Spaces:
Sleeping
Sleeping
ThanaritKanjanametawat
commited on
Commit
·
1bb143a
1
Parent(s):
1fb6014
Move everything to CPU
Browse files- ModelDriver.py +10 -9
- Test.py +1 -1
ModelDriver.py
CHANGED
|
@@ -5,7 +5,8 @@ import torch.nn.functional as F
|
|
| 5 |
from torch.utils.data import TensorDataset, DataLoader
|
| 6 |
|
| 7 |
|
| 8 |
-
device = torch.device("cpu")
|
|
|
|
| 9 |
class MLP(nn.Module):
|
| 10 |
def __init__(self, input_dim):
|
| 11 |
super(MLP, self).__init__()
|
|
@@ -62,14 +63,14 @@ def RobertaClassifierOpenGPTInference(input_text):
|
|
| 62 |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
| 63 |
model_path = "ClassifierCheckpoint/RobertaClassifierOpenGPT.pth"
|
| 64 |
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
| 65 |
-
model.load_state_dict(torch.load(model_path, map_location=
|
| 66 |
-
model = model.to(
|
| 67 |
model.eval()
|
| 68 |
|
| 69 |
|
| 70 |
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
| 71 |
-
input_ids = tokenized_input['input_ids'].to(
|
| 72 |
-
attention_mask = tokenized_input['attention_mask'].to(
|
| 73 |
|
| 74 |
# Make a prediction
|
| 75 |
with torch.no_grad():
|
|
@@ -84,14 +85,14 @@ def RobertaClassifierCSAbstractInference(input_text):
|
|
| 84 |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
| 85 |
model_path = "ClassifierCheckpoint/RobertaClassifierCSAbstract.pth"
|
| 86 |
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
| 87 |
-
model.load_state_dict(torch.load(model_path, map_location=
|
| 88 |
-
model = model.to(
|
| 89 |
model.eval()
|
| 90 |
|
| 91 |
|
| 92 |
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
| 93 |
-
input_ids = tokenized_input['input_ids'].to(
|
| 94 |
-
attention_mask = tokenized_input['attention_mask'].to(
|
| 95 |
|
| 96 |
# Make a prediction
|
| 97 |
with torch.no_grad():
|
|
|
|
| 5 |
from torch.utils.data import TensorDataset, DataLoader
|
| 6 |
|
| 7 |
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
# device = torch.device("cpu")
|
| 10 |
class MLP(nn.Module):
|
| 11 |
def __init__(self, input_dim):
|
| 12 |
super(MLP, self).__init__()
|
|
|
|
| 63 |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
| 64 |
model_path = "ClassifierCheckpoint/RobertaClassifierOpenGPT.pth"
|
| 65 |
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
| 66 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 67 |
+
model = model.to(device)
|
| 68 |
model.eval()
|
| 69 |
|
| 70 |
|
| 71 |
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
| 72 |
+
input_ids = tokenized_input['input_ids'].to(device)
|
| 73 |
+
attention_mask = tokenized_input['attention_mask'].to(device)
|
| 74 |
|
| 75 |
# Make a prediction
|
| 76 |
with torch.no_grad():
|
|
|
|
| 85 |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
| 86 |
model_path = "ClassifierCheckpoint/RobertaClassifierCSAbstract.pth"
|
| 87 |
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
| 88 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 89 |
+
model = model.to(device)
|
| 90 |
model.eval()
|
| 91 |
|
| 92 |
|
| 93 |
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
| 94 |
+
input_ids = tokenized_input['input_ids'].to(device)
|
| 95 |
+
attention_mask = tokenized_input['attention_mask'].to(device)
|
| 96 |
|
| 97 |
# Make a prediction
|
| 98 |
with torch.no_grad():
|
Test.py
CHANGED
|
@@ -20,7 +20,7 @@ Input_Text = "I want to do this data"
|
|
| 20 |
# print(f"Confidence:", max(Probs))
|
| 21 |
|
| 22 |
print("RobertaClassifierCSAbstractInference")
|
| 23 |
-
Probs =
|
| 24 |
Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
| 25 |
|
| 26 |
print(Probs)
|
|
|
|
| 20 |
# print(f"Confidence:", max(Probs))
|
| 21 |
|
| 22 |
print("RobertaClassifierCSAbstractInference")
|
| 23 |
+
Probs = RobertaClassifierCSAbstractInference(Input_Text)
|
| 24 |
Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
| 25 |
|
| 26 |
print(Probs)
|