Spaces:
Sleeping
Sleeping
Allow upload of all file types
Browse files
app.py
CHANGED
|
@@ -1,414 +1,414 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import logging
|
| 3 |
-
from pathlib import Path
|
| 4 |
-
from tqdm import tqdm
|
| 5 |
-
import torch
|
| 6 |
-
import torchaudio
|
| 7 |
-
import soundfile as sf
|
| 8 |
-
import time
|
| 9 |
-
from typing import TypedDict
|
| 10 |
-
from enum import Enum
|
| 11 |
-
import gradio as gr
|
| 12 |
-
|
| 13 |
-
SR = 16000
|
| 14 |
-
VAD_EXPAND_HEAD_SEC = 0.2
|
| 15 |
-
VAD_EXPAND_TAIL_SEC = 0.2
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class SPEECH_ARRAY_INDEX(TypedDict):
|
| 19 |
-
"""
|
| 20 |
-
TypedDict for representing speech segments in audio.
|
| 21 |
-
This dictionary contains the start and end indices of a speech segment retrieved from VAD processing.
|
| 22 |
-
|
| 23 |
-
Args:
|
| 24 |
-
start (float): Start index of the speech segment in samples.
|
| 25 |
-
end (float): End index of the speech segment in samples.
|
| 26 |
-
"""
|
| 27 |
-
start: float
|
| 28 |
-
end: float
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class SilenceTrimMode(Enum):
|
| 32 |
-
"""
|
| 33 |
-
Enumeration for different silence trimming modes in audio processing.
|
| 34 |
-
|
| 35 |
-
This enum defines various options for trimming silence from audio segments,
|
| 36 |
-
allowing fine-grained control over which parts of the audio should have
|
| 37 |
-
silence removed.
|
| 38 |
-
|
| 39 |
-
Attributes:
|
| 40 |
-
LEADING (str): Remove silence only from the beginning of the audio.
|
| 41 |
-
TRAILING (str): Remove silence only from the end of the audio.
|
| 42 |
-
EDGES (str): Remove silence from both the beginning and end of the audio.
|
| 43 |
-
ALL (str): Remove all silence segments throughout the entire audio.
|
| 44 |
-
"""
|
| 45 |
-
|
| 46 |
-
LEADING = "leading"
|
| 47 |
-
TRAILING = "trailing"
|
| 48 |
-
EDGES = "edges"
|
| 49 |
-
ALL = "all"
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class VAD:
|
| 53 |
-
def __init__(
|
| 54 |
-
self,
|
| 55 |
-
sr: int,
|
| 56 |
-
remove_short: bool = False,
|
| 57 |
-
pad_segments: bool = True,
|
| 58 |
-
expand_head_sec: float = VAD_EXPAND_HEAD_SEC,
|
| 59 |
-
expand_tail_sec: float = VAD_EXPAND_TAIL_SEC,
|
| 60 |
-
trim_mode: SilenceTrimMode = SilenceTrimMode.EDGES,
|
| 61 |
-
):
|
| 62 |
-
"""Initialize the VAD processor.
|
| 63 |
-
|
| 64 |
-
Args:
|
| 65 |
-
sr (int): Sampling rate of input audio.
|
| 66 |
-
remove_short (bool): Whether to remove short speech segments. Default is False.
|
| 67 |
-
pad_segments (bool): Whether to expand detected segments with padding. Default is True.
|
| 68 |
-
expand_head_sec (float): Padding in seconds to add before each segment. Default is 0.2.
|
| 69 |
-
expand_tail_sec (float): Padding in seconds to add after each segment. Default is 0.2.
|
| 70 |
-
trim_mode (SilenceTrimMode): Mode to use for trimming silence. Default is trim silence from edges. Options are:
|
| 71 |
-
- SilenceTrimMode.LEADING: Remove silence only from the beginning.
|
| 72 |
-
- SilenceTrimMode.TRAILING: Remove silence only from the end.
|
| 73 |
-
- SilenceTrimMode.EDGES: Remove silence from both the beginning and end.
|
| 74 |
-
- SilenceTrimMode.ALL: Remove all silence segments throughout the audio.
|
| 75 |
-
"""
|
| 76 |
-
self.sr = sr
|
| 77 |
-
self.pad_segments = pad_segments
|
| 78 |
-
self.remove_short = remove_short
|
| 79 |
-
self.expand_head_sec = expand_head_sec
|
| 80 |
-
self.expand_tail_sec = expand_tail_sec
|
| 81 |
-
self.trim_mode = trim_mode
|
| 82 |
-
self.min_segment_dur = 1.0
|
| 83 |
-
|
| 84 |
-
vad_components = torch.hub.load(
|
| 85 |
-
repo_or_dir="snakers4/silero-vad",
|
| 86 |
-
model="silero_vad",
|
| 87 |
-
trust_repo=True,
|
| 88 |
-
skip_validation=True,
|
| 89 |
-
)
|
| 90 |
-
self.vad_model, utils = vad_components # type: ignore
|
| 91 |
-
self._detect_speech, _, _, *_ = utils
|
| 92 |
-
|
| 93 |
-
def _remove_short_segments(self, segments: list[SPEECH_ARRAY_INDEX]) -> list[SPEECH_ARRAY_INDEX]:
|
| 94 |
-
"""Remove speech segments shorter than the configured minimum duration."""
|
| 95 |
-
return [s for s in segments if s["end"] - s["start"] > self.min_segment_dur * self.sr]
|
| 96 |
-
|
| 97 |
-
def _expand_segments(
|
| 98 |
-
self, segments: list[SPEECH_ARRAY_INDEX], expand_head: int, expand_tail: int, total_length: int
|
| 99 |
-
) -> list[SPEECH_ARRAY_INDEX]:
|
| 100 |
-
"""Expand speech segments with padding before and after, constrained by surrounding segments and total length.
|
| 101 |
-
|
| 102 |
-
Args:
|
| 103 |
-
segments (list[SPEECH_ARRAY_INDEX]): List of speech segments.
|
| 104 |
-
expand_head (int): Padding to add before each segment in samples.
