import gradio as gr import time def sleep(im): time.sleep(5) return [im["background"], im["layers"][0], im["layers"][1], im["composite"]] support_im_masks = [None for _ in range(1000)] def predict(im): for i in range(len(support_im_masks)): if support_im_masks[i] is None: break support_im_mask = support_im_masks[i] gr.Button(support_im_mask) pass with gr.Blocks() as demo: b = gr.Button("Add Textbox") b2 = gr.Button("Generate Masks") b2.click(predict) print('hi') num = gr.State(0) b.click(lambda x:x+1, num, num) with gr.Row(): query_im = gr.Image(label='query image') @gr.render(inputs=num) def show_support_imgs(n): with gr.Column(): for i in range(n): support_im = gr.ImageEditor( label="support image {}".format(i), type="numpy", crop_size="1:1", ) support_im_masks[i] = support_im if __name__ == "__main__": demo.launch()