File size: 35,027 Bytes
8fae705 4e3f0c4 4a85a02 8fae705 4a85a02 8fae705 39e7837 4e3f0c4 c9d71b6 165acb1 459d81a 43f5dc5 459d81a 8fae705 4e3f0c4 c61cd14 bc20118 c61cd14 4e3f0c4 f780176 3fcc621 f780176 d920e06 4e3f0c4 bc20118 4e3f0c4 bc20118 4e3f0c4 c61cd14 5a7d5bd 4e3f0c4 5a7d5bd 4e3f0c4 5a7d5bd 4e3f0c4 5a7d5bd 4e3f0c4 5a7d5bd 4e3f0c4 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 66072b7 bb60a50 4e3f0c4 5a7d5bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
---
title: Falconz - Red teamers
emoji: 🚀
colorFrom: blue
colorTo: yellow
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: true
thumbnail: >-
/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F621c88aca7d6c7e0563256ae%2FsCv6mFixuQLmzhTJuzgXG.png%3C%2Fspan%3E
short_description: MCP Powered Redteaming tool to Safegaurd your Agentic Apps!!
tags:
- building-mcp-track-enterprise
- mcp-in-action-track-enterprise
- security
- red-teaming
- ai-safety
---
# 🛡️ Falconz – Unified LLM Security & Red Teaming Platform
Welcome to our submission for the **Hugging Face GenAI Agents & MCP Hackathon**!
Falconz is a **multi-model AI security platform** built with **Gradio & MCP** and ANthropic Claude models, designed to detect **jailbreaks, prompt injections, and unsafe LLM outputs in Agentic pipelines / LLM based workflows across multiple foundation models** in real time.
🎥 **Demo working Video:**
Main Falconz demo showcasing core features with MCP in Action in Claude Desktop.
https://www.youtube.com/watch?v=wZ9RQjpoMYo
🌐 **Social media -LinkedIn Post:**
Public announcement and shareable link.
https://www.linkedin.com/posts/sallu-mandya_ai-aiagents-mcp-activity-7399436956662841344-3o1I?utm_source=share&utm_medium=member_desktop&rcm=ACoAACD-K8sBnXZWALlW2yw-AnT_4KptCJFJs7M
🌐 **Google CO:lab:**
https://colab.research.google.com/drive/1PSuPQ35UZntKcUBd43QtjrsRLVvHJYlm?usp=sharing
## 🏷️ Hackathon Track Tags
This project is officially submitted to the following MCP Hackathon tracks:
- **building-mcp-track-enterprise**
- **mcp-in-action-track-enterprise**
- **security**
- **red-teaming**
- **ai-safety**
## 🌐 Platform Overview
Falconz provides a unified security layer for LLM-based apps by combining:
- 🔐 **Real-time jailbreak & prompt-injection detection using CLaude Model**
- 🧠 **Multi-model testing across Anthropic, OpenAI, Gemini, Mistral, Phi & more**
- 🖼️ **Image-based prompt injection scanning**
- 📊 **Analytics dashboard for threat trends**
- 🪝 **MCP integration for agentic workflows**
This platform helps developers validate and harden LLM systems against manipulation and unsafe outputs.
---
## 🧩 Core Modules
### 💬 Chat & Response Analysis
- Interact with multiple LLMs
- Automatically evaluates model responses for:
- Jailbreak signals
- Policy violations
- Manipulation attempts
- Outputs structured JSON + visual risk scoring
### 📝 Prompt Tester
- Test known or custom jailbreak prompts
- Compare how different models respond
- Ideal for red-teaming and benchmarking model safety
### 🖼️ Image Scanner
- Detects hidden prompt instructions within images
- Flags potential injection attempts (SAFE / UNSAFE)
### ⚙️ Prompt Library (Customizable)
- Built-in top 10 jailbreak templates (OWASP-inspired)
- Users can update and auto-modify prompt templates
- Supports CSV import + dynamic replacements
### 📊 Analytics Dashboard
- Trends of SAFE vs UNSAFE detections
- Risk score visualization
- Model performance insights
---
## 🔗 Multi-Model Support
Falconz integrates with (With openAI like Endpoints):
- ✅ Anthropic
- ✅ openai
- ✅ Google Gemini
- ✅ Mistral
- ✅ Microsoft Phi
- ✅ Meta (Guard Models)
- ✅ Meta (Guard Models)
- Any Custom model from OpenRouter or OpenAI like endpoints
Each model can be tested independently for safety robustness.
