Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,66 +1,22 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
from wordcloud import WordCloud
|
| 6 |
-
from sentiment_labeling import add_sentiment_column
|
| 7 |
-
from keras.models import load_model
|
| 8 |
-
import pickle
|
| 9 |
|
| 10 |
-
# Load the
|
| 11 |
-
|
| 12 |
-
with open('tokenizer.pkl', 'rb') as f:
|
| 13 |
-
tokenizer = pickle.load(f)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
# Tokenize and pad the input text
|
| 17 |
-
seq = tokenizer.texts_to_sequences([text])
|
| 18 |
-
padded_seq = pad_sequences(seq, maxlen=MAX_LENGTH)
|
| 19 |
-
# Predict using the model
|
| 20 |
-
prediction = model.predict(padded_seq)
|
| 21 |
-
return np.argmax(prediction)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
st.
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
if st.checkbox("Show raw data"):
|
| 34 |
-
st.write(data)
|
| 35 |
-
|
| 36 |
-
# Add sentiment column
|
| 37 |
-
data = add_sentiment_column(data)
|
| 38 |
-
|
| 39 |
-
# Distribution of sentiments
|
| 40 |
-
st.subheader("Distribution of Sentiments")
|
| 41 |
-
sentiment_counts = data['sentiment'].value_counts()
|
| 42 |
-
fig, ax = plt.subplots()
|
| 43 |
-
sentiment_counts.plot(kind='bar', ax=ax)
|
| 44 |
-
ax.set_title('Distribution of Sentiments')
|
| 45 |
-
ax.set_xlabel('Sentiment')
|
| 46 |
-
ax.set_ylabel('Count')
|
| 47 |
-
st.pyplot(fig)
|
| 48 |
-
|
| 49 |
-
# Word cloud for each sentiment
|
| 50 |
-
st.subheader("Word Clouds for Sentiments")
|
| 51 |
-
sentiments = ['positive', 'neutral', 'negative']
|
| 52 |
-
for sentiment in sentiments:
|
| 53 |
-
st.write(f"Word Cloud for {sentiment}")
|
| 54 |
-
subset = data[data['sentiment'] == sentiment]
|
| 55 |
-
text = " ".join(review for review in subset['review'])
|
| 56 |
-
wordcloud = WordCloud(max_words=100, background_color="white").generate(text)
|
| 57 |
-
plt.figure()
|
| 58 |
-
plt.imshow(wordcloud, interpolation="bilinear")
|
| 59 |
-
plt.axis("off")
|
| 60 |
-
st.pyplot()
|
| 61 |
-
|
| 62 |
-
# Individual review prediction
|
| 63 |
-
user_input = st.text_area("Type a review here to predict its sentiment:")
|
| 64 |
-
if user_input:
|
| 65 |
-
sentiment_pred = predict_sentiment(user_input)
|
| 66 |
-
st.write(f"The predicted sentiment is: {sentiment_pred}")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
+
from eda import display_eda
|
| 4 |
+
from prediction import predict_and_strategy
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load the data
|
| 7 |
+
data = pd.read_csv('threads_reviews.csv')
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
st.title("Sentiment Analysis and Business Strategy")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# EDA Section
|
| 12 |
+
st.header("Exploratory Data Analysis")
|
| 13 |
+
if st.checkbox("Show EDA", False): # Checkbox to toggle EDA display
|
| 14 |
+
display_eda(data)
|
| 15 |
|
| 16 |
+
# Prediction Section
|
| 17 |
+
st.header("Prediction")
|
| 18 |
+
user_input = st.text_area("Enter text for sentiment analysis:", "")
|
| 19 |
+
if st.button("Analyze"):
|
| 20 |
+
sentiment, strategy = predict_and_strategy(user_input)
|
| 21 |
+
st.write(f"Sentiment: {sentiment}")
|
| 22 |
+
st.write(f"Strategy: {strategy}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|