Upload model
Browse files- README.md +199 -0
- config.json +491 -0
- configuration_magiv2.py +19 -0
- model.safetensors +3 -0
- modelling_magiv2.py +58 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ragavsachdeva/magiv2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Magiv2Model"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_magiv2.Magiv2Config",
|
| 8 |
+
"AutoModel": "modelling_magiv2.Magiv2Model"
|
| 9 |
+
},
|
| 10 |
+
"crop_embedding_image_preprocessing_config": {
|
| 11 |
+
"_processor_class": null,
|
| 12 |
+
"do_normalize": true,
|
| 13 |
+
"do_rescale": true,
|
| 14 |
+
"do_resize": true,
|
| 15 |
+
"image_mean": [
|
| 16 |
+
0.485,
|
| 17 |
+
0.456,
|
| 18 |
+
0.406
|
| 19 |
+
],
|
| 20 |
+
"image_processor_type": "ViTImageProcessor",
|
| 21 |
+
"image_std": [
|
| 22 |
+
0.229,
|
| 23 |
+
0.224,
|
| 24 |
+
0.225
|
| 25 |
+
],
|
| 26 |
+
"resample": 2,
|
| 27 |
+
"rescale_factor": 0.00392156862745098,
|
| 28 |
+
"size": {
|
| 29 |
+
"height": 224,
|
| 30 |
+
"width": 224
|
| 31 |
+
}
|
| 32 |
+
},
|
| 33 |
+
"crop_embedding_model_config": {
|
| 34 |
+
"_attn_implementation_autoset": true,
|
| 35 |
+
"_name_or_path": "facebook/vit-mae-base",
|
| 36 |
+
"add_cross_attention": false,
|
| 37 |
+
"architectures": [
|
| 38 |
+
"ViTMAEForPreTraining"
|
| 39 |
+
],
|
| 40 |
+
"attention_probs_dropout_prob": 0.0,
|
| 41 |
+
"bad_words_ids": null,
|
| 42 |
+
"begin_suppress_tokens": null,
|
| 43 |
+
"bos_token_id": null,
|
| 44 |
+
"chunk_size_feed_forward": 0,
|
| 45 |
+
"cross_attention_hidden_size": null,
|
| 46 |
+
"decoder_hidden_size": 512,
|
| 47 |
+
"decoder_intermediate_size": 2048,
|
| 48 |
+
"decoder_num_attention_heads": 16,
|
| 49 |
+
"decoder_num_hidden_layers": 8,
|
| 50 |
+
"decoder_start_token_id": null,
|
| 51 |
+
"diversity_penalty": 0.0,
|
| 52 |
+
"do_sample": false,
|
| 53 |
+
"early_stopping": false,
|
| 54 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 55 |
+
"eos_token_id": null,
|
| 56 |
+
"exponential_decay_length_penalty": null,
|
| 57 |
+
"finetuning_task": null,
|
| 58 |
+
"forced_bos_token_id": null,
|
| 59 |
+
"forced_eos_token_id": null,
|
| 60 |
+
"hidden_act": "gelu",
|
| 61 |
+
"hidden_dropout_prob": 0.0,
|
| 62 |
+
"hidden_size": 768,
|
| 63 |
+
"id2label": {
|
| 64 |
+
"0": "LABEL_0",
|
| 65 |
+
"1": "LABEL_1"
|
| 66 |
+
},
|
| 67 |
+
"image_size": 224,
|
| 68 |
+
"initializer_range": 0.02,
|
| 69 |
+
"intermediate_size": 3072,
|
| 70 |
+
"is_decoder": false,
|
| 71 |
+
"is_encoder_decoder": false,
|
| 72 |
+
"label2id": {
|
| 73 |
+
"LABEL_0": 0,
|
| 74 |
+
"LABEL_1": 1
|
| 75 |
+
},
|
| 76 |
+
"layer_norm_eps": 1e-12,
|
| 77 |
+
"length_penalty": 1.0,
|
| 78 |
+
"mask_ratio": 0.75,
|
| 79 |
+
"max_length": 20,
|
| 80 |
+
"min_length": 0,
|
| 81 |
+
"model_type": "",
