sflanker commited on
Commit
511a95e
·
1 Parent(s): 7f3ac34

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 171.41 +/- 114.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cab70d45d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cab70d45e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cab70d45ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cab70d45f30>", "_build": "<function ActorCriticPolicy._build at 0x7cab70d45fc0>", "forward": "<function ActorCriticPolicy.forward at 0x7cab70d46050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cab70d460e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cab70d46170>", "_predict": "<function ActorCriticPolicy._predict at 0x7cab70d46200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cab70d46290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cab70d46320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cab70d463b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cab70cdd240>"}, "verbose": 0, "policy_kwargs": {"net_arch": [128, 128]}, "num_timesteps": 210000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698989138383487018, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJpTiD0KBw25kgzUu0Vwfbz9xYk7d89JPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.791104, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG06PvBrN4aMAWyUS/eMAXSUR0CFpPDO1OTJdX2UKGgGR8AMUXFcY64laAdLhmgIR0CFpvk92X9jdX2UKGgGR0BwqhkUbkwOaAdNYgFoCEdAhblvOQhfSnV9lChoBkdAcYsKBun/DWgHTTsBaAhHQIW/2qYJE6V1fZQoaAZHwDu/DvVmSQpoB0uRaAhHQIXCmm78Nx51fZQoaAZHQHBGxvJiiItoB0v0aAhHQIXHX1FpfyB1fZQoaAZHwC0gGhVU+9toB0v6aAhHQIXM63RXwLF1fZQoaAZHQG7upiy6cy5oB0vGaAhHQIXRQ2OyVwB1fZQoaAZHQHADLbg0j1RoB0v5aAhHQIXW+oUBXCF1fZQoaAZHQBEaDCgsbvRoB0ucaAhHQIXaPPRiPQx1fZQoaAZHQEtMqRU3n6loB0vVaAhHQIXettygf2d1fZQoaAZHQG9vdOymhuhoB00+AWgIR0CF8frO7g89dX2UKGgGR0BuCDsfJV81aAdNBQFoCEdAhfW9nkDIR3V9lChoBkfAQAqUTtb9qGgHS5poCEdAhffyrYGt63V9lChoBkdAcHgMUh3aBmgHTU4BaAhHQIX8+aH9FWp1fZQoaAZHQHCp/iYLLIRoB0veaAhHQIYAPp2U0N11fZQoaAZHQGqZSEDhcZ9oB02pAWgIR0CGByD15B1LdX2UKGgGR0Bthr+o99tuaAdL8GgIR0CGCs9HMEA6dX2UKGgGR0BwQ8zsQd0aaAdL4GgIR0CGGq+De0ojdX2UKGgGR0Bwecl3Qla9aAdL92gIR0CGHku9vjwQdX2UKGgGR0Bwqo7ZFocraAdNNwFoCEdAhiMGlhw2l3V9lChoBkdAbduJhOP/72gHS9FoCEdAhiYRSP2f03V9lChoBkdAaIS+qzZ6EGgHTY4CaAhHQIYxNJ17pmp1fZQoaAZHQDSVd1MdtEZoB0uEaAhHQIYzLQTmGM51fZQoaAZHwB75G4I8hcJoB0uBaAhHQIY1Xi1iONp1fZQoaAZHQHB/FARkEs9oB01AAWgIR0CGTljMmnfmdX2UKGgGR0Bw3phCtzS1aAdNIQFoCEdAhlUOUMXrMXV9lChoBkdAcCm2hqTKT2gHTQ0BaAhHQIZbALG7z091fZQoaAZHQEN0T/yXlbNoB0uqaAhHQIZedCE6DGt1fZQoaAZHwDrSKKpDNQloB0vKaAhHQIZhyN0eU6h1fZQoaAZHQC8c25xzaK1oB0ujaAhHQIZkNFOO8011fZQoaAZHQHAOfu5SWJJoB0vYaAhHQIZnYHs1KoR1fZQoaAZHQG3NGelKsdVoB00AAWgIR0CGazfR/mT1dX2UKGgGR0BoxdSCOFQEaAdNEwNoCEdAhpUNwrDqGHV9lChoBkdAMNJzxPO6d2gHS7JoCEdAhpeIS+QEIXV9lChoBkdAcIVhkRSP2mgHS/doCEdAhptS/KyOaXV9lChoBkfAKXfj81n/UGgHS/1oCEdAhp8M85jpcHV9lChoBkdAbbEzGgi/wmgHTTICaAhHQIao12/zreJ1fZQoaAZHQHCQ0GzKLbZoB00UAWgIR0CGrT4ubqhUdX2UKGgGR0Bw3vs3Q2MsaAdNKgFoCEdAhsNzR6Ww/3V9lChoBkdAcK2XzDn/1mgHS+5oCEdAhsh/qoqCpXV9lChoBkdAb5KbvPTodWgHTRkBaAhHQIbOulTFVDN1fZQoaAZHQHHeZ53Tuv5oB00zAWgIR0CG1Y6reZXudX2UKGgGR0BvVdR1oxpMaAdL6mgIR0CG2tW1+iJwdX2UKGgGR0BvAkJF9a2XaAdNCQFoCEdAht7cEV32VXV9lChoBkdARMfykKu0TmgHS5toCEdAhuEWg3974XV9lChoBkfADetZmqYJFGgHTSsBaAhHQIblwiosI3R1fZQoaAZHQHGAkWIoE0VoB02OAWgIR0CG+BRFZxJedX2UKGgGR0BuCXIEKVpsaAdNEgFoCEdAhvxDs2NvO3V9lChoBkdAb0BnscABDGgHTSABaAhHQIcAv9LpRoB1fZQoaAZHQHEjlYlpoK5oB0v3aAhHQIcEcyLyc1B1fZQoaAZHQHHv1RP420loB0vdaAhHQIcHpcZ9/jN1fZQoaAZHQCpCbH6uW8hoB000AWgIR0CHDGzTF2mpdX2UKGgGR0BsVI5R0lqraAdL+WgIR0CHEC8YAKfGdX2UKGgGR0BDJpoTPBznaAdLtWgIR0CHEu0BOpKjdX2UKGgGR0AJv58BuGbkaAdL12gIR0CHIlKifxtpdX2UKGgGR0Bw3I21lXijaAdNEwFoCEdAhyZvCMxXXHV9lChoBkdAbe/qLS/j82gHS/hoCEdAhypQ84gieXV9lChoBkdAb88gh8pkPWgHS/5oCEdAhy9ne7+T/3V9lChoBkdAcIvTJhfBvmgHTTIBaAhHQIc12kSElE91fZQoaAZHQHKQds3yZrpoB0vNaAhHQIc52lhw2l51fZQoaAZHwDWlEofCAMFoB0u3aAhHQIc9pOFg2Ih1fZQoaAZHQG8dMiKR+0BoB00MAWgIR0CHQ6qR2bG4dX2UKGgGR0Bw3CfthNM5aAdL42gIR0CHWXVea8YidX2UKGgGR0BxWrmknCwbaAdNWwFoCEdAh18C+UQkHHV9lChoBkdAbyfDSgGr0mgHTWABaAhHQIdk9deIEbJ1fZQoaAZHQHiFzhky1u1oB00hA2gIR0CHgcXO4XoDdX2UKGgGR0BuxWzMRpUQaAdNEwFoCEdAh4Y974SHunV9lChoBkdAUpW1KGtZFGgHTegDaAhHQIelcvIwM6R1fZQoaAZHQHAZyeI2wV1oB01CAWgIR0CHrCw5eZ5SdX2UKGgGR0BtcOl41P30aAdL+2gIR0CHsS0TlDF7dX2UKGgGR8BLXYm9g4OuaAdLtWgIR0CHtMo60Y0mdX2UKGgGR0BwTRgJC0F9aAdNdQFoCEdAh73/echC+nV9lChoBkdAb+1OB19v0mgHS+9oCEdAh9Re0gKWs3V9lChoBkdAZ8HbxmTTv2gHTeACaAhHQIfhaYw7DEZ1fZQoaAZHQG6IHwG4ZuRoB0voaAhHQIfk88q4H5d1fZQoaAZHQHCWmF36hxpoB01DAWgIR0CH6kZ75VOsdX2UKGgGR0AhFjMmnfl7aAdLuGgIR0CH7PC0ngHedX2UKGgGR0BzKjpzLfUGaAdNNwFoCEdAh/G84gieNHV9lChoBkdAbV0/0ulGgGgHS91oCEdAiAFXUYsND3V9lChoBkdAcEmOPvKEFmgHS9JoCEdAiARi0v4/NnV9lChoBkdAbnNeruIAO2gHS/NoCEdAiAgf16E8JXV9lChoBkdAbbnqYZ2pymgHTQoBaAhHQIgMTZ+QU6B1fZQoaAZHQGvBwM6RyOtoB025AWgIR0CIEz3aBZp0dX2UKGgGR0Bo/LfBN21VaAdNbgFoCEdAiBlXBxgiNnV9lChoBkdAb6KQJXyRS2gHTRABaAhHQIgd02eg+Ql1fZQoaAZHQHHDJgTh5xBoB00YAWgIR0CIM8NayKNydX2UKGgGR0ByUUNTcZccaAdLwmgIR0CIN/LIPsiTdX2UKGgGR0BwaQORT0g9aAdNIQFoCEdAiD5tTDO1OXV9lChoBkdAcKTU0Nz8xmgHS/ZoCEdAiEO0KArhBXV9lChoBkdAcAM238XN1WgHS8ZoCEdAiEgn09QoC3V9lChoBkdAcgvvGZNO/WgHS+ZoCEdAiE0jcdo373V9lChoBkdAcBYohY/3WWgHTQMBaAhHQIhRB1FH8TB1fZQoaAZHQG4y5CWu5jJoB0vOaAhHQIhUB2pyZKF1fZQoaAZHQG2TL127nPpoB0veaAhHQIhXP6VMVUN1fZQoaAZHQD9pSWJJoTRoB0uvaAhHQIhmpAIIF/x1fZQoaAZHQDdtHhCMPz5oB0u1aAhHQIhpUUAT7EZ1fZQoaAZHQEX0KHfuTidoB0uzaAhHQIhr5reqJdl1fZQoaAZHQG7rs5n13+xoB0vWaAhHQIhvFlI3BHl1fZQoaAZHQHCKmzOX3QFoB0vlaAhHQIhygwGnn+11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1020, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf236eb1d1cb8a41db773019b94afd267bebd17dd065b226d36e73d03595159
3
+ size 461432
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7cab70d45d80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cab70d45e10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cab70d45ea0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cab70d45f30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7cab70d45fc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7cab70d46050>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cab70d460e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cab70d46170>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7cab70d46200>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cab70d46290>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cab70d46320>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cab70d463b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7cab70cdd240>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {
24
+ "net_arch": [
25
+ 128,
26
+ 128
27
+ ]
28
+ },
29
+ "num_timesteps": 210000,
30
+ "_total_timesteps": 1000000,
31
+ "_num_timesteps_at_start": 0,
32
+ "seed": null,
33