---
High-level components:
- **Frontend:** Gradio UI (Multi-tab interaction)
- **Middleware:** MCP-powered routing & agent logic
- **Backend:** Multi-model OpenRouter API
- **Analytics:** Local CSV logging + dashboards
---
## 🚀 How It Works (Full App Flow Across All Tabs)
### ✅ 1️⃣ Chat & Analysis Flow
1. User enters a message in the **Chat** tab
2. Falconz sends the message to the selected LLM model
3. The model responds normally
4. The response is passed through the **risk analysis engine**
5. A JSON risk score + visual report is generated
6. Conversation & analysis logs are stored for analytics
---
### ✅ 2️⃣ Text Prompt Tester Flow
1. User inputs a jailbreak/prompt-injection test prompt
2. Falconz sends it directly to the selected guard model
3. The raw model response is returned (no chat history)
4. Users compare responses to evaluate model safety behavior
---
### ✅ 3️⃣ Image Scanner Flow
1. User uploads an image containing text or hidden instructions
2. Falconz extracts image content and sends it to a vision model
3. The model evaluates the content for injection threats
4. Output is classified as **SAFE** or **UNSAFE**
## 🧑💻 Authors
- [Mohammed Arsalan](http://linkedin.com/in/sallu-mandya/)
## 📝 License
This project is licensed under the **MIT License**.
---
## 📝 Architecture
╔════════════════════════════════════════════════════════════════════════════════════╗
║ FALCONZ - ARCHITECTURE DIAGRAM ║
║ Unified LLM Security & Red Teaming Platform ║
╚════════════════════════════════════════════════════════════════════════════════════╝
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 🖥️ FRONTEND LAYER │
│ (Gradio UI) │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │
│ │ 💬 Chat & │ │ 🖼️ Image │ │ 📝 Text Prompt │ │
│ │ Analysis Tab │ │ Scanner Tab │ │ Tester Tab │ │
│ └────────┬────────┘ └────────┬─────────┘ └────────┬────────┘ │
│ │ │ │ │
│ ┌────────┴─────────┬──────────┴──────────┬───────────┴────────┐ │
│ │ │ │ │ │
│ └──────────────────┴─────────────────────┴────────────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌───────────────────────────────────────────────────────────┐ │
│ │ 📊 Analytics Dashboard Tab │ 📚 Learning Hub Tab │ │
│ └───────────────────────────────────────────────────────────┘ │
│ │ │ │ │
└───────────┼────────────────────┼──────────────────────┼─────────────────────────┘
│ │ │
▼ ▼ ▼
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 🔗 REQUEST ROUTER LAYER │
│ (Message Handling & Orchestration) │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────┐ ┌─────────────────┐ ┌──────────────────┐ │
│ │ Chat Handler │ │ Image Handler │ │ Prompt Handler │ │
│ │ - Format msgs │ │ - Extract B64 │ │ - Parse templates│ │
│ │ - Build history │ │ - Send to vision│ │ - Route to guard │ │
│ └────────┬─────────┘ └────────┬────────┘ └────────┬─────────┘ │
│ │ │ │ │
│ └─────────────────────┼─────────────────────┘ │
│ │ │
└─────────────────────────────────┼──────────────────────────────────────────────┘
▼
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 🧠 DETECTION ENGINE LAYER (Claude) │
│ (Falconz Prompt Processors) │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────┐ │
│ │ falcon_prompt_text (Text Analysis) │ │
│ │ - Detect jailbreaks, prompt injections │ │
│ │ - Output: risk_score, policy_break_points, attack_used │ │
│ └────────┬─────────────────────────────────────────────────┘ │
│ │ │
│ ┌────────▼─────────────────────────────────────────────────┐ │
│ │ Falcon_prompt_image (Vision Analysis) │ │
│ │ - Extract text from images │ │
