Commit
·
5c69e57
1
Parent(s):
999d8f3
Update app
Browse files- README.md +2 -3
- Utils/dbimutils.py +0 -54
- app.py +288 -234
- requirements.txt +0 -2
README.md
CHANGED
|
@@ -1,13 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
title: WaifuDiffusion
|
| 3 |
emoji: 💬
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
duplicated_from: NoCrypt/DeepDanbooru_string
|
| 11 |
---
|
| 12 |
|
| 13 |
# Configuration
|
|
|
|
| 1 |
---
|
| 2 |
+
title: WaifuDiffusion Tagger
|
| 3 |
emoji: 💬
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.20.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# Configuration
|
Utils/dbimutils.py
DELETED
|
@@ -1,54 +0,0 @@
|
|
| 1 |
-
# DanBooru IMage Utility functions
|
| 2 |
-
|
| 3 |
-
import cv2
|
| 4 |
-
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
|
| 9 |
-
if img.endswith(".gif"):
|
| 10 |
-
img = Image.open(img)
|
| 11 |
-
img = img.convert("RGB")
|
| 12 |
-
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 13 |
-
else:
|
| 14 |
-
img = cv2.imread(img, flag)
|
| 15 |
-
return img
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def smart_24bit(img):
|
| 19 |
-
if img.dtype is np.dtype(np.uint16):
|
| 20 |
-
img = (img / 257).astype(np.uint8)
|
| 21 |
-
|
| 22 |
-
if len(img.shape) == 2:
|
| 23 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 24 |
-
elif img.shape[2] == 4:
|
| 25 |
-
trans_mask = img[:, :, 3] == 0
|
| 26 |
-
img[trans_mask] = [255, 255, 255, 255]
|
| 27 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
| 28 |
-
return img
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def make_square(img, target_size):
|
| 32 |
-
old_size = img.shape[:2]
|
| 33 |
-
desired_size = max(old_size)
|
| 34 |
-
desired_size = max(desired_size, target_size)
|
| 35 |
-
|
| 36 |
-
delta_w = desired_size - old_size[1]
|
| 37 |
-
delta_h = desired_size - old_size[0]
|
| 38 |
-
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
|
| 39 |
-
left, right = delta_w // 2, delta_w - (delta_w // 2)
|
| 40 |
-
|
| 41 |
-
color = [255, 255, 255]
|
| 42 |
-
new_im = cv2.copyMakeBorder(
|
| 43 |
-
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
|
| 44 |
-
)
|
| 45 |
-
return new_im
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def smart_resize(img, size):
|
| 49 |
-
# Assumes the image has already gone through make_square
|
| 50 |
-
if img.shape[0] > size:
|
| 51 |
-
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
|
| 52 |
-
elif img.shape[0] < size:
|
| 53 |
-
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
| 54 |
-
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,8 +1,4 @@
|
|
| 1 |
-
from __future__ import annotations
|
| 2 |
-
|
| 3 |
import argparse
|
| 4 |
-
import functools
|
| 5 |
-
import html
|
| 6 |
import os
|
| 7 |
|
| 8 |
import gradio as gr
|
|
@@ -10,40 +6,56 @@ import huggingface_hub
|
|
| 10 |
import numpy as np
|
| 11 |
import onnxruntime as rt
|
| 12 |
import pandas as pd
|
| 13 |
-
import
|
| 14 |
-
import piexif.helper
|
| 15 |
-
import PIL.Image
|
| 16 |
-
|
| 17 |
-
from Utils import dbimutils
|
| 18 |
|
| 19 |
-
TITLE = "WaifuDiffusion
|
| 20 |
DESCRIPTION = """
|
| 21 |
-
Demo for
|
| 22 |
-
- [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2)
|
| 23 |
-
- [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
|
| 24 |
-
- [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
|
| 25 |
-
- [SmilingWolf/wd-v1-4-convnextv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnextv2-tagger-v2)
|
| 26 |
-
- [SmilingWolf/wd-v1-4-vit-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2)
|
| 27 |
-
|
| 28 |
-
Includes "ready to copy" prompt and a prompt analyzer.
