Spaces:
Sleeping
Sleeping
| import torch.nn as nn | |
| import torch | |
| from model.DCAMA import DCAMA | |
| from common.logger import Logger, AverageMeter | |
| from common.vis import Visualizer | |
| from common.evaluation import Evaluator | |
| from common.config import parse_opts | |
| from common import utils | |
| from data.dataset import FSSDataset | |
| import cv2 | |
| import numpy as np | |
| import os | |
| import gradio as gr | |
| import time | |
| def inference_mask1( | |
| query_img, | |
| *prompt, | |
| ): | |
| support_masks = [] | |
| support_imgs = [] | |
| for i in range(len(prompt)): | |
| mask = np.stack(prompt[i]['layers'], axis=0).any(0).any(-1) | |
| support_masks.append(mask) | |
| support_imgs.append(prompt[i]['background']) | |
| model = DCAMA('resnet50', 'resnet50_a1h-35c100f8.pth', True) | |
| model.eval() | |
| model.cpu() | |
| state_dict = torch.load('model_45.pt') | |
| if 'state_dict' in state_dict.keys(): | |
| state_dict = state_dict['state_dict'] | |
| state_dict2 = {} | |
| for k, v in state_dict.items(): | |
| if 'scorer' not in k: | |
| state_dict2[k] = v | |
| state_dict = state_dict2 | |
| for k1, k2 in zip(list(state_dict.keys()), params.keys()): | |
| state_dict[k2] = state_dict.pop(k1) | |
| try: | |
| model.load_state_dict(state_dict, strict=True) | |
| except: | |
| for k in params.keys(): | |
| if k not in state_dict.keys(): | |
| state_dict[k] = params[k] | |
| model.load_state_dict(state_dict, strict=True) | |
| import ipdb;ipdb.set_trace() | |
| pred_mask, simi, simi_map = model.module.predict_mask_nshot(batch, nshot=nshot) | |
| inputs = [gr.Image(label='query')] | |
| for i in range(5): | |
| inputs.append(gr.ImageMask(label='prompt{}'.format(i))) | |
| demo_mask = gr.Interface(fn=inference_mask1, | |
| inputs=inputs, | |
| outputs=[gr.Image(label="output")], | |
| ) | |
| demo = gr.TabbedInterface([demo_mask], ['demo']) | |
| demo.launch() | |