Spaces:
Sleeping
Sleeping
| import torch.nn as nn | |
| import torch | |
| from model.DCAMA import DCAMA | |
| from common import utils | |
| import cv2 | |
| import numpy as np | |
| import os | |
| import gradio as gr | |
| import time | |
| from torchvision import transforms | |
| from PIL import Image | |
| import torch.nn.functional as F | |
| img_mean = [0.485, 0.456, 0.406] | |
| img_std = [0.229, 0.224, 0.225] | |
| img_size = 384 | |
| transformation = transforms.Compose([transforms.Resize(size=(img_size, img_size)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(img_mean, img_std)]) | |
| def inference_mask1( | |
| query_img, | |
| *prompt, | |
| ): | |
| query_img = Image.fromarray(query_img) | |
| org_qry_imsize = query_img.size | |
| query_img_np = np.asarray(query_img) | |
| query_img = transformation(query_img) | |
| shape = query_img_np.shape | |
| support_masks = [] | |
| support_imgs = [] | |
| for i in range(len(prompt)): | |
| mask = torch.from_numpy(np.stack(prompt[i]['layers'], axis=0).any(0).any(-1)).cpu() | |
| mask[mask > 0] = 1 | |
| if mask.sum() == 0: | |
| break | |
| mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0).float(), query_img.size()[-2:], mode='nearest').squeeze(0).squeeze(0) | |
| support_masks.append(mask) | |
| support_img = Image.fromarray(prompt[i]['background'][..., :3]) | |
| support_img = transformation(support_img) | |
| support_imgs.append(support_img) | |
| model = DCAMA('resnet50', 'resnet50_a1h-35c100f8.pth', True) | |
| model.eval() | |
| model.cpu() | |
| params = model.state_dict() | |
| state_dict = torch.load('model_45.pt', map_location=torch.device('cpu')) | |
| if 'state_dict' in state_dict.keys(): | |
| state_dict = state_dict['state_dict'] | |
| state_dict2 = {} | |
| for k, v in state_dict.items(): | |
| if 'scorer' not in k: | |
| state_dict2[k] = v | |
| state_dict = state_dict2 | |
| for k1, k2 in zip(list(state_dict.keys()), params.keys()): | |
| state_dict[k2] = state_dict.pop(k1) | |
| try: | |
| model.load_state_dict(state_dict, strict=True) | |
| except: | |
| for k in params.keys(): | |
| if k not in state_dict.keys(): | |
| state_dict[k] = params[k] | |
| model.load_state_dict(state_dict, strict=True) | |
| query_img = query_img.unsqueeze(0) | |
| support_img = torch.stack(support_imgs, dim=0).unsqueeze(0) | |
| support_masks = torch.stack(support_masks, dim=0).unsqueeze(0) | |
| print("query_img:", query_img.size()) | |
| print("support_img:", support_img.size()) | |
| print("support_masks:", support_masks.size()) | |
| batch = { | |
| "support_masks": support_masks, | |
| "support_imgs": support_img, | |
| "query_img": query_img, | |
| "org_query_imsize": [torch.tensor([org_qry_imsize[0]]), torch.tensor([org_qry_imsize[1]])], | |
| } | |
| nshot = support_masks.size(1) | |
| pred_mask, simi, simi_map = model.predict_mask_nshot(batch, nshot=nshot) | |
| pred_mask = pred_mask.detach().cpu().numpy()[0] | |
| output_img = query_img_np.copy() | |
| output_img[pred_mask > 0] = np.array([255, 0, 0]) | |
| output_img = (output_img).astype(np.uint8) | |
| return output_img | |
| inputs = [gr.Image(label='query')] | |
| for i in range(10): | |
| inputs.append(gr.ImageMask(label='support {}'.format(i))) | |
| demo_mask = gr.Interface(fn=inference_mask1, | |
| inputs=inputs, | |
| outputs=[gr.Image(label="output")], | |
| ) | |
| demo = gr.TabbedInterface([demo_mask], ['demo']) | |
| demo.launch() | |