+ "action_noise": null,
34
+ "start_time": 1698989138383487018,
35
+ "learning_rate": 0.001,
36
+ "tensorboard_log": null,
37
+ "_last_obs": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJpTiD0KBw25kgzUu0Vwfbz9xYk7d89JPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": null,
46
+ "_episode_num": 0,
47
+ "use_sde": false,
48
+ "sde_sample_freq": -1,
49
+ "_current_progress_remaining": 0.791104,
50
+ "_stats_window_size": 100,
51
+ "ep_info_buffer": {
52
+ ":type:": "<class 'collections.deque'>",
53
+ ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG06PvBrN4aMAWyUS/eMAXSUR0CFpPDO1OTJdX2UKGgGR8AMUXFcY64laAdLhmgIR0CFpvk92X9jdX2UKGgGR0BwqhkUbkwOaAdNYgFoCEdAhblvOQhfSnV9lChoBkdAcYsKBun/DWgHTTsBaAhHQIW/2qYJE6V1fZQoaAZHwDu/DvVmSQpoB0uRaAhHQIXCmm78Nx51fZQoaAZHQHBGxvJiiItoB0v0aAhHQIXHX1FpfyB1fZQoaAZHwC0gGhVU+9toB0v6aAhHQIXM63RXwLF1fZQoaAZHQG7upiy6cy5oB0vGaAhHQIXRQ2OyVwB1fZQoaAZHQHADLbg0j1RoB0v5aAhHQIXW+oUBXCF1fZQoaAZHQBEaDCgsbvRoB0ucaAhHQIXaPPRiPQx1fZQoaAZHQEtMqRU3n6loB0vVaAhHQIXettygf2d1fZQoaAZHQG9vdOymhuhoB00+AWgIR0CF8frO7g89dX2UKGgGR0BuCDsfJV81aAdNBQFoCEdAhfW9nkDIR3V9lChoBkfAQAqUTtb9qGgHS5poCEdAhffyrYGt63V9lChoBkdAcHgMUh3aBmgHTU4BaAhHQIX8+aH9FWp1fZQoaAZHQHCp/iYLLIRoB0veaAhHQIYAPp2U0N11fZQoaAZHQGqZSEDhcZ9oB02pAWgIR0CGByD15B1LdX2UKGgGR0Bthr+o99tuaAdL8GgIR0CGCs9HMEA6dX2UKGgGR0BwQ8zsQd0aaAdL4GgIR0CGGq+De0ojdX2UKGgGR0Bwecl3Qla9aAdL92gIR0CGHku9vjwQdX2UKGgGR0Bwqo7ZFocraAdNNwFoCEdAhiMGlhw2l3V9lChoBkdAbduJhOP/72gHS9FoCEdAhiYRSP2f03V9lChoBkdAaIS+qzZ6EGgHTY4CaAhHQIYxNJ17pmp1fZQoaAZHQDSVd1MdtEZoB0uEaAhHQIYzLQTmGM51fZQoaAZHwB75G4I8hcJoB0uBaAhHQIY1Xi1iONp1fZQoaAZHQHB/FARkEs9oB01AAWgIR0CGTljMmnfmdX2UKGgGR0Bw3phCtzS1aAdNIQFoCEdAhlUOUMXrMXV9lChoBkdAcCm2hqTKT2gHTQ0BaAhHQIZbALG7z091fZQoaAZHQEN0T/yXlbNoB0uqaAhHQIZedCE6DGt1fZQoaAZHwDrSKKpDNQloB0vKaAhHQIZhyN0eU6h1fZQoaAZHQC8c25xzaK1oB0ujaAhHQIZkNFOO8011fZQoaAZHQHAOfu5SWJJoB0vYaAhHQIZnYHs1KoR1fZQoaAZHQG3NGelKsdVoB00AAWgIR0CGazfR/mT1dX2UKGgGR0BoxdSCOFQEaAdNEwNoCEdAhpUNwrDqGHV9lChoBkdAMNJzxPO6d2gHS7JoCEdAhpeIS+QEIXV9lChoBkdAcIVhkRSP2mgHS/doCEdAhptS/KyOaXV9lChoBkfAKXfj81n/UGgHS/1oCEdAhp8M85jpcHV9lChoBkdAbbEzGgi/wmgHTTICaAhHQIao12/zreJ1fZQoaAZHQHCQ0GzKLbZoB00UAWgIR0CGrT4ubqhUdX2UKGgGR0Bw3vs3Q2MsaAdNKgFoCEdAhsNzR6Ww/3V9lChoBkdAcK2XzDn/1mgHS+5