|
| 29 |
-
|
| 30 |
-
Modified from [NoCrypt/DeepDanbooru_string](https://huggingface.co/spaces/NoCrypt/DeepDanbooru_string)
|
| 31 |
-
Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
|
| 32 |
-
|
| 33 |
-
PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
|
| 34 |
|
| 35 |
Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
|
| 36 |
"""
|
| 37 |
|
| 38 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
MODEL_FILENAME = "model.onnx"
|
| 45 |
LABEL_FILENAME = "selected_tags.csv"
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def parse_args() -> argparse.Namespace:
|
| 49 |
parser = argparse.ArgumentParser()
|
|
@@ -54,231 +66,273 @@ def parse_args() -> argparse.Namespace:
|
|
| 54 |
return parser.parse_args()
|
| 55 |
|
| 56 |
|
| 57 |
-
def
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
)
|
| 61 |
-
|
| 62 |
-
return model
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
def change_model(model_name):
|
| 66 |
-
global loaded_models
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
MOAT_MODEL_REPO, LABEL_FILENAME, use_auth_token=HF_TOKEN
|
| 86 |
-
)
|
| 87 |
-
df = pd.read_csv(path)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
return tag_names, rating_indexes, general_indexes, character_indexes
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
"<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split("\n")]) + "</p>"
|
| 99 |
-
)
|
| 100 |
-
return text
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def predict(
|
| 104 |
-
image: PIL.Image.Image,
|
| 105 |
-
model_name: str,
|
| 106 |
-
general_threshold: float,
|
| 107 |
-
character_threshold: float,
|
| 108 |
-
tag_names: list[str],
|
| 109 |
-
rating_indexes: list[np.int64],
|
| 110 |
-
general_indexes: list[np.int64],
|
| 111 |
-
character_indexes: list[np.int64],
|
| 112 |
-
):
|
| 113 |
-
global loaded_models
|
| 114 |
-
|
| 115 |
-
rawimage = image
|
| 116 |
-
|
| 117 |
-
model = loaded_models[model_name]
|
| 118 |
-
if model is None:
|
| 119 |
-
model = change_model(model_name)
|
| 120 |
-
|
| 121 |
-
_, height, width, _ = model.get_inputs()[0].shape
|
| 122 |
-
|
| 123 |
-
# Alpha to white
|
| 124 |
-
image = image.convert("RGBA")
|
| 125 |
-
new_image = PIL.Image.new("RGBA", image.size, "WHITE")
|
| 126 |
-
new_image.paste(image, mask=image)
|
| 127 |
-
image = new_image.convert("RGB")
|
| 128 |
-
image = np.asarray(image)
|
| 129 |
-
|
| 130 |
-
# PIL RGB to OpenCV BGR
|
| 131 |
-
image = image[:, :, ::-1]
|
| 132 |
-
|
| 133 |
-
image = dbimutils.make_square(image, height)
|
| 134 |
-
image = dbimutils.smart_resize(image, height)
|
| 135 |
-
image = image.astype(np.float32)
|
| 136 |
-
image = np.expand_dims(image, 0)
|
| 137 |
-
|
| 138 |
-
input_name = model.get_inputs()[0].name
|
| 139 |
-
label_name = model.get_outputs()[0].name
|
| 140 |
-
probs = model.run([label_name], {input_name: image})[0]
|
| 141 |
-
|
| 142 |
-
labels = list(zip(tag_names, probs[0].astype(float)))
|
| 143 |
-
|
