Spaces:
Sleeping
Sleeping
ThanaritKanjanametawat
commited on
Commit
Β·
bd0c703
1
Parent(s):
953bb32
Deploying all model and test files
Browse files
ModelDriver.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaModel
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
device = torch.device("cpu")
|
|
@@ -28,27 +30,76 @@ def extract_features(text):
|
|
| 28 |
def RobertaSentinelOpenGPTInference(input_text):
|
| 29 |
features = extract_features(input_text)
|
| 30 |
loaded_model = MLP(768).to(device)
|
| 31 |
-
loaded_model.load_state_dict(torch.load("
|
| 32 |
|
| 33 |
# Define the tokenizer and model for feature extraction
|
| 34 |
with torch.no_grad():
|
| 35 |
inputs = torch.tensor(features).to(device)
|
| 36 |
outputs = loaded_model(inputs.float())
|
| 37 |
-
_, predicted = torch.max(outputs,
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def RobertaSentinelCSAbstractInference(input_text):
|
| 42 |
features = extract_features(input_text)
|
| 43 |
loaded_model = MLP(768).to(device)
|
| 44 |
-
loaded_model.load_state_dict(torch.load("
|
| 45 |
|
| 46 |
# Define the tokenizer and model for feature extraction
|
| 47 |
with torch.no_grad():
|
| 48 |
inputs = torch.tensor(features).to(device)
|
| 49 |
outputs = loaded_model(inputs.float())
|
| 50 |
-
_, predicted = torch.max(outputs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
return predicted.item()
|
| 53 |
|
| 54 |
|
|
|
|
| 1 |
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaModel
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.utils.data import TensorDataset, DataLoader
|
| 6 |
|
| 7 |
|
| 8 |
device = torch.device("cpu")
|
|
|
|
| 30 |
def RobertaSentinelOpenGPTInference(input_text):
|
| 31 |
features = extract_features(input_text)
|
| 32 |
loaded_model = MLP(768).to(device)
|
| 33 |
+
loaded_model.load_state_dict(torch.load("SentinelCheckpoint/RobertaSentinelOpenGPT.pth", map_location=device))
|
| 34 |
|
| 35 |
# Define the tokenizer and model for feature extraction
|
| 36 |
with torch.no_grad():
|
| 37 |
inputs = torch.tensor(features).to(device)
|
| 38 |
outputs = loaded_model(inputs.float())
|
| 39 |
+
_, predicted = torch.max(outputs, 0)
|
| 40 |
|
| 41 |
+
Probs = (F.softmax(outputs, dim=0).cpu().numpy())
|
| 42 |
+
|
| 43 |
+
return Probs
|
| 44 |
|
| 45 |
def RobertaSentinelCSAbstractInference(input_text):
|
| 46 |
features = extract_features(input_text)
|
| 47 |
loaded_model = MLP(768).to(device)
|
| 48 |
+
loaded_model.load_state_dict(torch.load("SentinelCheckpoint/RobertaSentinelCSAbstract.pth", map_location=device))
|
| 49 |
|
| 50 |
# Define the tokenizer and model for feature extraction
|
| 51 |
with torch.no_grad():
|
| 52 |
inputs = torch.tensor(features).to(device)
|
| 53 |
outputs = loaded_model(inputs.float())
|
| 54 |
+
_, predicted = torch.max(outputs, 0)
|
| 55 |
+
|
| 56 |
+
Probs = (F.softmax(outputs, dim=0).cpu().numpy())
|
| 57 |
+
|
| 58 |
+
return Probs
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def RobertaClassifierOpenGPTInference(input_text):
|
| 62 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
| 63 |
+
model_path = "ClassifierCheckpoint/RobertaClassifierOpenGPT.pth"
|
| 64 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
| 65 |
+
model.load_state_dict(torch.load(model_path))
|
| 66 |
+
model = model.to(torch.device('cpu'))
|
| 67 |
+
model.eval()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
| 71 |
+
input_ids = tokenized_input['input_ids'].to(torch.device('cpu'))
|
| 72 |
+
attention_mask = tokenized_input['attention_mask'].to(torch.device('cpu'))
|
| 73 |
+
|
| 74 |
+
# Make a prediction
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
| 77 |
+
logits = outputs.logits
|
| 78 |
+
Probs = F.softmax(logits, dim=1).cpu().numpy()[0]
|
| 79 |
+
|
| 80 |
+
return Probs
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def RobertaClassifierCSAbstractInference(input_text):
|
| 84 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
| 85 |
+
model_path = "ClassifierCheckpoint/RobertaClassifierCSAbstract.pth"