oCEdAhsh/qoqCpXV9lChoBkdAb5KbvPTodWgHTRkBaAhHQIbOulTFVDN1fZQoaAZHQHHeZ53Tuv5oB00zAWgIR0CG1Y6reZXudX2UKGgGR0BvVdR1oxpMaAdL6mgIR0CG2tW1+iJwdX2UKGgGR0BvAkJF9a2XaAdNCQFoCEdAht7cEV32VXV9lChoBkdARMfykKu0TmgHS5toCEdAhuEWg3974XV9lChoBkfADetZmqYJFGgHTSsBaAhHQIblwiosI3R1fZQoaAZHQHGAkWIoE0VoB02OAWgIR0CG+BRFZxJedX2UKGgGR0BuCXIEKVpsaAdNEgFoCEdAhvxDs2NvO3V9lChoBkdAb0BnscABDGgHTSABaAhHQIcAv9LpRoB1fZQoaAZHQHEjlYlpoK5oB0v3aAhHQIcEcyLyc1B1fZQoaAZHQHHv1RP420loB0vdaAhHQIcHpcZ9/jN1fZQoaAZHQCpCbH6uW8hoB000AWgIR0CHDGzTF2mpdX2UKGgGR0BsVI5R0lqraAdL+WgIR0CHEC8YAKfGdX2UKGgGR0BDJpoTPBznaAdLtWgIR0CHEu0BOpKjdX2UKGgGR0AJv58BuGbkaAdL12gIR0CHIlKifxtpdX2UKGgGR0Bw3I21lXijaAdNEwFoCEdAhyZvCMxXXHV9lChoBkdAbe/qLS/j82gHS/hoCEdAhypQ84gieXV9lChoBkdAb88gh8pkPWgHS/5oCEdAhy9ne7+T/3V9lChoBkdAcIvTJhfBvmgHTTIBaAhHQIc12kSElE91fZQoaAZHQHKQds3yZrpoB0vNaAhHQIc52lhw2l51fZQoaAZHwDWlEofCAMFoB0u3aAhHQIc9pOFg2Ih1fZQoaAZHQG8dMiKR+0BoB00MAWgIR0CHQ6qR2bG4dX2UKGgGR0Bw3CfthNM5aAdL42gIR0CHWXVea8YidX2UKGgGR0BxWrmknCwbaAdNWwFoCEdAh18C+UQkHHV9lChoBkdAbyfDSgGr0mgHTWABaAhHQIdk9deIEbJ1fZQoaAZHQHiFzhky1u1oB00hA2gIR0CHgcXO4XoDdX2UKGgGR0BuxWzMRpUQaAdNEwFoCEdAh4Y974SHunV9lChoBkdAUpW1KGtZFGgHTegDaAhHQIelcvIwM6R1fZQoaAZHQHAZyeI2wV1oB01CAWgIR0CHrCw5eZ5SdX2UKGgGR0BtcOl41P30aAdL+2gIR0CHsS0TlDF7dX2UKGgGR8BLXYm9g4OuaAdLtWgIR0CHtMo60Y0mdX2UKGgGR0BwTRgJC0F9aAdNdQFoCEdAh73/echC+nV9lChoBkdAb+1OB19v0mgHS+9oCEdAh9Re0gKWs3V9lChoBkdAZ8HbxmTTv2gHTeACaAhHQIfhaYw7DEZ1fZQoaAZHQG6IHwG4ZuRoB0voaAhHQIfk88q4H5d1fZQoaAZHQHCWmF36hxpoB01DAWgIR0CH6kZ75VOsdX2UKGgGR0AhFjMmnfl7aAdLuGgIR0CH7PC0ngHedX2UKGgGR0BzKjpzLfUGaAdNNwFoCEdAh/G84gieNHV9lChoBkdAbV0/0ulGgGgHS91oCEdAiAFXUYsND3V9lChoBkdAcEmOPvKEFmgHS9JoCEdAiARi0v4/NnV9lChoBkdAbnNeruIAO2gHS/NoCEdAiAgf16E8JXV9lChoBkdAbbnqYZ2pymgHTQoBaAhHQIgMTZ+QU6B1fZQoaAZHQGvBwM6RyOtoB025AWgIR0CIEz3aBZp0dX2UKGgGR0Bo/LfBN21VaAdNbgFoCEdAiBlXBxgiNnV9lChoBkdAb6KQJXyRS2gHTRABaAhHQIgd02eg+Ql1fZQoaAZHQHHDJgTh5xBoB00YAWgIR0CIM8NayKNydX2UKGgGR0ByUUNTcZccaAdLwmgIR0CIN/LIPsiTdX2UKGgGR0BwaQORT0g9aAdNIQFoCEdAiD5tTDO1OXV9lChoBkdAcKTU0Nz8xmgHS/ZoCEdAiEO0KArhBXV9lChoBkdAcAM238XN1WgHS8ZoCEdAiEgn09QoC3V9lChoBkdAcgvvGZNO/WgHS+ZoCEdAiE0jcdo373V9lChoBkdAcBYohY/3WWgHTQMBaAhHQIhRB1FH8TB1fZQoaAZHQG4y5CWu5jJoB0vOaAhHQIhUB2pyZKF1fZQoaAZHQG2TL127nPpoB0veaAhHQIhXP6VMVUN1fZQoaAZHQD9pSWJJoTRoB0uvaAhHQIhmpAIIF/x1fZQoaAZHQDdtHhCMPz5oB0u1aAhHQIhpUUAT7EZ1fZQoaAZHQEX0KHfuTidoB0uzaAhHQIhr5reqJdl1fZQoaAZHQG7rs5n13+xoB0vWaAhHQIhvFlI3BHl1fZQoaAZHQHCKmzOX3QFoB0vlaAhHQIhygwGnn+11ZS4="