|
| 105 |
-
expand_tail (int): Padding to add after each segment in samples.
|
| 106 |
-
total_length (int): Total length of the audio in samples.
|
| 107 |
-
|
| 108 |
-
Returns:
|
| 109 |
-
list[SPEECH_ARRAY_INDEX]: Expanded list of speech segments.
|
| 110 |
-
"""
|
| 111 |
-
results = []
|
| 112 |
-
for i, t in enumerate(segments):
|
| 113 |
-
start = max(t["start"] - expand_head, segments[i - 1]["end"] if i > 0 else 0)
|
| 114 |
-
end = min(t["end"] + expand_tail, segments[i + 1]["start"] if i < len(segments) - 1 else total_length)
|
| 115 |
-
results.append({"start": start, "end": end})
|
| 116 |
-
return results
|
| 117 |
-
|
| 118 |
-
def _postprocess_segments(
|
| 119 |
-
self, segments: list[SPEECH_ARRAY_INDEX], audio_len: int
|
| 120 |
-
) -> list[SPEECH_ARRAY_INDEX]:
|
| 121 |
-
"""Apply filtering and padding to detected speech segments. If no segments are detected, return a default segment covering the entire audio.
|
| 122 |
-
|
| 123 |
-
Args:
|
| 124 |
-
segments (list[SPEECH_ARRAY_INDEX]): Detected speech segments.
|
| 125 |
-
audio_len (int): Length of the audio signal in samples. Used to ensure segments do not exceed audio length.
|
| 126 |
-
|
| 127 |
-
Returns:
|
| 128 |
-
list[SPEECH_ARRAY_INDEX]: Postprocessed speech segments.
|
| 129 |
-
"""
|
| 130 |
-
if self.remove_short:
|
| 131 |
-
segments = self._remove_short_segments(segments)
|
| 132 |
-
if self.pad_segments:
|
| 133 |
-
expand_head = int(self.expand_head_sec * self.sr)
|
| 134 |
-
expand_tail = int(self.expand_tail_sec * self.sr)
|
| 135 |
-
segments = self._expand_segments(segments, expand_head, expand_tail, audio_len)
|
| 136 |
-
return segments if segments else [{"start": 0, "end": audio_len}]
|
| 137 |
-
|
| 138 |
-
def _trim_audio(self, audio: torch.Tensor, segments: list[SPEECH_ARRAY_INDEX]) -> torch.Tensor:
|
| 139 |
-
"""Trim the input audio tensor according to the configured silence trim mode.
|
| 140 |
-
|
| 141 |
-
Args:
|
| 142 |
-
audio (torch.Tensor): Input audio tensor.
|
| 143 |
-
segments (list[SPEECH_ARRAY_INDEX]): Processed speech segments.
|
| 144 |
-
|
| 145 |
-
Returns:
|
| 146 |
-
torch.Tensor: Trimmed audio tensor.
|
| 147 |
-
"""
|
| 148 |
-
if not segments:
|
| 149 |
-
return audio.unsqueeze(0)
|
| 150 |
-
|
| 151 |
-
if self.trim_mode is SilenceTrimMode.ALL:
|
| 152 |
-
speech = torch.cat([audio[int(s["start"]):int(s["end"])] for s in segments])
|
| 153 |
-
else:
|
| 154 |
-
first_start = int(segments[0]["start"])
|
| 155 |
-
last_end = int(segments[-1]["end"])
|
| 156 |
-
if self.trim_mode is SilenceTrimMode.LEADING:
|
| 157 |
-
speech = audio[first_start:]
|
| 158 |
-
elif self.trim_mode is SilenceTrimMode.TRAILING:
|
| 159 |
-
speech = audio[:last_end]
|
| 160 |
-
elif self.trim_mode is SilenceTrimMode.EDGES:
|
| 161 |
-
speech = audio[first_start:last_end]
|
| 162 |
-
else:
|
| 163 |
-
raise ValueError(f"Unsupported trim_mode: {self.trim_mode}")
|
| 164 |
-
|
| 165 |
-
return speech.unsqueeze(0)
|
| 166 |
-
|
| 167 |
-
def __call__(self, audio: torch.Tensor) -> torch.Tensor:
|
| 168 |
-
"""Apply VAD processing and silence trimming to an audio tensor.
|
| 169 |
-
|
| 170 |
-
Args:
|
| 171 |
-
audio (torch.Tensor): Audio tensor, either [samples] or [1, samples].
|
| 172 |
-
|
| 173 |
-
Returns:
|
| 174 |
-
torch.Tensor: Trimmed audio tensor with silence removed.
|
| 175 |
-
"""
|
| 176 |
-
if audio.dim() == 2:
|
| 177 |
-
audio = audio[0]
|
| 178 |
-
|
| 179 |
-
tic = time.time()
|
| 180 |
-
segments = self._detect_speech(audio, model=self.vad_model, sampling_rate=self.sr)
|
| 181 |
-
segments = self._postprocess_segments(segments, len(audio))
|
| 182 |
-
logging.debug(f"Detected speech in {time.time() - tic:.1f} sec")
|
| 183 |
-
|
| 184 |
-
return self._trim_audio(audio, segments)
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
def preprocess_input_lst(input_lst_path: str) -> list[Path]:
|
| 188 |
-
"""
|
| 189 |
-
Load a list of audio file paths from a text file.
|
| 190 |
-
|
| 191 |
-
Args:
|
| 192 |
-
input_lst_path (str): Path to a text file containing audio file paths, one per line.
|
| 193 |
-
|
| 194 |
-
Returns:
|
| 195 |
-
list[Path]: List of audio file paths.
|
| 196 |
-
"""
|
| 197 |
-
with open(input_lst_path, "r") as f:
|
| 198 |
-
return [Path(line.strip()) for line in f if line.strip()]
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
def preprocess_input_dir(input_dir: Path) -> list[Path]:
|
| 202 |
-
"""
|
| 203 |
-
Recursively collect all .wav audio file paths from a directory.