|
| 82 |
+
"no_repeat_ngram_size": 0,
|
| 83 |
+
"norm_pix_loss": false,
|
| 84 |
+
"num_attention_heads": 12,
|
| 85 |
+
"num_beam_groups": 1,
|
| 86 |
+
"num_beams": 1,
|
| 87 |
+
"num_channels": 3,
|
| 88 |
+
"num_hidden_layers": 12,
|
| 89 |
+
"num_return_sequences": 1,
|
| 90 |
+
"output_attentions": false,
|
| 91 |
+
"output_hidden_states": false,
|
| 92 |
+
"output_scores": false,
|
| 93 |
+
"pad_token_id": null,
|
| 94 |
+
"patch_size": 16,
|
| 95 |
+
"prefix": null,
|
| 96 |
+
"problem_type": null,
|
| 97 |
+
"pruned_heads": {},
|
| 98 |
+
"qkv_bias": true,
|
| 99 |
+
"remove_invalid_values": false,
|
| 100 |
+
"repetition_penalty": 1.0,
|
| 101 |
+
"return_dict": true,
|
| 102 |
+
"return_dict_in_generate": false,
|
| 103 |
+
"sep_token_id": null,
|
| 104 |
+
"suppress_tokens": null,
|
| 105 |
+
"task_specific_params": null,
|
| 106 |
+
"temperature": 1.0,
|
| 107 |
+
"tf_legacy_loss": false,
|
| 108 |
+
"tie_encoder_decoder": false,
|
| 109 |
+
"tie_word_embeddings": true,
|
| 110 |
+
"tokenizer_class": null,
|
| 111 |
+
"top_k": 50,
|
| 112 |
+
"top_p": 1.0,
|
| 113 |
+
"torch_dtype": "float32",
|
| 114 |
+
"torchscript": false,
|
| 115 |
+
"typical_p": 1.0,
|
| 116 |
+
"use_bfloat16": false
|
| 117 |
+
},
|
| 118 |
+
"detection_image_preprocessing_config": {
|
| 119 |
+
"_processor_class": null,
|
| 120 |
+
"do_normalize": true,
|
| 121 |
+
"do_pad": true,
|
| 122 |
+
"do_rescale": true,
|
| 123 |
+
"do_resize": true,
|
| 124 |
+
"format": "coco_detection",
|
| 125 |
+
"image_mean": [
|
| 126 |
+
0.485,
|
| 127 |
+
0.456,
|
| 128 |
+
0.406
|
| 129 |
+
],
|
| 130 |
+
"image_processor_type": "ConditionalDetrImageProcessor",
|
| 131 |
+
"image_std": [
|
| 132 |
+
0.229,
|
| 133 |
+
0.224,
|
| 134 |
+
0.225
|
| 135 |
+
],
|
| 136 |
+
"resample": 2,
|
| 137 |
+
"rescale_factor": 0.00392156862745098,
|
| 138 |
+
"size": {
|
| 139 |
+
"longest_edge": 1333,
|
| 140 |
+
"shortest_edge": 800
|
| 141 |
+
}
|
| 142 |
+
},
|
| 143 |
+
"detection_model_config": {
|
| 144 |
+
"_name_or_path": "microsoft/conditional-detr-resnet-50",
|
| 145 |
+
"activation_dropout": 0.0,
|
| 146 |
+
"activation_function": "relu",
|
| 147 |
+
"add_cross_attention": false,
|
| 148 |
+
"architectures": [
|
| 149 |
+
"ConditionalDETRForObjectDetection"
|
| 150 |
+
],
|
| 151 |
+
"attention_dropout": 0.0,
|
| 152 |
+
"auxiliary_loss": false,
|
| 153 |
+
"backbone": "resnet50",
|
| 154 |
+
"backbone_config": null,
|
| 155 |
+
"bad_words_ids": null,
|
| 156 |
+
"bbox_cost": 5,
|
| 157 |
+
"bbox_loss_coefficient": 5,
|
| 158 |
+
"begin_suppress_tokens": null,
|
| 159 |
+
"bos_token_id": null,
|
| 160 |
+
"chunk_size_feed_forward": 0,
|
| 161 |
+
"class_cost": 2,
|
| 162 |
+
"cls_loss_coefficient": 2,
|
| 163 |
+
"cross_attention_hidden_size": null,