| 144 |
-
# First 4 labels are actually ratings: pick one with argmax
|
| 145 |
-
ratings_names = [labels[i] for i in rating_indexes]
|
| 146 |
-
rating = dict(ratings_names)
|
| 147 |
-
|
| 148 |
-
# Then we have general tags: pick any where prediction confidence > threshold
|
| 149 |
-
general_names = [labels[i] for i in general_indexes]
|
| 150 |
-
general_res = [x for x in general_names if x[1] > general_threshold]
|
| 151 |
-
general_res = dict(general_res)
|
| 152 |
-
|
| 153 |
-
# Everything else is characters: pick any where prediction confidence > threshold
|
| 154 |
-
character_names = [labels[i] for i in character_indexes]
|
| 155 |
-
character_res = [x for x in character_names if x[1] > character_threshold]
|
| 156 |
-
character_res = dict(character_res)
|
| 157 |
-
|
| 158 |
-
b = dict(sorted(general_res.items(), key=lambda item: item[1], reverse=True))
|
| 159 |
-
a = (
|
| 160 |
-
", ".join(list(b.keys()))
|
| 161 |
-
.replace("_", " ")
|
| 162 |
-
.replace("(", "\(")
|
| 163 |
-
.replace(")", "\)")
|
| 164 |
-
)
|
| 165 |
-
c = ", ".join(list(b.keys()))
|
| 166 |
-
|
| 167 |
-
items = rawimage.info
|
| 168 |
-
geninfo = ""
|
| 169 |
-
|
| 170 |
-
if "exif" in rawimage.info:
|
| 171 |
-
exif = piexif.load(rawimage.info["exif"])
|
| 172 |
-
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b"")
|
| 173 |
-
try:
|
| 174 |
-
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
| 175 |
-
except ValueError:
|
| 176 |
-
exif_comment = exif_comment.decode("utf8", errors="ignore")
|
| 177 |
-
|
| 178 |
-
items["exif comment"] = exif_comment
|
| 179 |
-
geninfo = exif_comment
|
| 180 |
-
|
| 181 |
-
for field in [
|
| 182 |
-
"jfif",
|
| 183 |
-
"jfif_version",
|
| 184 |
-
"jfif_unit",
|
| 185 |
-
"jfif_density",
|
| 186 |
-
"dpi",
|
| 187 |
-
"exif",
|
| 188 |
-
"loop",
|
| 189 |
-
"background",
|
| 190 |
-
"timestamp",
|
| 191 |
-
"duration",
|
| 192 |
-
]:
|
| 193 |
-
items.pop(field, None)
|
| 194 |
-
|
| 195 |
-
geninfo = items.get("parameters", geninfo)
|
| 196 |
-
|
| 197 |
-
info = f"""
|
| 198 |
-
<p><h4>PNG Info</h4></p>
|
| 199 |
-
"""
|
| 200 |
-
for key, text in items.items():
|
| 201 |
-
info += (
|
| 202 |
-
f"""
|
| 203 |
-
<div>
|
| 204 |
-
<p><b>{plaintext_to_html(str(key))}</b></p>
|
| 205 |
-
<p>{plaintext_to_html(str(text))}</p>
|
| 206 |
-
</div>
|
| 207 |
-
""".strip()
|
| 208 |
-
+ "\n"
|
| 209 |
-
)
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
info = f"<div><p>{message}<p></div>"
|
| 214 |
|
| 215 |
-
|
|
|
|
|
|
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
loaded_models = {
|
| 221 |
-
"MOAT": None,
|
| 222 |
-
"SwinV2": None,
|
| 223 |
-
"ConvNext": None,
|
| 224 |
-
"ConvNextV2": None,
|
| 225 |
-
"ViT": None,
|
| 226 |
-
}
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
|
|
|
|
| 231 |
|
| 232 |
-
|
|
|
|
| 233 |
|
| 234 |
-
|
| 235 |
-
predict,
|
| 236 |
-
tag_names=tag_names,
|
| 237 |
-
rating_indexes=rating_indexes,
|
| 238 |
-
