Spaces:
Running
Running
Upload 4 files
Browse files- Dockerfile +17 -0
- encoder.py +15 -0
- main.py +172 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python runtime as a parent image
|
| 2 |
+
FROM python:3.10
|
| 3 |
+
|
| 4 |
+
# Set the working directory in the container
|
| 5 |
+
WORKDIR /code
|
| 6 |
+
|
| 7 |
+
# Copy the requirements file into the container
|
| 8 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 9 |
+
|
| 10 |
+
# Install the packages
|
| 11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 12 |
+
|
| 13 |
+
# Copy your entire project's source code into the container
|
| 14 |
+
COPY . /code/
|
| 15 |
+
|
| 16 |
+
# Run the app using Gunicorn, a production-ready server
|
| 17 |
+
CMD ["gunicorn", "-w", "4", "-k", "uvicorn.workers.UvicornWorker", "main:app", "--bind", "0.0.0.0:7860"]
|
encoder.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
| 2 |
+
|
| 3 |
+
class SentenceEncoder:
|
| 4 |
+
def __init__(self, model_name='l3cube-pune/indic-sentence-similarity-sbert'):
|
| 5 |
+
try:
|
| 6 |
+
self.model = SentenceTransformer(model_name)
|
| 7 |
+
print(f"β
Model '{model_name}' loaded successfully.")
|
| 8 |
+
except Exception as e:
|
| 9 |
+
print(f"β Error loading model: {e}")
|
| 10 |
+
self.model = None
|
| 11 |
+
|
| 12 |
+
def encode(self, texts, batch_size=32, show_progress_bar=False):
|
| 13 |
+
if self.model is None:
|
| 14 |
+
return None
|
| 15 |
+
return self.model.encode(texts, batch_size=batch_size, show_progress_bar=show_progress_bar, convert_to_tensor=True)
|
main.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import chromadb
|
| 4 |
+
from fastapi import FastAPI, HTTPException, Depends
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from typing import List
|
| 7 |
+
import firebase_admin
|
| 8 |
+
from firebase_admin import credentials, firestore
|
| 9 |
+
|
| 10 |
+
from encoder import SentenceEncoder
|
| 11 |
+
|
| 12 |
+
# --- Pydantic Models ---
|
| 13 |
+
class UserProfile(BaseModel):
|
| 14 |
+
user_id: str
|
| 15 |
+
skills: List[str] = Field(..., example=["python", "data analysis"])
|
| 16 |
+
interests: List[str] = Field(..., example=["machine learning", "web development"])
|
| 17 |
+
|
| 18 |
+
class SearchQuery(BaseModel):
|
| 19 |
+
query: str = Field(..., example="marketing internship in mumbai")
|
| 20 |
+
|
| 21 |
+
# --- SCHEMA CHANGED HERE ---
|
| 22 |
+
# Reverted to use 'id' and 'skills'
|
| 23 |
+
class InternshipData(BaseModel):
|
| 24 |
+
id: str = Field(..., example="int_021")
|
| 25 |
+
title: str
|
| 26 |
+
description: str
|
| 27 |
+
skills: List[str]
|
| 28 |
+
duration: int
|
| 29 |
+
createdAt: str
|
| 30 |
+
stipend: int = None
|
| 31 |
+
|
| 32 |
+
class RecommendationResponse(BaseModel):
|
| 33 |
+
recommendations: List[dict]
|
| 34 |
+
|
| 35 |
+
class StatusResponse(BaseModel):
|
| 36 |
+
status: str
|
| 37 |
+
internship_id: str
|
| 38 |
+
|
| 39 |
+
# --- FastAPI App & Firebase Initialization ---
|
| 40 |
+
app = FastAPI(
|
| 41 |
+
title="Internship Recommendation API",
|
| 42 |
+
description="An API using Firestore for metadata, and ChromaDB for vector search.",
|
| 43 |
+
version="2.1.0"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Initialize Firebase ONCE at startup
|
| 47 |
+
try:
|
| 48 |
+
if 'FIREBASE_CREDS_JSON' in os.environ:
|
| 49 |
+
creds_dict = json.loads(os.environ.get('FIREBASE_CREDS_JSON'))
|
| 50 |
+
cred = credentials.Certificate(creds_dict)
|
| 51 |
+
else:
|
| 52 |
+
cred = credentials.Certificate('serviceAccountKey.json')
|
| 53 |
+
|
| 54 |
+
firebase_admin.initialize_app(cred)
|
| 55 |
+
db = firestore.client()
|
| 56 |
+
print("β
Firebase connection initialized.")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"β Could not initialize Firebase. Error: {e}")
|
| 59 |
+
db = None
|
| 60 |
+
|
| 61 |
+
# Dependency to provide the db client
|
| 62 |
+
def get_db():
|
| 63 |
+
if db is None:
|
| 64 |
+
raise HTTPException(status_code=503, detail="Firestore connection not available.")
|
| 65 |
+
return db
|
| 66 |
+
|
| 67 |
+
# --- Global Variables for Model and ChromaDB ---
|
| 68 |
+
encoder = None
|
| 69 |
+
chroma_collection = None
|
| 70 |
+
|
| 71 |
+
@app.on_event("startup")
|
| 72 |
+
def load_model_and_data():
|
| 73 |
+
global encoder, chroma_collection
|
| 74 |
+
|
| 75 |
+
print("π Loading sentence encoder model...")