|
| 164 |
+
"d_model": 256,
|
| 165 |
+
"decoder_attention_heads": 8,
|
| 166 |
+
"decoder_ffn_dim": 2048,
|
| 167 |
+
"decoder_layerdrop": 0.0,
|
| 168 |
+
"decoder_layers": 6,
|
| 169 |
+
"decoder_start_token_id": null,
|
| 170 |
+
"dice_loss_coefficient": 1,
|
| 171 |
+
"dilation": false,
|
| 172 |
+
"diversity_penalty": 0.0,
|
| 173 |
+
"do_sample": false,
|
| 174 |
+
"dropout": 0.1,
|
| 175 |
+
"early_stopping": false,
|
| 176 |
+
"encoder_attention_heads": 8,
|
| 177 |
+
"encoder_ffn_dim": 2048,
|
| 178 |
+
"encoder_layerdrop": 0.0,
|
| 179 |
+
"encoder_layers": 6,
|
| 180 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 181 |
+
"eos_token_id": null,
|
| 182 |
+
"exponential_decay_length_penalty": null,
|
| 183 |
+
"finetuning_task": null,
|
| 184 |
+
"focal_alpha": 0.25,
|
| 185 |
+
"forced_bos_token_id": null,
|
| 186 |
+
"forced_eos_token_id": null,
|
| 187 |
+
"giou_cost": 2,
|
| 188 |
+
"giou_loss_coefficient": 2,
|
| 189 |
+
"id2label": {
|
| 190 |
+
"0": "LABEL_0",
|
| 191 |
+
"1": "LABEL_1",
|
| 192 |
+
"2": "LABEL_2",
|
| 193 |
+
"3": "LABEL_3"
|
| 194 |
+
},
|
| 195 |
+
"init_std": 0.02,
|
| 196 |
+
"init_xavier_std": 1.0,
|
| 197 |
+
"is_decoder": false,
|
| 198 |
+
"is_encoder_decoder": true,
|
| 199 |
+
"label2id": {
|
| 200 |
+
"LABEL_0": 0,
|
| 201 |
+
"LABEL_1": 1,
|
| 202 |
+
"LABEL_2": 2,
|
| 203 |
+
"LABEL_3": 3
|
| 204 |
+
},
|
| 205 |
+
"length_penalty": 1.0,
|
| 206 |
+
"mask_loss_coefficient": 1,
|
| 207 |
+
"max_length": 20,
|
| 208 |
+
"max_position_embeddings": 1024,
|
| 209 |
+
"min_length": 0,
|
| 210 |
+
"model_type": "",
|
| 211 |
+
"no_repeat_ngram_size": 0,
|
| 212 |
+
"num_beam_groups": 1,
|
| 213 |
+
"num_beams": 1,
|
| 214 |
+
"num_channels": 3,
|
| 215 |
+
"num_hidden_layers": 6,
|
| 216 |
+
"num_queries": 305,
|
| 217 |
+
"num_return_sequences": 1,
|
| 218 |
+
"output_attentions": false,
|
| 219 |
+
"output_hidden_states": false,
|
| 220 |
+
"output_scores": false,
|
| 221 |
+
"pad_token_id": null,
|
| 222 |
+
"position_embedding_type": "sine",
|
| 223 |
+
"prefix": null,
|
| 224 |
+
"problem_type": null,
|
| 225 |
+
"pruned_heads": {},
|
| 226 |
+
"remove_invalid_values": false,
|
| 227 |
+
"repetition_penalty": 1.0,
|
| 228 |
+
"return_dict": true,
|
| 229 |
+
"return_dict_in_generate": false,
|
| 230 |
+
"scale_embedding": false,
|
| 231 |
+
"sep_token_id": null,
|
| 232 |
+
"suppress_tokens": null,
|
| 233 |
+
"task_specific_params": null,
|
| 234 |
+
"temperature": 1.0,
|
| 235 |
+
"tf_legacy_loss": false,
|
| 236 |
+
"tie_encoder_decoder": false,
|
| 237 |
+
"tie_word_embeddings": true,
|
| 238 |
+
"tokenizer_class": null,
|
| 239 |
+
"top_k": 50,
|
| 240 |
+
"top_p": 1.0,
|
| 241 |
+
"torch_dtype": "float32",
|
| 242 |
+
"torchscript": false,
|
| 243 |
+
"typical_p": 1.0,