general_indexes=general_indexes,
|
| 239 |
-
character_indexes=character_indexes,
|
| 240 |
-
)
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
|
| 284 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 1 |
import argparse
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import onnxruntime as rt
|
| 8 |
import pandas as pd
|
| 9 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
TITLE = "WaifuDiffusion Tagger"
|
| 12 |
DESCRIPTION = """
|
| 13 |
+
Demo for the WaifuDiffusion tagger models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
|
| 16 |
"""
|
| 17 |
|
| 18 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 19 |
+
|
| 20 |
+
# Dataset v3 series of models:
|
| 21 |
+
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
|
| 22 |
+
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
|
| 23 |
+
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
|
| 24 |
+
|
| 25 |
+
# Dataset v2 series of models:
|
| 26 |
+
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
|
| 27 |
+
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
|
| 28 |
+
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
|
| 29 |
+
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
|
| 30 |
+
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
|
| 31 |
+
|
| 32 |
+
# Files to download from the repos
|
| 33 |
MODEL_FILENAME = "model.onnx"
|
| 34 |
LABEL_FILENAME = "selected_tags.csv"
|
| 35 |
|
| 36 |
+
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
|
| 37 |
+
kaomojis = [
|
| 38 |
+
"0_0",
|
| 39 |
+
"(o)_(o)",
|
| 40 |
+
"+_+",
|
| 41 |
+
"+_-",
|
| 42 |
+
"._.",
|
| 43 |
+
"<o>_<o>",
|
| 44 |
+
"<|>_<|>",
|
| 45 |
+
"=_=",
|
| 46 |
+
">_<",
|
| 47 |
+
"3_3",
|
| 48 |
+
"6_9",
|
| 49 |
+
">_o",
|
| 50 |
+
"@_@",
|
| 51 |
+
"^_^",
|
| 52 |
+
"o_o",
|
| 53 |
+
"u_u",
|
| 54 |
+
"x_x",
|
| 55 |
+
"|_|",
|
| 56 |
+
"||_||",
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
|
| 60 |
def parse_args() -> argparse.Namespace:
|
| 61 |
parser = argparse.ArgumentParser()
|
|
|
|
| 66 |
return parser.parse_args()
|
| 67 |
|
| 68 |
|
| 69 |
+
def load_labels(dataframe) -> list[str]:
|
| 70 |
+
name_series = dataframe["name"]
|
| 71 |
+
name_series = name_series.map(
|
| 72 |
+
lambda x: x.replace("_", " ") if x not in kaomojis else x
|
| 73 |
)
|
| 74 |
+
tag_names = name_series.tolist()
|
|
|
|
| 75 |
|
| 76 |
+
rating_indexes = list(np.where(dataframe["category"] == 9)[0])
|
| 77 |
+
general_indexes = list(np.where(dataframe["category"] == 0)[0])
|
| 78 |
+
character_indexes = list(np.where(dataframe["category"] == 4)[0])
|
| 79 |
+
return tag_names, rating_indexes, general_indexes, character_indexes
|
| 80 |
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
def mcut_threshold(probs):
|
| 83 |
+
"""
|
| 84 |
+
Maximum Cut Thresholding (MCut)
|
| 85 |
+
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
|
| 86 |
+
for Multi-label Classification. In 11th International Symposium, IDA 2012
|
| 87 |
+
(pp. 172-183).