|
| 204 |
-
|
| 205 |
-
Args:
|
| 206 |
-
input_dir (Path): Path to the base directory to search for .wav files.
|
| 207 |
-
|
| 208 |
-
Returns:
|
| 209 |
-
list[Path]: List of full paths to .wav files.
|
| 210 |
-
"""
|
| 211 |
-
return list(input_dir.rglob("*.wav"))
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
def setup_logger(log_file: Path, verbose: bool = False) -> None:
|
| 215 |
-
"""
|
| 216 |
-
Configure the logging module to write to file and stdout.
|
| 217 |
-
|
| 218 |
-
Args:
|
| 219 |
-
log_file (Path): Path to the log file.
|
| 220 |
-
verbose (bool, optional): Whether to enable verbose logging. Defaults to False.
|
| 221 |
-
"""
|
| 222 |
-
log_file.parent.mkdir(parents=True, exist_ok=True)
|
| 223 |
-
logging.basicConfig(
|
| 224 |
-
level=logging.INFO if not verbose else logging.DEBUG,
|
| 225 |
-
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 226 |
-
handlers=[logging.FileHandler(log_file, mode="w"), logging.StreamHandler()],
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
def apply_vad(
|
| 231 |
-
input_lst: list[Path],
|
| 232 |
-
output_dir: Path,
|
| 233 |
-
input_base_dir: str | Path | None = None,
|
| 234 |
-
expand_head_sec: float = VAD_EXPAND_HEAD_SEC,
|
| 235 |
-
expand_tail_sec: float = VAD_EXPAND_TAIL_SEC,
|
| 236 |
-
trim_mode: SilenceTrimMode = SilenceTrimMode.EDGES,
|
| 237 |
-
) -> None:
|
| 238 |
-
"""
|
| 239 |
-
Apply VAD to a list of input audio files and save the processed outputs.
|
| 240 |
-
|
| 241 |
-
Args:
|
| 242 |
-
input_lst (list[Path]): List of audio file paths to process.
|
| 243 |
-
output_dir (Path): Directory to save the processed audio files.
|
| 244 |
-
input_base_dir (str | Path | None, optional): If provided, preserve directory structure relative to this base.
|
| 245 |
-
"""
|
| 246 |
-
logging.info(f"Processing {len(input_lst)} files from {input_base_dir} to {output_dir}")
|
| 247 |
-
logging.info(f"Creating VAD model with sampling rate {SR} and expand head {expand_head_sec} sec")
|
| 248 |
-
vad = VAD(
|
| 249 |
-
sr=SR, pad_segments=True, expand_head_sec=expand_head_sec, expand_tail_sec=expand_tail_sec, trim_mode=trim_mode
|
| 250 |
-
)
|
| 251 |
-
for wav_file in tqdm(input_lst, desc="Applying VAD"):
|
| 252 |
-
try:
|
| 253 |
-
if input_base_dir is not None:
|
| 254 |
-
# Keep tree hierarchy relative to base dir
|
| 255 |
-
rel_path = wav_file.relative_to(input_base_dir)
|
| 256 |
-
out_file = output_dir / rel_path
|
| 257 |
-
else:
|
| 258 |
-
# Copy to output dir as is (just the filename)
|
| 259 |
-
out_file = output_dir / (wav_file.stem + "_vad" + wav_file.suffix)
|
| 260 |
-
|
| 261 |
-
out_file.parent.mkdir(parents=True, exist_ok=True)
|
| 262 |
-
|
| 263 |
-
audio, sr = torchaudio.load(str(wav_file))
|
| 264 |
-
if sr != SR:
|
| 265 |
-
audio = torchaudio.functional.resample(audio, sr, SR)
|
| 266 |
-
sr = SR
|
| 267 |
-
|
| 268 |
-
audio_vad = vad(audio)
|
| 269 |
-
sf.write(out_file, audio_vad.squeeze().numpy(), sr)
|
| 270 |
-
logging.debug(f"Saved: {out_file}")
|
| 271 |
-
|
| 272 |
-
except Exception as e:
|
| 273 |
-
logging.error(f"Failed to process {wav_file}: {e}")
|
| 274 |
-
print(f"VAD processing complete. Processed {len(input_lst)} files. Outputs saved to {output_dir}")
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
def apply_vad_gradio(wav_file):
|
| 278 |
-
vad = VAD(sr=SR, pad_segments=True, expand_head_sec=0.2, expand_tail_sec=0.2, trim_mode=SilenceTrimMode.EDGES)
|
| 279 |
-
audio, sr = torchaudio.load(str(wav_file))
|
| 280 |
-
if sr != SR:
|
| 281 |
-
audio = torchaudio.functional.resample(audio, sr, SR)
|
| 282 |
-
sr = SR
|
| 283 |
-
audio_vad = vad(audio)
|
| 284 |
-
sf.write("output.wav", audio_vad.squeeze().numpy(), sr)
|
| 285 |
-
return 'output.wav'
|
| 286 |
-
|
| 287 |
-
def parse_args() -> argparse.Namespace:
|
| 288 |
-
"""
|
| 289 |
-
Parse command-line arguments for the VAD processing script.
|
| 290 |
-
|
| 291 |
-
Returns:
|
| 292 |
-
argparse.Namespace: Parsed arguments.
|
| 293 |
-
"""
|
| 294 |
-
parser = argparse.ArgumentParser(description="Apply VAD to all .wav files in a directory tree.")
