|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import time, json, hashlib |
|
|
from datetime import datetime |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rft_kernel(profile, workload, cycles, seed): |
|
|
np.random.seed(seed) |
|
|
t0 = time.time() |
|
|
|
|
|
|
|
|
base_speed = {"CPU": 0.45, "GPU": 0.83, "TPU": 0.78}[profile] |
|
|
noise = np.random.uniform(-0.05, 0.05) |
|
|
rate = base_speed * (1 + noise) |
|
|
|
|
|
|
|
|
QΩ = round(0.8 + np.random.uniform(-0.05, 0.05), 3) |
|
|
ζ_sync = round(0.78 + np.random.uniform(-0.05, 0.05), 3) |
|
|
status = "nominal" if ζ_sync > 0.76 else "perturbed" |
|
|
|
|
|
|
|
|
log = { |
|
|
"profile": profile, |
|
|
"workload": workload, |
|
|
"cycles": cycles, |
|
|
"rate_items_per_sec": round(rate * 1e9, 2), |
|
|
"QΩ": QΩ, |
|
|
"ζ_sync": ζ_sync, |
|
|
"status": status, |
|
|
"timestamp_utc": datetime.utcnow().isoformat() + "Z" |
|
|
} |
|
|
log["sha512"] = hashlib.sha512(json.dumps(log).encode()).hexdigest() |
|
|
time.sleep(0.5) |
|
|
return json.dumps(log, indent=2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=rft_kernel, |
|
|
inputs=[ |
|
|
gr.Radio(["CPU","GPU","TPU"], label="Compute Profile"), |
|
|
gr.Radio(["matrix","transformer","mixed"], label="Workload Type"), |
|
|
gr.Slider(1,10,step=1,value=3,label="Cycles"), |
|
|
gr.Number(value=123, label="Seed") |
|
|
], |
|
|
outputs=gr.JSON(label="Simulation Log"), |
|
|
title="🧠 Rendered Frame Theory — Adaptive Computing Kernel", |
|
|
description=( |
|
|
"Simulates harmonic-stable computation under the RFT model.\n" |
|
|
"Returns QΩ, ζ_sync, and items/sec metrics with SHA-512-sealed logs." |
|
|
) |
|
|
) |
|
|
|
|
|
iface.launch() |