|
| 88 |
+
"""
|
| 89 |
+
sorted_probs = probs[probs.argsort()[::-1]]
|
| 90 |
+
difs = sorted_probs[:-1] - sorted_probs[1:]
|
| 91 |
+
t = difs.argmax()
|
| 92 |
+
thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
|
| 93 |
+
return thresh
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class Predictor:
|
| 97 |
+
def __init__(self):
|
| 98 |
+
self.model_target_size = None
|
| 99 |
+
self.last_loaded_repo = None
|
| 100 |
+
|
| 101 |
+
def download_model(self, model_repo):
|
| 102 |
+
csv_path = huggingface_hub.hf_hub_download(
|
| 103 |
+
model_repo,
|
| 104 |
+
LABEL_FILENAME,
|
| 105 |
+
use_auth_token=HF_TOKEN,
|
| 106 |
+
)
|
| 107 |
+
model_path = huggingface_hub.hf_hub_download(
|
| 108 |
+
model_repo,
|
| 109 |
+
MODEL_FILENAME,
|
| 110 |
+
use_auth_token=HF_TOKEN,
|
| 111 |
+
)
|
| 112 |
+
return csv_path, model_path
|
| 113 |
|
| 114 |
+
def load_model(self, model_repo):
|
| 115 |
+
if model_repo == self.last_loaded_repo:
|
| 116 |
+
return
|
| 117 |
|
| 118 |
+
csv_path, model_path = self.download_model(model_repo)
|
| 119 |
|
| 120 |
+
tags_df = pd.read_csv(csv_path)
|
| 121 |
+
sep_tags = load_labels(tags_df)
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
self.tag_names = sep_tags[0]
|
| 124 |
+
self.rating_indexes = sep_tags[1]
|
| 125 |
+
self.general_indexes = sep_tags[2]
|
| 126 |
+
self.character_indexes = sep_tags[3]
|
|
|
|
| 127 |
|
| 128 |
+
model = rt.InferenceSession(model_path)
|
| 129 |
+
_, height, width, _ = model.get_inputs()[0].shape
|
| 130 |
+
self.model_target_size = height
|
| 131 |
|
| 132 |
+
self.last_loaded_repo = model_path
|
| 133 |
+
self.model = model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
def prepare_image(self, image):
|
| 136 |
+
target_size = self.model_target_size
|
|
|
|
| 137 |
|
| 138 |
+
canvas = Image.new("RGBA", image.size, (255, 255, 255))
|
| 139 |
+
canvas.alpha_composite(image)
|
| 140 |
+
image = canvas.convert("RGB")
|
| 141 |
|
| 142 |
+
# Pad image to square
|
| 143 |
+
image_shape = image.size
|
| 144 |
+
max_dim = max(image_shape)
|
| 145 |
+
pad_left = (max_dim - image_shape[0]) // 2
|
| 146 |
+
pad_top = (max_dim - image_shape[1]) // 2
|
| 147 |
|
| 148 |
+
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
|
| 149 |
+
padded_image.paste(image, (pad_left, pad_top))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
# Resize
|
| 152 |
+
if max_dim != target_size:
|
| 153 |
+
padded_image = padded_image.resize(
|
| 154 |
+
(target_size, target_size),
|
| 155 |
+
Image.BICUBIC,
|
| 156 |
+
)
|
| 157 |
|
| 158 |
+
# Convert to numpy array
|
| 159 |
+
image_array = np.asarray(padded_image, dtype=np.float32)
|
| 160 |
|
| 161 |
+
# Convert PIL-native RGB to BGR
|
| 162 |
+
image_array = image_array[:, :, ::-1]
|
| 163 |
|
| 164 |
+
return np.expand_dims(image_array, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
def predict(
|
| 167 |
+
self,
|
| 168 |
+
image,
|
| 169 |
+
model_repo,
|
| 170 |
+
general_thresh,
|
| 171 |
+
general_mcut_enabled,
|
| 172 |
+