|
| 244 |
+
"use_bfloat16": false,
|
| 245 |
+
"use_pretrained_backbone": true,
|
| 246 |
+
"use_timm_backbone": true
|
| 247 |
+
},
|
| 248 |
+
"disable_crop_embeddings": false,
|
| 249 |
+
"disable_detections": false,
|
| 250 |
+
"disable_ocr": false,
|
| 251 |
+
"kwargs": {
|
| 252 |
+
"_commit_hash": null,
|
| 253 |
+
"_name_or_path": "ragavsachdeva/magiv2",
|
| 254 |
+
"architectures": [
|
| 255 |
+
"Magiv2Model"
|
| 256 |
+
],
|
| 257 |
+
"auto_map": {
|
| 258 |
+
"AutoConfig": "configuration_magiv2.Magiv2Config",
|
| 259 |
+
"AutoModel": "modelling_magiv2.Magiv2Model"
|
| 260 |
+
},
|
| 261 |
+
"model_type": "magiv2",
|
| 262 |
+
"torch_dtype": "float32",
|
| 263 |
+
"transformers_version": "4.34.0.dev0"
|
| 264 |
+
},
|
| 265 |
+
"model_type": "magiv2",
|
| 266 |
+
"ocr_model_config": {
|
| 267 |
+
"_name_or_path": "microsoft/trocr-base-printed",
|
| 268 |
+
"add_cross_attention": false,
|
| 269 |
+
"architectures": [
|
| 270 |
+
"VisionEncoderDecoderModel"
|
| 271 |
+
],
|
| 272 |
+
"bad_words_ids": null,
|
| 273 |
+
"begin_suppress_tokens": null,
|
| 274 |
+
"bos_token_id": null,
|
| 275 |
+
"chunk_size_feed_forward": 0,
|
| 276 |
+
"cross_attention_hidden_size": null,
|
| 277 |
+
"decoder": {
|
| 278 |
+
"_name_or_path": "",
|
| 279 |
+
"activation_dropout": 0.0,
|
| 280 |
+
"activation_function": "gelu",
|
| 281 |
+
"add_cross_attention": true,
|
| 282 |
+
"architectures": null,
|
| 283 |
+
"attention_dropout": 0.0,
|
| 284 |
+
"bad_words_ids": null,
|
| 285 |
+
"begin_suppress_tokens": null,
|
| 286 |
+
"bos_token_id": 0,
|
| 287 |
+
"chunk_size_feed_forward": 0,
|
| 288 |
+
"classifier_dropout": 0.0,
|
| 289 |
+
"cross_attention_hidden_size": 768,
|
| 290 |
+
"d_model": 1024,
|
| 291 |
+
"decoder_attention_heads": 16,
|
| 292 |
+
"decoder_ffn_dim": 4096,
|
| 293 |
+
"decoder_layerdrop": 0.0,
|
| 294 |
+
"decoder_layers": 12,
|
| 295 |
+
"decoder_start_token_id": 2,
|
| 296 |
+
"diversity_penalty": 0.0,
|
| 297 |
+
"do_sample": false,
|
| 298 |
+
"dropout": 0.1,
|
| 299 |
+
"early_stopping": false,
|
| 300 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 301 |
+
"eos_token_id": 2,
|
| 302 |
+
"exponential_decay_length_penalty": null,
|
| 303 |
+
"finetuning_task": null,
|
| 304 |
+
"forced_bos_token_id": null,
|
| 305 |
+
"forced_eos_token_id": null,
|
| 306 |
+
"id2label": {
|
| 307 |
+
"0": "LABEL_0",
|
| 308 |
+
"1": "LABEL_1"
|
| 309 |
+
},
|
| 310 |
+
"init_std": 0.02,
|
| 311 |
+
"is_decoder": true,
|
| 312 |
+
"is_encoder_decoder": false,
|
| 313 |
+
"label2id": {
|
| 314 |
+
"LABEL_0": 0,
|
| 315 |
+
"LABEL_1": 1
|
| 316 |
+
},
|
| 317 |
+
"layernorm_embedding": true,
|
| 318 |
+
"length_penalty": 1.0,
|
| 319 |
+
"max_length": 20,
|
| 320 |
+
"max_position_embeddings": 512,
|
| 321 |
+
"min_length": 0,
