Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,15 +3,14 @@ from ultralytics import YOLOWorld
|
|
| 3 |
from PIL import Image
|
| 4 |
import cv2
|
| 5 |
import pandas as pd
|
| 6 |
-
import
|
| 7 |
-
import io
|
| 8 |
|
| 9 |
# --- Load model ---
|
| 10 |
def load_model():
|
| 11 |
last_err = None
|
| 12 |
for name in ["yolov8s-worldv2.pt", "yolov8s-world.pt"]:
|
| 13 |
try:
|
| 14 |
-
m = YOLOWorld(name)
|
| 15 |
return m
|
| 16 |
except Exception as e:
|
| 17 |
last_err = e
|
|
@@ -20,7 +19,7 @@ def load_model():
|
|
| 20 |
|
| 21 |
model = load_model()
|
| 22 |
|
| 23 |
-
# --- Preprocess
|
| 24 |
def preprocess(img: Image.Image, max_side=960, do_resize=True):
|
| 25 |
img = img.convert("RGB")
|
| 26 |
if do_resize:
|
|
@@ -29,7 +28,7 @@ def preprocess(img: Image.Image, max_side=960, do_resize=True):
|
|
| 29 |
img.thumbnail((max_side, max_side), Image.LANCZOS)
|
| 30 |
return img
|
| 31 |
|
| 32 |
-
# --- Inference
|
| 33 |
def infer(image, prompts, conf, iou, resize):
|
| 34 |
image = preprocess(image, do_resize=resize)
|
| 35 |
classes = [c.strip() for c in prompts.split(",") if c.strip()]
|
|
@@ -40,33 +39,25 @@ def infer(image, prompts, conf, iou, resize):
|
|
| 40 |
results = model(image, conf=conf, iou=iou)[0]
|
| 41 |
|
| 42 |
# Annotated image
|
| 43 |
-
plotted = results.plot()
|
| 44 |
-
plotted = cv2.cvtColor(plotted, cv2.COLOR_BGR2RGB)
|
| 45 |
annotated_img = Image.fromarray(plotted)
|
| 46 |
|
| 47 |
-
# Results table
|
| 48 |
data = []
|
| 49 |
for box, cls, conf in zip(results.boxes.xyxy, results.boxes.cls, results.boxes.conf):
|
| 50 |
x1, y1, x2, y2 = [int(v) for v in box.tolist()]
|
| 51 |
-
data.append({
|
| 52 |
-
"Class": model.names[int(cls)],
|
| 53 |
-
"Confidence": round(float(conf), 3),
|
| 54 |
-
"BBox": f"({x1}, {y1}, {x2}, {y2})"
|
| 55 |
-
})
|
| 56 |
-
df = pd.DataFrame(data)
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
annotated_img.save(
|
| 61 |
-
buf.seek(0)
|
| 62 |
|
| 63 |
-
return annotated_img,
|
| 64 |
|
| 65 |
-
# --- Gradio
|
| 66 |
with gr.Blocks() as demo:
|
| 67 |
-
gr.Markdown("# 🦉 YOLO-World Demo (Open-
|
| 68 |
-
gr.Markdown("Upload an image, type objects you want to detect, and see results!")
|
| 69 |
-
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
image_in = gr.Image(type="pil", label="Upload Image")
|
|
@@ -78,7 +69,7 @@ with gr.Blocks() as demo:
|
|
| 78 |
|
| 79 |
with gr.Column():
|
| 80 |
img_out = gr.Image(label="Detections")
|
| 81 |
-
table_out = gr.Dataframe(headers=["Class",
|
| 82 |
file_out = gr.File(label="Download Annotated Image")
|
| 83 |
|
| 84 |
run_btn.click(
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import cv2
|
| 5 |
import pandas as pd
|
| 6 |
+
import tempfile, os
|
|
|
|
| 7 |
|
| 8 |
# --- Load model ---
|
| 9 |
def load_model():
|
| 10 |
last_err = None
|
| 11 |
for name in ["yolov8s-worldv2.pt", "yolov8s-world.pt"]:
|
| 12 |
try:
|
| 13 |
+
m = YOLOWorld(name)
|
| 14 |
return m
|
| 15 |
except Exception as e:
|
| 16 |
last_err = e
|
|
|
|
| 19 |
|
| 20 |
model = load_model()
|
| 21 |
|
| 22 |
+
# --- Preprocess ---
|
| 23 |
def preprocess(img: Image.Image, max_side=960, do_resize=True):
|
| 24 |
img = img.convert("RGB")
|
| 25 |
if do_resize:
|
|
|
|
| 28 |
img.thumbnail((max_side, max_side), Image.LANCZOS)
|
| 29 |
return img
|
| 30 |
|
| 31 |
+
# --- Inference ---
|
| 32 |
def infer(image, prompts, conf, iou, resize):
|
| 33 |
image = preprocess(image, do_resize=resize)
|
| 34 |
classes = [c.strip() for c in prompts.split(",") if c.strip()]
|
|
|
|
| 39 |
results = model(image, conf=conf, iou=iou)[0]
|
| 40 |
|
| 41 |
# Annotated image
|
| 42 |
+
plotted = results.plot()
|
| 43 |
+
plotted = cv2.cvtColor(plotted, cv2.COLOR_BGR2RGB)
|
| 44 |
annotated_img = Image.fromarray(plotted)
|
| 45 |
|
| 46 |
+
# Results table (as list of rows)
|
| 47 |
data = []
|
| 48 |
for box, cls, conf in zip(results.boxes.xyxy, results.boxes.cls, results.boxes.conf):
|
| 49 |
x1, y1, x2, y2 = [int(v) for v in box.tolist()]
|
| 50 |
+
data.append([model.names[int(cls)], round(float(conf), 3), f"({x1}, {y1}, {x2}, {y2})"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Save annotated image to temp file for download
|
| 53 |
+
tmp_path = os.path.join(tempfile.gettempdir(), "annotated.png")
|
| 54 |
+
annotated_img.save(tmp_path)
|
|
|
|
| 55 |
|
| 56 |
+
return annotated_img, data, tmp_path
|
| 57 |
|
| 58 |
+
# --- Gradio UI ---
|
| 59 |
with gr.Blocks() as demo:
|
| 60 |
+
gr.Markdown("# 🦉 YOLO-World Demo (CPU • Open-Vocab)")
|
|
|
|
|
|
|
| 61 |
with gr.Row():
|
| 62 |
with gr.Column():
|
| 63 |
image_in = gr.Image(type="pil", label="Upload Image")
|
|
|
|
| 69 |
|
| 70 |
with gr.Column():
|
| 71 |
img_out = gr.Image(label="Detections")
|
| 72 |
+
table_out = gr.Dataframe(headers=["Class","Confidence","BBox"], datatype=["str","number","str"])
|
| 73 |
file_out = gr.File(label="Download Annotated Image")
|
| 74 |
|
| 75 |
run_btn.click(
|