character_thresh,
|
| 173 |
+
character_mcut_enabled,
|
| 174 |
+
):
|
| 175 |
+
self.load_model(model_repo)
|
| 176 |
+
|
| 177 |
+
image = self.prepare_image(image)
|
| 178 |
+
|
| 179 |
+
input_name = self.model.get_inputs()[0].name
|
| 180 |
+
label_name = self.model.get_outputs()[0].name
|
| 181 |
+
preds = self.model.run([label_name], {input_name: image})[0]
|
| 182 |
+
|
| 183 |
+
labels = list(zip(self.tag_names, preds[0].astype(float)))
|
| 184 |
+
|
| 185 |
+
# First 4 labels are actually ratings: pick one with argmax
|
| 186 |
+
ratings_names = [labels[i] for i in self.rating_indexes]
|
| 187 |
+
rating = dict(ratings_names)
|
| 188 |
+
|
| 189 |
+
# Then we have general tags: pick any where prediction confidence > threshold
|
| 190 |
+
general_names = [labels[i] for i in self.general_indexes]
|
| 191 |
+
|
| 192 |
+
if general_mcut_enabled:
|
| 193 |
+
general_probs = np.array([x[1] for x in general_names])
|
| 194 |
+
general_thresh = mcut_threshold(general_probs)
|
| 195 |
+
|
| 196 |
+
general_res = [x for x in general_names if x[1] > general_thresh]
|
| 197 |
+
general_res = dict(general_res)
|
| 198 |
+
|
| 199 |
+
# Everything else is characters: pick any where prediction confidence > threshold
|
| 200 |
+
character_names = [labels[i] for i in self.character_indexes]
|
| 201 |
+
|
| 202 |
+
if character_mcut_enabled:
|
| 203 |
+
character_probs = np.array([x[1] for x in character_names])
|
| 204 |
+
character_thresh = mcut_threshold(character_probs)
|
| 205 |
+
character_thresh = max(0.15, character_thresh)
|
| 206 |
+
|
| 207 |
+
character_res = [x for x in character_names if x[1] > character_thresh]
|
| 208 |
+
character_res = dict(character_res)
|
| 209 |
+
|
| 210 |
+
sorted_general_strings = sorted(
|
| 211 |
+
general_res.items(),
|
| 212 |
+
key=lambda x: x[1],
|
| 213 |
+
reverse=True,
|
| 214 |
+
)
|
| 215 |
+
sorted_general_strings = [x[0] for x in sorted_general_strings]
|
| 216 |
+
sorted_general_strings = (
|
| 217 |
+
", ".join(sorted_general_strings).replace("(", "\(").replace(")", "\)")
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
return sorted_general_strings, rating, character_res, general_res
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def main():
|
| 224 |
+
args = parse_args()
|
| 225 |
+
|
| 226 |
+
predictor = Predictor()
|
| 227 |
+
|
| 228 |
+
dropdown_list = [
|
| 229 |
+
SWINV2_MODEL_DSV3_REPO,
|
| 230 |
+
CONV_MODEL_DSV3_REPO,
|
| 231 |
+
VIT_MODEL_DSV3_REPO,
|
| 232 |
+
MOAT_MODEL_DSV2_REPO,
|
| 233 |
+
SWIN_MODEL_DSV2_REPO,
|
| 234 |
+
CONV_MODEL_DSV2_REPO,
|
| 235 |
+
CONV2_MODEL_DSV2_REPO,
|
| 236 |
+
VIT_MODEL_DSV2_REPO,
|
| 237 |
+
]
|
| 238 |
+
|
| 239 |
+
with gr.Blocks(title=TITLE) as demo:
|
| 240 |
+
with gr.Column():
|
| 241 |
+
gr.Markdown(
|
| 242 |
+
value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
|
| 243 |
+
)
|
| 244 |
+
gr.Markdown(value=DESCRIPTION)
|
| 245 |
+
with gr.Row():
|
| 246 |
+
with gr.Column(variant="panel"):
|
| 247 |
+
image = gr.Image(type="pil", image_mode="RGBA", label="Input")