|
| 322 |
+
"model_type": "trocr",
|
| 323 |
+
"no_repeat_ngram_size": 0,
|
| 324 |
+
"num_beam_groups": 1,
|
| 325 |
+
"num_beams": 1,
|
| 326 |
+
"num_return_sequences": 1,
|
| 327 |
+
"output_attentions": false,
|
| 328 |
+
"output_hidden_states": false,
|
| 329 |
+
"output_scores": false,
|
| 330 |
+
"pad_token_id": 1,
|
| 331 |
+
"prefix": null,
|
| 332 |
+
"problem_type": null,
|
| 333 |
+
"pruned_heads": {},
|
| 334 |
+
"remove_invalid_values": false,
|
| 335 |
+
"repetition_penalty": 1.0,
|
| 336 |
+
"return_dict": true,
|
| 337 |
+
"return_dict_in_generate": false,
|
| 338 |
+
"scale_embedding": false,
|
| 339 |
+
"sep_token_id": null,
|
| 340 |
+
"suppress_tokens": null,
|
| 341 |
+
"task_specific_params": null,
|
| 342 |
+
"temperature": 1.0,
|
| 343 |
+
"tf_legacy_loss": false,
|
| 344 |
+
"tie_encoder_decoder": false,
|
| 345 |
+
"tie_word_embeddings": true,
|
| 346 |
+
"tokenizer_class": null,
|
| 347 |
+
"top_k": 50,
|
| 348 |
+
"top_p": 1.0,
|
| 349 |
+
"torch_dtype": null,
|
| 350 |
+
"torchscript": false,
|
| 351 |
+
"typical_p": 1.0,
|
| 352 |
+
"use_bfloat16": false,
|
| 353 |
+
"use_cache": false,
|
| 354 |
+
"use_learned_position_embeddings": true,
|
| 355 |
+
"vocab_size": 50265
|
| 356 |
+
},
|
| 357 |
+
"decoder_start_token_id": null,
|
| 358 |
+
"diversity_penalty": 0.0,
|
| 359 |
+
"do_sample": false,
|
| 360 |
+
"early_stopping": false,
|
| 361 |
+
"encoder": {
|
| 362 |
+
"_name_or_path": "",
|
| 363 |
+
"add_cross_attention": false,
|
| 364 |
+
"architectures": null,
|
| 365 |
+
"attention_probs_dropout_prob": 0.0,
|
| 366 |
+
"bad_words_ids": null,
|
| 367 |
+
"begin_suppress_tokens": null,
|
| 368 |
+
"bos_token_id": null,
|
| 369 |
+
"chunk_size_feed_forward": 0,
|
| 370 |
+
"cross_attention_hidden_size": null,
|
| 371 |
+
"decoder_start_token_id": null,
|
| 372 |
+
"diversity_penalty": 0.0,
|
| 373 |
+
"do_sample": false,
|
| 374 |
+
"early_stopping": false,
|
| 375 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 376 |
+
"encoder_stride": 16,
|
| 377 |
+
"eos_token_id": null,
|
| 378 |
+
"exponential_decay_length_penalty": null,
|
| 379 |
+
"finetuning_task": null,
|
| 380 |
+
"forced_bos_token_id": null,
|
| 381 |
+
"forced_eos_token_id": null,
|
| 382 |
+
"hidden_act": "gelu",
|
| 383 |
+
"hidden_dropout_prob": 0.0,
|
| 384 |
+
"hidden_size": 768,
|
| 385 |
+
"id2label": {
|
| 386 |
+
"0": "LABEL_0",
|
| 387 |
+
"1": "LABEL_1"
|
| 388 |
+
},
|
| 389 |
+
"image_size": 384,
|
| 390 |
+
"initializer_range": 0.02,
|
| 391 |
+
"intermediate_size": 3072,
|
| 392 |
+
"is_decoder": false,
|
| 393 |
+
"is_encoder_decoder": false,
|
| 394 |
+
"label2id": {
|
| 395 |
+
"LABEL_0": 0,
|
| 396 |
+
"LABEL_1": 1
|
| 397 |
+
},
|
| 398 |
+
"layer_norm_eps": 1e-12,
|
| 399 |
+
"length_penalty": 1.0,
