Spaces:
Sleeping
Sleeping
| import gc | |
| import datetime | |
| import inspect | |
| import torch | |
| import numpy as np | |
| dtype_memory_size_dict = { | |
| torch.float64: 64/8, | |
| torch.double: 64/8, | |
| torch.float32: 32/8, | |
| torch.float: 32/8, | |
| torch.float16: 16/8, | |
| torch.half: 16/8, | |
| torch.int64: 64/8, | |
| torch.long: 64/8, | |
| torch.int32: 32/8, | |
| torch.int: 32/8, | |
| torch.int16: 16/8, | |
| torch.short: 16/6, | |
| torch.uint8: 8/8, | |
| torch.int8: 8/8, | |
| } | |
| # compatibility of torch1.0 | |
| if getattr(torch, "bfloat16", None) is not None: | |
| dtype_memory_size_dict[torch.bfloat16] = 16/8 | |
| if getattr(torch, "bool", None) is not None: | |
| dtype_memory_size_dict[torch.bool] = 8/8 # pytorch use 1 byte for a bool, see https://github.com/pytorch/pytorch/issues/41571 | |
| def get_mem_space(x): | |
| try: | |
| ret = dtype_memory_size_dict[x] | |
| except KeyError: | |
| print(f"dtype {x} is not supported!") | |
| return ret | |
| class MemTracker(object): | |
| """ | |
| Class used to track pytorch memory usage | |
| Arguments: | |
| detail(bool, default True): whether the function shows the detail gpu memory usage | |
| path(str): where to save log file | |
| verbose(bool, default False): whether show the trivial exception | |
| device(int): GPU number, default is 0 | |
| """ | |
| def __init__(self, detail=True, path='', verbose=False, device=0): | |
| self.print_detail = detail | |
| self.last_tensor_sizes = set() | |
| self.gpu_profile_fn = path + f'{datetime.datetime.now():%d-%b-%y-%H:%M:%S}-gpu_mem_track.txt' | |
| self.verbose = verbose | |
| self.begin = True | |
| self.device = device | |
| def get_tensors(self): | |
| for obj in gc.get_objects(): | |
| try: | |
| if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): | |
| tensor = obj | |
| else: | |
| continue | |
| if tensor.is_cuda: | |
| yield tensor | |
| except Exception as e: | |
| if self.verbose: | |
| print('A trivial exception occured: {}'.format(e)) | |
| def get_tensor_usage(self): | |
| sizes = [np.prod(np.array(tensor.size())) * get_mem_space(tensor.dtype) for tensor in self.get_tensors()] | |
| return np.sum(sizes) / 1024**2 | |
| def get_allocate_usage(self): | |
| return torch.cuda.memory_allocated() / 1024**2 | |
| def clear_cache(self): | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def print_all_gpu_tensor(self, file=None): | |
| for x in self.get_tensors(): | |
| print(x.size(), x.dtype, np.prod(np.array(x.size()))*get_mem_space(x.dtype)/1024**2, file=file) | |
| def track(self): | |
| """ | |
| Track the GPU memory usage | |
| """ | |
| frameinfo = inspect.stack()[1] | |
| where_str = frameinfo.filename + ' line ' + str(frameinfo.lineno) + ': ' + frameinfo.function | |
| with open(self.gpu_profile_fn, 'a+') as f: | |
| if self.begin: | |
| f.write(f"GPU Memory Track | {datetime.datetime.now():%d-%b-%y-%H:%M:%S} |" | |
| f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb" | |
| f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n") | |
| self.begin = False | |
| if self.print_detail is True: | |
| ts_list = [(tensor.size(), tensor.dtype) for tensor in self.get_tensors()] | |
| new_tensor_sizes = {(type(x), | |
| tuple(x.size()), | |
| ts_list.count((x.size(), x.dtype)), | |
| np.prod(np.array(x.size()))*get_mem_space(x.dtype)/1024**2, | |
| x.dtype) for x in self.get_tensors()} | |
| for t, s, n, m, data_type in new_tensor_sizes - self.last_tensor_sizes: | |
| f.write(f'+ | {str(n)} * Size:{str(s):<20} | Memory: {str(m*n)[:6]} M | {str(t):<20} | {data_type}\n') | |
| for t, s, n, m, data_type in self.last_tensor_sizes - new_tensor_sizes: | |
| f.write(f'- | {str(n)} * Size:{str(s):<20} | Memory: {str(m*n)[:6]} M | {str(t):<20} | {data_type}\n') | |
| self.last_tensor_sizes = new_tensor_sizes | |
| f.write(f"\nAt {where_str:<50}" | |
| f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb" | |
| f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n") | |