|
| 295 |
-
parser.add_argument(
|
| 296 |
-
"--input_dir",
|
| 297 |
-
type=Path,
|
| 298 |
-
help="Path to input directory. Also used as the base input directory for relative paths.",
|
| 299 |
-
)
|
| 300 |
-
parser.add_argument("--input_lst", type=Path, help="Path to input list file with audio paths")
|
| 301 |
-
parser.add_argument("--output_dir", type=Path, help="Path to output directory")
|
| 302 |
-
parser.add_argument("--debug_file", type=Path, help="Optional: Path to a single file to test VAD on")
|
| 303 |
-
parser.add_argument("--expand_head_sec", type=float, default=VAD_EXPAND_HEAD_SEC)
|
| 304 |
-
parser.add_argument("--expand_tail_sec", type=float, default=VAD_EXPAND_TAIL_SEC)
|
| 305 |
-
parser.add_argument(
|
| 306 |
-
"--trim_mode",
|
| 307 |
-
type=str,
|
| 308 |
-
default=SilenceTrimMode.EDGES.value,
|
| 309 |
-
choices=[m.value for m in SilenceTrimMode],
|
| 310 |
-
help="Silence trim mode: " + ", ".join(m.value for m in SilenceTrimMode),
|
| 311 |
-
)
|
| 312 |
-
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
| 313 |
-
args = parser.parse_args()
|
| 314 |
-
|
| 315 |
-
# Validation logic
|
| 316 |
-
if args.debug_file:
|
| 317 |
-
# Debug mode - only debug_file is needed
|
| 318 |
-
if args.input_dir or args.input_lst or args.output_dir:
|
| 319 |
-
parser.error("When using --debug_file, do not provide --input_dir, --input_lst, or --output_dir.")
|
| 320 |
-
else:
|
| 321 |
-
# Normal mode - need output_dir and either input_dir or input_lst
|
| 322 |
-
if not args.output_dir:
|
| 323 |
-
parser.error("--output_dir is required when not using --debug_file.")
|
| 324 |
-
if not args.input_dir and not args.input_lst:
|
| 325 |
-
parser.error("Either --input_dir or --input_lst must be provided when not using --debug_file.")
|
| 326 |
-
args.trim_mode = SilenceTrimMode(args.trim_mode)
|
| 327 |
-
return args
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
def run_debug_file(
|
| 331 |
-
debug_file: str,
|
| 332 |
-
expand_head_sec: float = VAD_EXPAND_HEAD_SEC,
|
| 333 |
-
expand_tail_sec: float = VAD_EXPAND_TAIL_SEC,
|
| 334 |
-
trim_mode: SilenceTrimMode = SilenceTrimMode.EDGES,
|
| 335 |
-
) -> None:
|
| 336 |
-
"""
|
| 337 |
-
Run VAD on a single debug audio file and save the result.
|
| 338 |
-
|
| 339 |
-
Args:
|
| 340 |
-
debug_file (str): Path to the debug audio file.
|
| 341 |
-
expand_head_sec (float): Padding duration in seconds before each segment.
|
| 342 |
-
expand_tail_sec (float): Padding duration in seconds after each segment.
|
| 343 |
-
"""
|
| 344 |
-
debug_path = Path(debug_file).resolve()
|
| 345 |
-
|
| 346 |
-
logging.info(f"Running VAD debug on: {debug_path}")
|
| 347 |
-
audio, sr = torchaudio.load(debug_path)
|
| 348 |
-
|
| 349 |
-
if sr != SR:
|
| 350 |
-
logging.info(f"Resampling from {sr} → {SR}")
|
| 351 |
-
audio = torchaudio.functional.resample(audio, sr, SR)
|
| 352 |
-
sr = SR
|
| 353 |
-
|
| 354 |
-
vad = VAD(
|
| 355 |
-
sr=SR, pad_segments=True, expand_head_sec=expand_head_sec, expand_tail_sec=expand_tail_sec, trim_mode=trim_mode
|
| 356 |
-
)
|
| 357 |
-
audio_vad = vad(audio)
|
| 358 |
-
|
| 359 |
-
out_path = debug_path.with_name(debug_path.stem + "_vad.wav")
|
| 360 |
-
sf.write(out_path, audio_vad.squeeze().numpy(), sr)
|
| 361 |
-
logging.info(f"Saved VAD output to: {out_path}")
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
with gr.Blocks() as demo:
|
| 365 |
-
with gr.Row():
|
| 366 |
-
inputFile = gr.File(label="wav files", file_count="single"
|
| 367 |
-
runbtn = gr.Button("Run")
|
| 368 |
-
audio = gr.Audio(label="output")
|
| 369 |
-
runbtn.click(fn=apply_vad_gradio, inputs=[inputFile], outputs=audio)
|
| 370 |
-
|
| 371 |
-
if __name__ == "__main__":
|
| 372 |
-
demo.launch(ssr_mode=False)
|
| 373 |
-
# Optional: override args for debugging
|
| 374 |
-
#import sys
|
| 375 |
-
|
| 376 |
-
# sys.argv = [
|
| 377 |
-
# "script.py",
|
| 378 |
-
# "--output_dir",
|
| 379 |
-
# "/mlspeech/data/eyalcohen/datasets/intelligibility/sandi2025_challenge/tts_data/debug_train_files/with_vad_head_03_tail_03",
|
| 380 |
-
# "--input_lst",
|
| 381 |
-
# "/mlspeech/data/eyalcohen/datasets/intelligibility/sandi2025_challenge/tts_data/with_vad/normalized/debug_train_files.txt",
|
| 382 |
-
# "--expand_head_sec",
|
| 383 |
-
# "0.3",
|
| 384 |
-
# "--expand_tail_sec",
|
| 385 |
-
# "0.3",
|
| 386 |
-
# "--verbose",
|
| 387 |
-
# # "--debug_file",
|
| 388 |
-
# # "/mlspeech/data/eyalcohen/datasets/intelligibility/sandi2025_challenge/tts_data/no_vad/normalized/train/sla-P1/SI137O-00982-P10005-AM_FENRIR.wav",