|
| 248 |
+
model_repo = gr.Dropdown(
|
| 249 |
+
dropdown_list,
|
| 250 |
+
value=VIT_MODEL_DSV3_REPO,
|
| 251 |
+
label="Model",
|
| 252 |
+
)
|
| 253 |
+
with gr.Row():
|
| 254 |
+
general_thresh = gr.Slider(
|
| 255 |
+
0,
|
| 256 |
+
1,
|
| 257 |
+
step=args.score_slider_step,
|
| 258 |
+
value=args.score_general_threshold,
|
| 259 |
+
label="General Tags Threshold",
|
| 260 |
+
scale=3,
|
| 261 |
+
)
|
| 262 |
+
general_mcut_enabled = gr.Checkbox(
|
| 263 |
+
value=False,
|
| 264 |
+
label="Use MCut threshold",
|
| 265 |
+
scale=1,
|
| 266 |
+
)
|
| 267 |
+
with gr.Row():
|
| 268 |
+
character_thresh = gr.Slider(
|
| 269 |
+
0,
|
| 270 |
+
1,
|
| 271 |
+
step=args.score_slider_step,
|
| 272 |
+
value=args.score_character_threshold,
|
| 273 |
+
label="Character Tags Threshold",
|
| 274 |
+
scale=3,
|
| 275 |
+
)
|
| 276 |
+
character_mcut_enabled = gr.Checkbox(
|
| 277 |
+
value=False,
|
| 278 |
+
label="Use MCut threshold",
|
| 279 |
+
scale=1,
|
| 280 |
+
)
|
| 281 |
+
with gr.Row():
|
| 282 |
+
clear = gr.ClearButton(
|
| 283 |
+
components=[
|
| 284 |
+
image,
|
| 285 |
+
model_repo,
|
| 286 |
+
general_thresh,
|
| 287 |
+
general_mcut_enabled,
|
| 288 |
+
character_thresh,
|
| 289 |
+
character_mcut_enabled,
|
| 290 |
+
],
|
| 291 |
+
variant="secondary",
|
| 292 |
+
size="lg",
|
| 293 |
+
)
|
| 294 |
+
submit = gr.Button(value="Submit", variant="primary", size="lg")
|
| 295 |
+
with gr.Column(variant="panel"):
|
| 296 |
+
sorted_general_strings = gr.Textbox(label="Output (string)")
|
| 297 |
+
rating = gr.Label(label="Rating")
|
| 298 |
+
character_res = gr.Label(label="Output (characters)")
|
| 299 |
+
general_res = gr.Label(label="Output (tags)")
|
| 300 |
+
clear.add(
|
| 301 |
+
[
|
| 302 |
+
sorted_general_strings,
|
| 303 |
+
rating,
|
| 304 |
+
character_res,
|
| 305 |
+
general_res,
|
| 306 |
+
]
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
submit.click(
|
| 310 |
+
predictor.predict,
|
| 311 |
+
inputs=[
|
| 312 |
+
image,
|
| 313 |
+
model_repo,
|
| 314 |
+
general_thresh,
|
| 315 |
+
general_mcut_enabled,
|
| 316 |
+
character_thresh,
|
| 317 |
+
character_mcut_enabled,
|
| 318 |
+
],
|
| 319 |
+
outputs=[sorted_general_strings, rating, character_res, general_res],
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
gr.Examples(
|
| 323 |
+
[["power.jpg", VIT_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
|
| 324 |
+
inputs=[
|
| 325 |
+
image,
|
| 326 |
+
model_repo,
|
| 327 |
+
general_thresh,
|
| 328 |
+
general_mcut_enabled,
|
| 329 |
+
character_thresh,
|
| 330 |
+
character_mcut_enabled,
|
| 331 |
+
],
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
demo.queue(max_size=10)
|
| 335 |
+
demo.launch()
|
| 336 |
|
| 337 |
|
| 338 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
pillow>=9.0.0
|
| 2 |
-
piexif>=1.1.3
|
| 3 |
onnxruntime>=1.12.0
|
| 4 |
-
opencv-python
|
| 5 |
huggingface-hub
|
|
|
|
| 1 |
pillow>=9.0.0
|
|
|
|
| 2 |
onnxruntime>=1.12.0
|
|
|
|
| 3 |
huggingface-hub
|