| 185 |
except RuntimeError as e:
|
|
@@ -246,13 +229,12 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 246 |
with gr.Column():
|
| 247 |
input_text_gr = gr.Textbox(
|
| 248 |
label="Texto a convertir a voz",
|
| 249 |
-
info="Cada frase debe tener al menos 10 palabras. Máximo 250 caracteres (alrededor de 2-3 frases).",
|
| 250 |
value="Hola, soy un modelo de texto a voz.",
|
| 251 |
)
|
| 252 |
language_gr = gr.Dropdown(
|
| 253 |
label="Idioma",
|
| 254 |
choices=[
|
| 255 |
-
"es-
|
| 256 |
"vi",
|
| 257 |
"en",
|
| 258 |
"es",
|
|
@@ -273,7 +255,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 273 |
"hi",
|
| 274 |
],
|
| 275 |
max_choices=1,
|
| 276 |
-
value="es-
|
| 277 |
)
|
| 278 |
normalize_text = gr.Checkbox(
|
| 279 |
label="Normalizar texto en vietnamita",
|
|
|
|
| 58 |
supported_languages = config.languages
|
| 59 |
if not "vi" in supported_languages:
|
| 60 |
supported_languages.append("vi")
|
| 61 |
+
if not "es-ar" in supported_languages:
|
| 62 |
+
supported_languages.append("es-ar")
|
| 63 |
|
| 64 |
def normalize_vietnamese_text(text):
|
| 65 |
text = (
|
|
|
|
| 76 |
)
|
| 77 |
return text
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def analyze_sentiment(text):
|
| 80 |
sia = SentimentIntensityAnalyzer()
|
| 81 |
scores = sia.polarity_scores(text)
|
|
|
|
| 85 |
semitones = sentiment * 2
|
| 86 |
return pyrubberband.pitch_shift(audio_data, sampling_rate, semitones)
|
| 87 |
|
| 88 |
+
def apply_distortion(audio_data, sentiment):
|
| 89 |
+
distortion_factor = abs(sentiment) * 0.5
|
| 90 |
+
return audio_data * (1 + distortion_factor * np.random.randn(len(audio_data)))
|
| 91 |
+
|
| 92 |
@spaces.GPU(duration=0)
|
| 93 |
def predict(
|
| 94 |
prompt,
|
|
|
|
| 108 |
metrics_text = gr.Warning("Por favor, introduce un texto más largo.")
|
| 109 |
return (None, metrics_text)
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
try:
|
| 112 |
metrics_text = ""
|
| 113 |
t_latent = time.time()
|
|
|
|
| 157 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
| 158 |
metrics_text += f"Factor de tiempo real (RTF): {real_time_factor:.2f}\n"
|
| 159 |
|
|
|
|
|
|
|
|
|
|
| 160 |
audio_data = np.array(out["wav"])
|
| 161 |
|
| 162 |
modified_audio = change_pitch(audio_data, 24000, sentiment)
|
| 163 |
|
| 164 |
+
modified_audio = apply_distortion(modified_audio, sentiment)
|
| 165 |
+
|
| 166 |
torchaudio.save("output.wav", torch.tensor(modified_audio).unsqueeze(0), 24000)
|
| 167 |
|
| 168 |
except RuntimeError as e:
|
|
|
|
| 229 |
with gr.Column():
|
| 230 |
input_text_gr = gr.Textbox(
|
| 231 |
label="Texto a convertir a voz",
|
|
|
|
| 232 |
value="Hola, soy un modelo de texto a voz.",
|
| 233 |
)
|
| 234 |
language_gr = gr.Dropdown(
|
| 235 |
label="Idioma",
|
| 236 |
choices=[
|
| 237 |
+
"es-ar",
|
| 238 |
"vi",
|
| 239 |
"en",
|
| 240 |
"es",
|
|
|
|
| 255 |
"hi",
|
| 256 |
],
|
| 257 |
max_choices=1,
|
| 258 |
+
value="es-ar",
|
| 259 |
)
|
| 260 |
normalize_text = gr.Checkbox(
|
| 261 |
label="Normalizar texto en vietnamita",
|