|
| 389 |
-
# ]
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
#
|
| 394 |
-
# args = parse_args()
|
| 395 |
-
# log_file = args.output_dir / "vad_processing.log"
|
| 396 |
-
# setup_logger(log_file, verbose=args.verbose)
|
| 397 |
-
# if args.debug_file:
|
| 398 |
-
# run_debug_file(args.debug_file, args.expand_head_sec, args.expand_tail_sec, args.trim_mode)
|
| 399 |
-
# else:
|
| 400 |
-
# if args.input_lst:
|
| 401 |
-
# input_lst = preprocess_input_lst(args.input_lst)
|
| 402 |
-
# elif args.input_dir:
|
| 403 |
-
# input_lst = preprocess_input_dir(args.input_dir)
|
| 404 |
-
# else:
|
| 405 |
-
# raise ValueError("Either --input_lst or --input_dir must be provided.")
|
| 406 |
-
# apply_vad(
|
| 407 |
-
# input_lst,
|
| 408 |
-
# args.output_dir,
|
| 409 |
-
# args.input_dir,
|
| 410 |
-
# args.expand_head_sec,
|
| 411 |
-
# args.expand_tail_sec,
|
| 412 |
-
# trim_mode=args.trim_mode,
|
| 413 |
-
# )
|
| 414 |
-
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import logging
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import torch
|
| 6 |
+
import torchaudio
|
| 7 |
+
import soundfile as sf
|
| 8 |
+
import time
|
| 9 |
+
from typing import TypedDict
|
| 10 |
+
from enum import Enum
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
SR = 16000
|
| 14 |
+
VAD_EXPAND_HEAD_SEC = 0.2
|
| 15 |
+
VAD_EXPAND_TAIL_SEC = 0.2
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class SPEECH_ARRAY_INDEX(TypedDict):
|
| 19 |
+
"""
|
| 20 |
+
TypedDict for representing speech segments in audio.
|
| 21 |
+
This dictionary contains the start and end indices of a speech segment retrieved from VAD processing.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
start (float): Start index of the speech segment in samples.
|
| 25 |
+
end (float): End index of the speech segment in samples.
|
| 26 |
+
"""
|
| 27 |
+
start: float
|
| 28 |
+
end: float
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SilenceTrimMode(Enum):
|
| 32 |
+
"""
|
| 33 |
+
Enumeration for different silence trimming modes in audio processing.
|
| 34 |
+
|
| 35 |
+
This enum defines various options for trimming silence from audio segments,
|
| 36 |
+
allowing fine-grained control over which parts of the audio should have
|
| 37 |
+
silence removed.
|
| 38 |
+
|
| 39 |
+
Attributes:
|
| 40 |
+
LEADING (str): Remove silence only from the beginning of the audio.
|
| 41 |
+
TRAILING (str): Remove silence only from the end of the audio.
|
| 42 |
+
EDGES (str): Remove silence from both the beginning and end of the audio.
|
| 43 |
+
ALL (str): Remove all silence segments throughout the entire audio.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
LEADING = "leading"
|
| 47 |
+
TRAILING = "trailing"
|
| 48 |
+
EDGES = "edges"
|
| 49 |
+
ALL = "all"
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class VAD:
|
| 53 |
+
def __init__(
|
| 54 |
+
self,
|
| 55 |
+
sr: int,
|
| 56 |
+
remove_short: bool = False,
|
| 57 |
+
pad_segments: bool = True,
|
| 58 |
+
expand_head_sec: float = VAD_EXPAND_HEAD_SEC,
|
| 59 |
+
expand_tail_sec: float = VAD_EXPAND_TAIL_SEC,
|
| 60 |
+
trim_mode: SilenceTrimMode = SilenceTrimMode.EDGES,
|
| 61 |
+
):
|
| 62 |
+
"""Initialize the VAD processor.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
sr (int): Sampling rate of input audio.
|
| 66 |
+
remove_short (bool): Whether to remove short speech segments. Default is False.
|
| 67 |
+
pad_segments (bool): Whether to expand detected segments with padding. Default is True.
|
| 68 |
+
expand_head_sec (float): Padding in seconds to add before each segment. Default is 0.2.
|
| 69 |
+
expand_tail_sec (float): Padding in seconds to add after each segment. Default is 0.2.
|
| 70 |
+
trim_mode (SilenceTrimMode): Mode to use for trimming silence. Default is trim silence from edges. Options are:
|
| 71 |
+
- SilenceTrimMode.LEADING: Remove silence only from the beginning.
|
| 72 |
+
- SilenceTrimMode.TRAILING: Remove silence only from the end.
|
| 73 |
+
- SilenceTrimMode.EDGES: Remove silence from both the beginning and end.
|
| 74 |
+
- SilenceTrimMode.ALL: Remove all silence segments throughout the audio.
|
| 75 |
+
"""
|
| 76 |
+
self.sr = sr
|
| 77 |
+
self.pad_segments = pad_segments
|
| 78 |
+
self.remove_short = remove_short
|
| 79 |
+
self.expand_head_sec = expand_head_sec
|
| 80 |
+
self.expand_tail_sec = expand_tail_sec
|
| 81 |
+
self.trim_mode = trim_mode
|
| 82 |
+
self.min_segment_dur = 1.0
|
| 83 |
+
|
| 84 |
+
vad_components = torch.hub.load(
|
| 85 |
+
repo_or_dir="snakers4/silero-vad",
|
| 86 |
+
model="silero_vad",
|
| 87 |
+
trust_repo=True,
|
| 88 |
+
skip_validation=True,
|
| 89 |
+
)
|
| 90 |
+
self.vad_model, utils = vad_components # type: ignore
|
| 91 |
+
self._detect_speech, _, _, *_ = utils
|
| 92 |
+
|
| 93 |
+
def _remove_short_segments(self, segments: list[SPEECH_ARRAY_INDEX]) -> list[SPEECH_ARRAY_INDEX]:
|
| 94 |
+
"""Remove speech segments shorter than the configured minimum duration."""
|
| 95 |
+
return [s for s in segments if s["end"] - s["start"] > self.min_segment_dur * self.sr]
|
| 96 |
+
|
| 97 |
+
def _expand_segments(
|
| 98 |
+
self, segments: list[SPEECH_ARRAY_INDEX], expand_head: int, expand_tail: int, total_length: int
|
| 99 |
+
) -> list[SPEECH_ARRAY_INDEX]:
|
| 100 |
+
"""Expand speech segments with padding before and after, constrained by surrounding segments and total length.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
segments (list[SPEECH_ARRAY_INDEX]): List of speech segments.
|
| 104 |
+
expand_head (int): Padding to add before each segment in samples.
|
| 105 |
+
expand_tail (int): Padding to add after each segment in samples.
|
| 106 |
+
total_length (int): Total length of the audio in samples.