|
| 86 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
| 87 |
+
model.load_state_dict(torch.load(model_path))
|
| 88 |
+
model = model.to(torch.device('cpu'))
|
| 89 |
+
model.eval()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
| 93 |
+
input_ids = tokenized_input['input_ids'].to(torch.device('cpu'))
|
| 94 |
+
attention_mask = tokenized_input['attention_mask'].to(torch.device('cpu'))
|
| 95 |
+
|
| 96 |
+
# Make a prediction
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
| 99 |
+
logits = outputs.logits
|
| 100 |
+
Probs = F.softmax(logits, dim=1).cpu().numpy()[0]
|
| 101 |
+
|
| 102 |
+
return Probs
|
| 103 |
|
|
|
|
| 104 |
|
| 105 |
|
{MLPDictStates β SentinelCheckpoint}/RobertaSentinelCSAbstract.pth
RENAMED
|
File without changes
|
{MLPDictStates β SentinelCheckpoint}/RobertaSentinelOpenGPT.pth
RENAMED
|
File without changes
|
Test.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ModelDriver import *
|
| 2 |
+
import numpy as np
|
| 3 |
+
import warnings
|
| 4 |
+
warnings.filterwarnings("ignore")
|
| 5 |
+
|
| 6 |
+
Input_Text = "I want to do this data"
|
| 7 |
+
|
| 8 |
+
# print("RobertaSentinelOpenGPTInference")
|
| 9 |
+
# Probs = RobertaSentinelOpenGPTInference(Input_Text)
|
| 10 |
+
# Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
| 11 |
+
#
|
| 12 |
+
# print(f"Prediction: {Pred} ")
|
| 13 |
+
# print(f"Confidence:", max(Probs))
|
| 14 |
+
|
| 15 |
+
# print("RobertaSentinelCSAbstractInference")
|
| 16 |
+
# Probs = RobertaSentinelCSAbstractInference(Input_Text)
|
| 17 |
+
# Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
| 18 |
+
#
|
| 19 |
+
# print(f"Prediction: {Pred} ")
|
| 20 |
+
# print(f"Confidence:", max(Probs))
|
| 21 |
+
|
| 22 |
+
print("RobertaClassifierCSAbstractInference")
|
| 23 |
+
Probs = RobertaClassifierOpenGPTInference(Input_Text)
|
| 24 |
+
Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
| 25 |
+
|
| 26 |
+
print(Probs)
|
| 27 |
+
print(f"Prediction: {Pred} ")
|
| 28 |
+
print(f"Confidence:", max(Probs))
|
app.py
CHANGED
|
@@ -1,24 +1,42 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
-
from ModelDriver import
|
|
|
|
| 4 |
|
| 5 |
# Add a title
|
| 6 |
st.title('GPT Detection Demo')
|
| 7 |
|
| 8 |
# Add 4 options for 4 models
|
| 9 |
-
|
| 10 |
'Which Model do you want to use?',
|
| 11 |
-
('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
|
| 14 |
|
| 15 |
text = st.text_area('Enter text here', '')
|
| 16 |
|
| 17 |
if st.button('Generate'):
|
| 18 |
-
if
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
st.write(result)
|
| 23 |
|
| 24 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from ModelDriver import *
|
| 4 |
+
import numpy as np
|
| 5 |
|
| 6 |
# Add a title
|
| 7 |
st.title('GPT Detection Demo')
|
| 8 |
|
| 9 |
# Add 4 options for 4 models
|
| 10 |
+
ModelOption = st.sidebar.selectbox(
|
| 11 |
'Which Model do you want to use?',
|
| 12 |
+
('RobertaSentinel', 'RobertaClassifier'),
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
DatasetOption = st.sidebar.selectbox(
|
| 16 |
+
'Which Dataset do you want to use?',
|
| 17 |
+
('OpenGPT', 'CSAbstract'),
|
| 18 |
)
|
| 19 |
|
| 20 |
|
| 21 |
text = st.text_area('Enter text here', '')
|
| 22 |
|
| 23 |
if st.button('Generate'):
|
| 24 |
+
if ModelOption == 'RobertaSentinel':
|
| 25 |
+
if DatasetOption == 'OpenGPT':
|
| 26 |
+
result = RobertaSentinelOpenGPTInference(text)
|
| 27 |
+
elif DatasetOption == 'CSAbstract':
|
| 28 |
+
result = RobertaSentinelCSAbstractInference(text)
|
| 29 |
+
|
| 30 |
+
elif ModelOption == 'RobertaClassifier':
|
| 31 |
+
if DatasetOption == 'OpenGPT':
|
| 32 |
+
result = RobertaClassifierOpenGPTInference(text)
|
| 33 |
+
elif DatasetOption == 'CSAbstract':
|
| 34 |
+
result = RobertaClassifierCSAbstractInference(text)
|
| 35 |
+
|
| 36 |
+
Prediction = "Human Written" if not np.argmax(result) else "Machine Generated"
|
| 37 |
+
|
| 38 |
+
print(f"Prediction: {Prediction} ")
|
| 39 |
+
print(f"Probabilty:", max(result))
|
| 40 |
st.write(result)
|
| 41 |
|
| 42 |
|