│ │ - Compare against injection templates │ │
│ │ - Output: SAFE / UNSAFE │ │
│ └────────┬─────────────────────────────────────────────────┘ │
│ │ │
│ ┌────────▼─────────────────────────────────────────────────┐ │
│ │ prompt_injection_templates │ │
│ │ - Top 10 jailbreak patterns (OWASP-inspired) │ │
│ │ - Customizable & updatable via CSV │ │
│ └────────┬─────────────────────────────────────────────────┘ │
│ │ │
└───────────┼──────────────────────────────────────────────────────────────────────┘
│
▼
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 🌐 MULTI-MODEL API LAYER │
│ (OpenRouter API - Model Abstraction) │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │
│ │ DETECTION MODELS │ │ CHAT MODELS │ │ VISION MODELS │ │
│ ├──────────────────┤ ├──────────────────┤ ├──────────────────┤ │
│ │ • Claude Sonnet │ │ • Gemini 2.5 │ │ • Claude Sonnet │ │
│ │ 4.5 │ │ • GPT-4o │ │ • Gemini 2.5 │ │
│ │ • Claude Opus │ │ • Mistral Med │ │ • GPT-4o │ │
│ │ • Claude Haiku │ │ • Phi-4 │ │ • Phi-4 │ │
│ │ • Llama Guard │ │ • Gemma-3 │ │ • Mistral Med │ │
│ └──────────────────┘ └──────────────────┘ └──────────────────┘ │
│ │
│ ▼ ▼ ▼ ▼ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ OpenRouter.ai/api/v1 (Multi-Model Gateway) │ │
│ │ - Unified endpoint for all LLM providers │ │
│ │ - API Key: YOUR__API_KEY (env var) │ │
│ └──────────────────┬───────────────────────────────────┘ │
│ │ │
└─────────────────────┼────────────────────────────────────────────────────────────┘
│
┌─────────────┼─────────────┐
▼ ▼ ▼
┌──────┐ ┌──────┐ ┌──────┐
│Google│ │OpenAI│ │Meta │
│Gemini│ │ APIs │ │Guard │
└──────┘ └──────┘ └──────┘
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 💾 DATA & STORAGE LAYER │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │
│ │ analytics.csv │ │ Prompts.csv │ │ Prompts_ │ │
│ │ │ │ (Prompt │ │ updated.csv │ │
│ │ • timestamp │ │ Templates) │ │ (Modified │ │
│ │ • result │ │ │ │ Templates) │ │
│ │ • model_used │ │ • prompt │ │ │ │
│ │ │ │ • category │ │ CSV Import/ │ │
│ │ Logging & Track │ │ │ │ Export Support │ │
│ │ Detection History│ │ Customizable │ │ │ │
│ └──────────────────┘ └──────────────────┘ └──────────────────┘ │
│ │
└──────────────────────────────────────────────────────────────────────────────────┘
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 📈 ANALYSIS & OUTPUT PROCESSING LAYER │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌────────────────────────────────────────────────────────┐ │
│ │ JSON Parser & Formatter │ │
│ │ - Extract risk_score (0-100) │ │
│ │ - Parse potential_jailbreak (bool) │ │
│ │ - Extract policy_break_points [array] │ │
│ │ - Identify attack_used (string) │ │
│ └────────────────┬─────────────────────────────────────┘ │
│ │ │
│ ┌────────────────▼─────────────────────────────────────┐ │
│ │ Visual Output Formatter │ │
│ │ - Color-coded risk display (Green/Orange/Red) │ │
│ │ - Markdown rendering │ │
│ │ - HTML formatted output │ │
│ └────────────────┬─────────────────────────────────────┘ │
│ │ │
│ ┌────────────────▼─────────────────────────────────────┐ │
│ │ Dashboard Aggregator │ │
│ │ - Risk score trends (line chart) │ │
│ │ - Result frequency (bar chart) │ │
│ │ - KPI computation (unsafe rate, top model) │ │
│ │ - Recommendations generation │ │
│ └────────────────┬─────────────────────────────────────┘ │
│ │ │
└───────────────────┼────────────────────────────────────────────────────────────┘
▼
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 📊 OUTPUT LAYER │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │