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
list[SPEECH_ARRAY_INDEX]: Expanded list of speech segments.
|
| 110 |
+
"""
|
| 111 |
+
results = []
|
| 112 |
+
for i, t in enumerate(segments):
|
| 113 |
+
start = max(t["start"] - expand_head, segments[i - 1]["end"] if i > 0 else 0)
|
| 114 |
+
end = min(t["end"] + expand_tail, segments[i + 1]["start"] if i < len(segments) - 1 else total_length)
|
| 115 |
+
results.append({"start": start, "end": end})
|
| 116 |
+
return results
|
| 117 |
+
|
| 118 |
+
def _postprocess_segments(
|
| 119 |
+
self, segments: list[SPEECH_ARRAY_INDEX], audio_len: int
|
| 120 |
+
) -> list[SPEECH_ARRAY_INDEX]:
|
| 121 |
+
"""Apply filtering and padding to detected speech segments. If no segments are detected, return a default segment covering the entire audio.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
segments (list[SPEECH_ARRAY_INDEX]): Detected speech segments.
|
| 125 |
+
audio_len (int): Length of the audio signal in samples. Used to ensure segments do not exceed audio length.
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
list[SPEECH_ARRAY_INDEX]: Postprocessed speech segments.
|
| 129 |
+
"""
|
| 130 |
+
if self.remove_short:
|
| 131 |
+
segments = self._remove_short_segments(segments)
|
| 132 |
+
if self.pad_segments:
|
| 133 |
+
expand_head = int(self.expand_head_sec * self.sr)
|
| 134 |
+
expand_tail = int(self.expand_tail_sec * self.sr)
|
| 135 |
+
segments = self._expand_segments(segments, expand_head, expand_tail, audio_len)
|
| 136 |
+
return segments if segments else [{"start": 0, "end": audio_len}]
|
| 137 |
+
|
| 138 |
+
def _trim_audio(self, audio: torch.Tensor, segments: list[SPEECH_ARRAY_INDEX]) -> torch.Tensor:
|
| 139 |
+
"""Trim the input audio tensor according to the configured silence trim mode.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
audio (torch.Tensor): Input audio tensor.
|
| 143 |
+
segments (list[SPEECH_ARRAY_INDEX]): Processed speech segments.
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
torch.Tensor: Trimmed audio tensor.
|
| 147 |
+
"""
|
| 148 |
+
if not segments:
|
| 149 |
+
return audio.unsqueeze(0)
|
| 150 |
+
|
| 151 |
+
if self.trim_mode is SilenceTrimMode.ALL:
|
| 152 |
+
speech = torch.cat([audio[int(s["start"]):int(s["end"])] for s in segments])
|
| 153 |
+
else:
|
| 154 |
+
first_start = int(segments[0]["start"])
|
| 155 |
+
last_end = int(segments[-1]["end"])
|
| 156 |
+
if self.trim_mode is SilenceTrimMode.LEADING:
|
| 157 |
+
speech = audio[first_start:]
|
| 158 |
+
elif self.trim_mode is SilenceTrimMode.TRAILING:
|
| 159 |
+
speech = audio[:last_end]
|
| 160 |
+
elif self.trim_mode is SilenceTrimMode.EDGES:
|
| 161 |
+
speech = audio[first_start:last_end]
|
| 162 |
+
else:
|
| 163 |
+
raise ValueError(f"Unsupported trim_mode: {self.trim_mode}")
|
| 164 |
+
|
| 165 |
+
return speech.unsqueeze(0)
|
| 166 |
+
|
| 167 |
+
def __call__(self, audio: torch.Tensor) -> torch.Tensor:
|
| 168 |
+
"""Apply VAD processing and silence trimming to an audio tensor.
|
| 169 |
+
|
| 170 |
+
Args:
|
| 171 |
+
audio (torch.Tensor): Audio tensor, either [samples] or [1, samples].
|
| 172 |
+
|
| 173 |
+
Returns:
|
| 174 |
+
torch.Tensor: Trimmed audio tensor with silence removed.
|
| 175 |
+
"""
|
| 176 |
+
if audio.dim() == 2:
|
| 177 |
+
audio = audio[0]
|
| 178 |
+
|
| 179 |
+
tic = time.time()
|
| 180 |
+
segments = self._detect_speech(audio, model=self.vad_model, sampling_rate=self.sr)
|
| 181 |
+
segments = self._postprocess_segments(segments, len(audio))
|
| 182 |
+
logging.debug(f"Detected speech in {time.time() - tic:.1f} sec")
|
| 183 |
+
|
| 184 |
+
return self._trim_audio(audio, segments)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def preprocess_input_lst(input_lst_path: str) -> list[Path]:
|
| 188 |
+
"""
|
| 189 |
+
Load a list of audio file paths from a text file.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
input_lst_path (str): Path to a text file containing audio file paths, one per line.
|
| 193 |
+
|
| 194 |
+
Returns:
|
| 195 |
+
list[Path]: List of audio file paths.
|
| 196 |
+
"""
|
| 197 |
+
with open(input_lst_path, "r") as f:
|
| 198 |
+
return [Path(line.strip()) for line in f if line.strip()]
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def preprocess_input_dir(input_dir: Path) -> list[Path]:
|
| 202 |
+
"""
|
| 203 |
+
Recursively collect all .wav audio file paths from a directory.
|
| 204 |
+
|
| 205 |
+
Args:
|
| 206 |
+
input_dir (Path): Path to the base directory to search for .wav files.