54
+ },
55
+ "ep_success_buffer": {
56
+ ":type:": "<class 'collections.deque'>",
57
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
58
+ },
59
+ "_n_updates": 1020,
60
+ "observation_space": {
61
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
62
+ ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
63
+ "dtype": "float32",
64
+ "bounded_below": "[ True True True True True True True True]",
65
+ "bounded_above": "[ True True True True True True True True]",
66
+ "_shape": [
67
+ 8
68
+ ],
69
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
70
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
71
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
72
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
73
+ "_np_random": null
74
+ },
75
+ "action_space": {
76
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
77
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
78
+ "n": "4",
79
+ "start": "0",
80
+ "_shape": [],
81
+ "dtype": "int64",
82
+ "_np_random": null
83
+ },
84
+ "n_envs": 1,
85
+ "n_steps": 2048,
86
+ "gamma": 0.99,
87
+ "gae_lambda": 0.95,
88
+ "ent_coef": 0.0,
89
+ "vf_coef": 0.5,
90
+ "max_grad_norm": 0.5,
91
+ "batch_size": 64,
92
+ "n_epochs": 10,
93
+ "clip_range": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ },
97
+ "clip_range_vf": null,
98
+ "normalize_advantage": true,
99
+ "target_kl": null,
100
+ "lr_schedule": {
101
+ ":type:": "<class 'function'>",
102
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
103
+ }
104
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48595fae85d3c6d478700461aaf4ab547a716922c1fe151eb1b2c43ce1e5485b
3
+ size 297770
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76f08d49a64626d05fe5d58fac43c2ed998c629b8a42ee3961252fc9147cff60
3
+ size 148466
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (185 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 171.4119104, "std_reward": 114.61217506659926, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-03T05:42:30.165416"}