|
| 76 |
+
encoder = SentenceEncoder()
|
| 77 |
+
|
| 78 |
+
client = chromadb.PersistentClient(path="/content/chroma_db")
|
| 79 |
+
chroma_collection = client.get_or_create_collection(name="internships")
|
| 80 |
+
|
| 81 |
+
print("β
ChromaDB client initialized and collection is ready.")
|
| 82 |
+
print(f" - Internships in DB: {chroma_collection.count()}")
|
| 83 |
+
|
| 84 |
+
# --- API Endpoints ---
|
| 85 |
+
@app.get("/")
|
| 86 |
+
def read_root():
|
| 87 |
+
return {"message": "Welcome to the Internship Recommendation API!"}
|
| 88 |
+
|
| 89 |
+
@app.post("/add-internship", response_model=StatusResponse)
|
| 90 |
+
def add_internship(internship: InternshipData, db_client: firestore.Client = Depends(get_db)):
|
| 91 |
+
if chroma_collection is None or encoder is None:
|
| 92 |
+
raise HTTPException(status_code=503, detail="Server is not ready.")
|
| 93 |
+
|
| 94 |
+
# --- SCHEMA CHANGED HERE ---
|
| 95 |
+
# Using internship.id
|
| 96 |
+
doc_ref = db_client.collection('internships').document(internship.id)
|
| 97 |
+
if doc_ref.get().exists:
|
| 98 |
+
raise HTTPException(status_code=400, detail="Internship ID already exists.")
|
| 99 |
+
|
| 100 |
+
# Save to Firestore
|
| 101 |
+
doc_ref.set(internship.dict())
|
| 102 |
+
|
| 103 |
+
# --- SCHEMA CHANGED HERE ---
|
| 104 |
+
# Using internship.skills
|
| 105 |
+
text_to_encode = f"{internship.title}. {internship.description}. Skills: {', '.join(internship.skills)}"
|
| 106 |
+
embedding = encoder.encode([text_to_encode])[0].tolist()
|
| 107 |
+
|
| 108 |
+
# --- CRITICAL FIX RE-APPLIED HERE ---
|
| 109 |
+
# Prepare metadata for ChromaDB, converting skills list to a JSON string
|
| 110 |
+
metadata_for_chroma = internship.dict()
|
| 111 |
+
metadata_for_chroma['skills'] = json.dumps(metadata_for_chroma['skills'])
|
| 112 |
+
|
| 113 |
+
chroma_collection.add(
|
| 114 |
+
# --- SCHEMA CHANGED HERE ---
|
| 115 |
+
# Using internship.id
|
| 116 |
+
ids=[internship.id],
|
| 117 |
+
embeddings=[embedding],
|
| 118 |
+
metadatas=[metadata_for_chroma]
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
print(f"β
Added internship to Firestore and ChromaDB: {internship.id}")
|
| 122 |
+
# --- SCHEMA CHANGED HERE ---
|
| 123 |
+
return {"status": "success", "internship_id": internship.id}
|
| 124 |
+
|
| 125 |
+
@app.post("/profile-recommendations", response_model=RecommendationResponse)
|
| 126 |
+
def get_profile_recommendations(profile: UserProfile):
|
| 127 |
+
if chroma_collection is None or encoder is None:
|
| 128 |
+
raise HTTPException(status_code=503, detail="Server is not ready.")
|
| 129 |
+
|
| 130 |
+
query_text = f"Skills: {', '.join(profile.skills)}. Interests: {', '.join(profile.interests)}"
|
| 131 |
+
query_embedding = encoder.encode([query_text])[0].tolist()
|
| 132 |
+
|
| 133 |
+
results = chroma_collection.query(
|
| 134 |
+
query_embeddings=[query_embedding],
|
| 135 |
+
n_results=3
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
recommendations = []
|
| 139 |
+
ids = results.get('ids', [[]])[0]
|
| 140 |
+
distances = results.get('distances', [[]])[0]
|
| 141 |
+
|
| 142 |
+
for i, internship_id in enumerate(ids):
|
| 143 |
+
recommendations.append({
|
| 144 |
+
"internship_id": internship_id,
|
| 145 |
+
"score": 1 - distances[i]
|
| 146 |
+
})
|
| 147 |
+
|
| 148 |
+
return {"recommendations": recommendations}
|
| 149 |
+
|
| 150 |
+
@app.post("/search", response_model=RecommendationResponse)
|
| 151 |
+
def search_internships(search: SearchQuery):
|
| 152 |
+
if chroma_collection is None or encoder is None:
|
| 153 |
+
raise HTTPException(status_code=503, detail="Server is not ready.")
|
| 154 |
+
|
| 155 |
+
query_embedding = encoder.encode([search.query])[0].tolist()
|
| 156 |
+
|
| 157 |
+
results = chroma_collection.query(
|
| 158 |
+
query_embeddings=[query_embedding],
|
| 159 |
+
n_results=3
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
recommendations = []
|
| 163 |
+
ids = results.get('ids', [[]])[0]
|
| 164 |
+
distances = results.get('distances', [[]])[0]
|
| 165 |
+
|
| 166 |
+
for i, internship_id in enumerate(ids):
|
| 167 |
+
recommendations.append({
|
| 168 |
+
"internship_id": internship_id,
|
| 169 |
+
"score": 1 - distances[i]
|
| 170 |
+
})
|
| 171 |
+
|
| 172 |
+
return {"recommendations": recommendations}
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
pydantic
|
| 4 |
+
sentence-transformers
|
| 5 |
+
torch
|
| 6 |
+
numpy
|
| 7 |
+
scikit-learn
|
| 8 |
+
firebase-admin
|