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
list[Path]: List of full paths to .wav files.
|
| 210 |
+
"""
|
| 211 |
+
return list(input_dir.rglob("*.wav"))
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def setup_logger(log_file: Path, verbose: bool = False) -> None:
|
| 215 |
+
"""
|
| 216 |
+
Configure the logging module to write to file and stdout.
|
| 217 |
+
|
| 218 |
+
Args:
|
| 219 |
+
log_file (Path): Path to the log file.
|
| 220 |
+
verbose (bool, optional): Whether to enable verbose logging. Defaults to False.
|
| 221 |
+
"""
|
| 222 |
+
log_file.parent.mkdir(parents=True, exist_ok=True)
|
| 223 |
+
logging.basicConfig(
|
| 224 |
+
level=logging.INFO if not verbose else logging.DEBUG,
|
| 225 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 226 |
+
handlers=[logging.FileHandler(log_file, mode="w"), logging.StreamHandler()],
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def apply_vad(
|
| 231 |
+
input_lst: list[Path],
|
| 232 |
+
output_dir: Path,
|
| 233 |
+
input_base_dir: str | Path | None = None,
|
| 234 |
+
expand_head_sec: float = VAD_EXPAND_HEAD_SEC,
|
| 235 |
+
expand_tail_sec: float = VAD_EXPAND_TAIL_SEC,
|
| 236 |
+
trim_mode: SilenceTrimMode = SilenceTrimMode.EDGES,
|
| 237 |
+
) -> None:
|
| 238 |
+
"""
|
| 239 |
+
Apply VAD to a list of input audio files and save the processed outputs.
|
| 240 |
+
|
| 241 |
+
Args:
|
| 242 |
+
input_lst (list[Path]): List of audio file paths to process.
|
| 243 |
+
output_dir (Path): Directory to save the processed audio files.
|
| 244 |
+
input_base_dir (str | Path | None, optional): If provided, preserve directory structure relative to this base.
|
| 245 |
+
"""
|
| 246 |
+
logging.info(f"Processing {len(input_lst)} files from {input_base_dir} to {output_dir}")
|
| 247 |
+
logging.info(f"Creating VAD model with sampling rate {SR} and expand head {expand_head_sec} sec")
|
| 248 |
+
vad = VAD(
|
| 249 |
+
sr=SR, pad_segments=True, expand_head_sec=expand_head_sec, expand_tail_sec=expand_tail_sec, trim_mode=trim_mode
|
| 250 |
+
)
|
| 251 |
+
for wav_file in tqdm(input_lst, desc="Applying VAD"):
|
| 252 |
+
try:
|
| 253 |
+
if input_base_dir is not None:
|
| 254 |
+
# Keep tree hierarchy relative to base dir
|
| 255 |
+
rel_path = wav_file.relative_to(input_base_dir)
|
| 256 |
+
out_file = output_dir / rel_path
|
| 257 |
+
else:
|
| 258 |
+
# Copy to output dir as is (just the filename)
|
| 259 |
+
out_file = output_dir / (wav_file.stem + "_vad" + wav_file.suffix)
|
| 260 |
+
|
| 261 |
+
out_file.parent.mkdir(parents=True, exist_ok=True)
|
| 262 |
+
|
| 263 |
+
audio, sr = torchaudio.load(str(wav_file))
|
| 264 |
+
if sr != SR:
|
| 265 |
+
audio = torchaudio.functional.resample(audio, sr, SR)
|
| 266 |
+
sr = SR
|
| 267 |
+
|
| 268 |
+
audio_vad = vad(audio)
|
| 269 |
+
sf.write(out_file, audio_vad.squeeze().numpy(), sr)
|
| 270 |
+
logging.debug(f"Saved: {out_file}")
|
| 271 |
+
|
| 272 |
+
except Exception as e:
|
| 273 |
+
logging.error(f"Failed to process {wav_file}: {e}")
|
| 274 |
+
print(f"VAD processing complete. Processed {len(input_lst)} files. Outputs saved to {output_dir}")
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def apply_vad_gradio(wav_file):
|
| 278 |
+
vad = VAD(sr=SR, pad_segments=True, expand_head_sec=0.2, expand_tail_sec=0.2, trim_mode=SilenceTrimMode.EDGES)
|
| 279 |
+
audio, sr = torchaudio.load(str(wav_file))
|
| 280 |
+
if sr != SR:
|
| 281 |
+
audio = torchaudio.functional.resample(audio, sr, SR)
|
| 282 |
+
sr = SR
|
| 283 |
+
audio_vad = vad(audio)
|
| 284 |
+
sf.write("output.wav", audio_vad.squeeze().numpy(), sr)
|
| 285 |
+
return 'output.wav'
|
| 286 |
+
|
| 287 |
+
def parse_args() -> argparse.Namespace:
|
| 288 |
+
"""
|
| 289 |
+
Parse command-line arguments for the VAD processing script.
|
| 290 |
+
|
| 291 |
+
Returns:
|
| 292 |
+
argparse.Namespace: Parsed arguments.
|
| 293 |
+
"""
|
| 294 |
+
parser = argparse.ArgumentParser(description="Apply VAD to all .wav files in a directory tree.")
|
| 295 |
+
parser.add_argument(
|
| 296 |
+
"--input_dir",
|
| 297 |
+
type=Path,
|
| 298 |
+
help="Path to input directory. Also used as the base input directory for relative paths.",
|
| 299 |
+
)
|
| 300 |
+
parser.add_argument("--input_lst", type=Path, help="Path to input list file with audio paths")
|
| 301 |
+
parser.add_argument("--output_dir", type=Path, help="Path to output directory")
|
| 302 |
+
parser.add_argument("--debug_file", type=Path, help="Optional: Path to a single file to test VAD on")
|
| 303 |
+
parser.add_argument("--expand_head_sec", type=float, default=VAD_EXPAND_HEAD_SEC)
|
| 304 |
+
parser.add_argument("--expand_tail_sec", type=float, default=VAD_EXPAND_TAIL_SEC)
|
| 305 |
+
parser.add_argument(
|
| 306 |
+
"--trim_mode",
|
| 307 |
+
type=str,
|
| 308 |
+
default=SilenceTrimMode.EDGES.value,
|
| 309 |
+
choices=[m.value for m in SilenceTrimMode],
|
| 310 |
+
help="Silence trim mode: " + ", ".join(m.value for m in SilenceTrimMode),
|
| 311 |
+
)
|
| 312 |
+
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
| 313 |
+
args = parser.parse_args()
|
| 314 |
+
|
| 315 |
+
# Validation logic
|
| 316 |
+
if args.debug_file:
|
| 317 |
+
# Debug mode - only debug_file is needed
|
| 318 |
+
if args.input_dir or args.input_lst or args.output_dir:
|
| 319 |
+
parser.error("When using --debug_file, do not provide --input_dir, --input_lst, or --output_dir.")