│ │ Raw JSON │ │ Visual Analysis │ │ Analytics │ │
│ │ Output │ │ Report │ │ Dashboard │ │
│ │ │ │ (Markdown) │ │ │ │
│ │ - Structured │ │ - Risk Score │ │ - Trend Lines │ │
│ │ threat data │ │ - Jailbreak Flag │ │ - Bar Charts │ │
│ │ - Machine │ │ - Policy Breaks │ │ - KPIs │ │
│ │ readable │ │ - Attack Type │ │ - Logs │ │
│ └──────────────────┘ └──────────────────┘ └──────────────────┘ │
│ │
└──────────────────────────────────────────────────────────────────────────────────┘
╔════════════════════════════════════════════════════════════════════════════════════╗
║ 🔄 DATA FLOW EXAMPLES ║
╠════════════════════════════════════════════════════════════════════════════════════╣
║ ║
║ FLOW 1: Chat & Analysis Tab ║
║ User Input → Router → Claude Chat → Response → Detection Engine → ║
║ Risk Analysis → JSON Output + Visual Report → Display ║
║ ║
║ FLOW 2: Image Scanner Tab ║
║ Image Upload → Extract B64 → Vision Model → Template Matching → ║
║ SAFE/UNSAFE Classification → Display & Log ║
║ ║
║ FLOW 3: Text Prompt Tester Tab ║
║ Jailbreak Prompt → Guard Model (Llama Guard / Claude) → ║
║ Raw Response → JSON Parse → Display & Log ║
║ ║
║ FLOW 4: Analytics Dashboard ║
║ Load analytics.csv → DataFrame → Risk Aggregation → ║
║ Render Charts + KPIs → Display Dashboard ║
║ ║
╚════════════════════════════════════════════════════════════════════════════════════╝
┌──────────────────────────────────────────────────────────────────────────────────┐
│ 🛠️ TECHNOLOGY STACK │
├──────────────────────────────────────────────────────────────────────────────────┤
│ │
│ Frontend: Gradio 5.49.1 (Glass Theme) │
│ Backend: Python 3.x + OpenAI Python Client │
│ API Gateway: OpenRouter.ai/api/v1 │
│ Detection: Anthropic Claude Models (Prompt-based) │
│ Data Format: JSON, CSV, Pandas DataFrame │
│ Visualization: Matplotlib (Charts), Markdown (Reports) │
│ Logging: IST Timezone Logging, CSV Storage │
│ Interface: Gradio Blocks (Multi-tab UI) │
│ Deployment: Gradio Share (share=True) + MCP Server Support │
│ │
└──────────────────────────────────────────────────────────────────────────────────┘
╔════════════════════════════════════════════════════════════════════════════════════╗
║ 📋 COMPONENT INTERACTIONS ║
╠════════════════════════════════════════════════════════════════════════════════════╣
║ ║
║ ┌──────────────┐ ┌─────────────────┐ ┌──────────────────┐ ║
║ │ User Input │────────▶│ Gradio Frontend │───────▶│ Request Router │ ║
║ └──────────────┘ └─────────────────┘ └────────┬─────────┘ ║
║ │ ║
║ ┌────────────────────────────┘ ║
║ │ ║
║ ┌──────────────▼──────────────┐ ║
║ │ Detection Engine (Claude) │ ║
║ └──────────────┬──────────────┘ ║
║ │ ║
║ ┌──────────────▼──────────────┐ ║
║ │ OpenRouter Multi-Model API │ ║
║ └──────────────┬──────────────┘ ║
║ │ ║
║ ┌──────────────▼──────────────┐ ║
║ │ Analysis & Formatting Layer │ ║
║ └──────────────┬──────────────┘ ║
║ │ ║
║ ┌──────────────▼──────────────┐ ║
║ │ CSV Logging & Storage │ ║
║ └──────────────┬──────────────┘ ║
║ │ ║
║ ┌──────────────▼──────────────┐ ║
║ │ Dashboard & Output Display │ ║
║ └─────────────────────────────┘ ║
║ ║
╚════════════════════════════════════════════════════════════════════════════════════╝
## ✅ Reminder
Falconz is intended **only for ethical security testing** and **AI safety research** as part of MCP Gradio Hackathon.
Users are responsible for complying with all laws, policies, and platform terms.
🛡️ Build safe. Test responsibly. Protect the future of AI , contact me to [Xhaheen](http://linkedin.com/in/sallu-mandya/) for Collab . |