|
| 320 |
+
else:
|
| 321 |
+
# Normal mode - need output_dir and either input_dir or input_lst
|
| 322 |
+
if not args.output_dir:
|
| 323 |
+
parser.error("--output_dir is required when not using --debug_file.")
|
| 324 |
+
if not args.input_dir and not args.input_lst:
|
| 325 |
+
parser.error("Either --input_dir or --input_lst must be provided when not using --debug_file.")
|
| 326 |
+
args.trim_mode = SilenceTrimMode(args.trim_mode)
|
| 327 |
+
return args
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def run_debug_file(
|
| 331 |
+
debug_file: str,
|
| 332 |
+
expand_head_sec: float = VAD_EXPAND_HEAD_SEC,
|
| 333 |
+
expand_tail_sec: float = VAD_EXPAND_TAIL_SEC,
|
| 334 |
+
trim_mode: SilenceTrimMode = SilenceTrimMode.EDGES,
|
| 335 |
+
) -> None:
|
| 336 |
+
"""
|
| 337 |
+
Run VAD on a single debug audio file and save the result.
|
| 338 |
+
|
| 339 |
+
Args:
|
| 340 |
+
debug_file (str): Path to the debug audio file.
|
| 341 |
+
expand_head_sec (float): Padding duration in seconds before each segment.
|
| 342 |
+
expand_tail_sec (float): Padding duration in seconds after each segment.
|
| 343 |
+
"""
|
| 344 |
+
debug_path = Path(debug_file).resolve()
|
| 345 |
+
|
| 346 |
+
logging.info(f"Running VAD debug on: {debug_path}")
|
| 347 |
+
audio, sr = torchaudio.load(debug_path)
|
| 348 |
+
|
| 349 |
+
if sr != SR:
|
| 350 |
+
logging.info(f"Resampling from {sr} → {SR}")
|
| 351 |
+
audio = torchaudio.functional.resample(audio, sr, SR)
|
| 352 |
+
sr = SR
|
| 353 |
+
|
| 354 |
+
vad = VAD(
|
| 355 |
+
sr=SR, pad_segments=True, expand_head_sec=expand_head_sec, expand_tail_sec=expand_tail_sec, trim_mode=trim_mode
|
| 356 |
+
)
|
| 357 |
+
audio_vad = vad(audio)
|
| 358 |
+
|
| 359 |
+
out_path = debug_path.with_name(debug_path.stem + "_vad.wav")
|
| 360 |
+
sf.write(out_path, audio_vad.squeeze().numpy(), sr)
|
| 361 |
+
logging.info(f"Saved VAD output to: {out_path}")
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
with gr.Blocks() as demo:
|
| 365 |
+
with gr.Row():
|
| 366 |
+
inputFile = gr.File(label="wav files", file_count="single")
|
| 367 |
+
runbtn = gr.Button("Run")
|
| 368 |
+
audio = gr.Audio(label="output")
|
| 369 |
+
runbtn.click(fn=apply_vad_gradio, inputs=[inputFile], outputs=audio)
|
| 370 |
+
|
| 371 |
+
if __name__ == "__main__":
|
| 372 |
+
demo.launch(ssr_mode=False)
|
| 373 |
+
# Optional: override args for debugging
|
| 374 |
+
#import sys
|
| 375 |
+
|
| 376 |
+
# sys.argv = [
|
| 377 |
+
# "script.py",
|
| 378 |
+
# "--output_dir",
|
| 379 |
+
# "/mlspeech/data/eyalcohen/datasets/intelligibility/sandi2025_challenge/tts_data/debug_train_files/with_vad_head_03_tail_03",
|
| 380 |
+
# "--input_lst",
|
| 381 |
+
# "/mlspeech/data/eyalcohen/datasets/intelligibility/sandi2025_challenge/tts_data/with_vad/normalized/debug_train_files.txt",
|
| 382 |
+
# "--expand_head_sec",
|
| 383 |
+
# "0.3",
|
| 384 |
+
# "--expand_tail_sec",
|
| 385 |
+
# "0.3",
|
| 386 |
+
# "--verbose",
|
| 387 |
+
# # "--debug_file",
|
| 388 |
+
# # "/mlspeech/data/eyalcohen/datasets/intelligibility/sandi2025_challenge/tts_data/no_vad/normalized/train/sla-P1/SI137O-00982-P10005-AM_FENRIR.wav",
|
| 389 |
+
# ]
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
#
|
| 394 |
+
# args = parse_args()
|
| 395 |
+
# log_file = args.output_dir / "vad_processing.log"
|
| 396 |
+
# setup_logger(log_file, verbose=args.verbose)
|
| 397 |
+
# if args.debug_file:
|
| 398 |
+
# run_debug_file(args.debug_file, args.expand_head_sec, args.expand_tail_sec, args.trim_mode)
|
| 399 |
+
# else:
|
| 400 |
+
# if args.input_lst:
|
| 401 |
+
# input_lst = preprocess_input_lst(args.input_lst)
|
| 402 |
+
# elif args.input_dir:
|
| 403 |
+
# input_lst = preprocess_input_dir(args.input_dir)
|
| 404 |
+
# else:
|
| 405 |
+
# raise ValueError("Either --input_lst or --input_dir must be provided.")
|
| 406 |
+
# apply_vad(
|
| 407 |
+
# input_lst,
|
| 408 |
+
# args.output_dir,
|
| 409 |
+
# args.input_dir,
|
| 410 |
+
# args.expand_head_sec,
|
| 411 |
+
# args.expand_tail_sec,
|
| 412 |
+
# trim_mode=args.trim_mode,
|
| 413 |
+
# )
|
| 414 |
+
|