|
| 400 |
+
"max_length": 20,
|
| 401 |
+
"min_length": 0,
|
| 402 |
+
"model_type": "vit",
|
| 403 |
+
"no_repeat_ngram_size": 0,
|
| 404 |
+
"num_attention_heads": 12,
|
| 405 |
+
"num_beam_groups": 1,
|
| 406 |
+
"num_beams": 1,
|
| 407 |
+
"num_channels": 3,
|
| 408 |
+
"num_hidden_layers": 12,
|
| 409 |
+
"num_return_sequences": 1,
|
| 410 |
+
"output_attentions": false,
|
| 411 |
+
"output_hidden_states": false,
|
| 412 |
+
"output_scores": false,
|
| 413 |
+
"pad_token_id": null,
|
| 414 |
+
"patch_size": 16,
|
| 415 |
+
"prefix": null,
|
| 416 |
+
"problem_type": null,
|
| 417 |
+
"pruned_heads": {},
|
| 418 |
+
"qkv_bias": false,
|
| 419 |
+
"remove_invalid_values": false,
|
| 420 |
+
"repetition_penalty": 1.0,
|
| 421 |
+
"return_dict": true,
|
| 422 |
+
"return_dict_in_generate": false,
|
| 423 |
+
"sep_token_id": null,
|
| 424 |
+
"suppress_tokens": null,
|
| 425 |
+
"task_specific_params": null,
|
| 426 |
+
"temperature": 1.0,
|
| 427 |
+
"tf_legacy_loss": false,
|
| 428 |
+
"tie_encoder_decoder": false,
|
| 429 |
+
"tie_word_embeddings": true,
|
| 430 |
+
"tokenizer_class": null,
|
| 431 |
+
"top_k": 50,
|
| 432 |
+
"top_p": 1.0,
|
| 433 |
+
"torch_dtype": null,
|
| 434 |
+
"torchscript": false,
|
| 435 |
+
"typical_p": 1.0,
|
| 436 |
+
"use_bfloat16": false
|
| 437 |
+
},
|
| 438 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 439 |
+
"eos_token_id": null,
|
| 440 |
+
"exponential_decay_length_penalty": null,
|
| 441 |
+
"finetuning_task": null,
|
| 442 |
+
"forced_bos_token_id": null,
|
| 443 |
+
"forced_eos_token_id": null,
|
| 444 |
+
"id2label": {
|
| 445 |
+
"0": "LABEL_0",
|
| 446 |
+
"1": "LABEL_1"
|
| 447 |
+
},
|
| 448 |
+
"is_decoder": false,
|
| 449 |
+
"is_encoder_decoder": true,
|
| 450 |
+
"label2id": {
|
| 451 |
+
"LABEL_0": 0,
|
| 452 |
+
"LABEL_1": 1
|
| 453 |
+
},
|
| 454 |
+
"length_penalty": 1.0,
|
| 455 |
+
"max_length": 20,
|
| 456 |
+
"min_length": 0,
|
| 457 |
+
"model_type": "vision-encoder-decoder",
|
| 458 |
+
"no_repeat_ngram_size": 0,
|
| 459 |
+
"num_beam_groups": 1,
|
| 460 |
+
"num_beams": 1,
|
| 461 |
+
"num_return_sequences": 1,
|
| 462 |
+
"output_attentions": false,
|
| 463 |
+
"output_hidden_states": false,
|
| 464 |
+
"output_scores": false,
|
| 465 |
+
"pad_token_id": null,
|
| 466 |
+
"prefix": null,
|
| 467 |
+
"problem_type": null,
|
| 468 |
+
"pruned_heads": {},
|
| 469 |
+
"remove_invalid_values": false,
|
| 470 |
+
"repetition_penalty": 1.0,
|
| 471 |
+
"return_dict": true,
|
| 472 |
+
"return_dict_in_generate": false,
|
| 473 |
+
"sep_token_id": null,
|
| 474 |
+
"suppress_tokens": null,
|
| 475 |
+
"task_specific_params": null,
|
| 476 |
+
"temperature": 1.0,
|
| 477 |
+
"tf_legacy_loss": false,
|
| 478 |
+
"tie_encoder_decoder": false,
|
| 479 |
+
"tie_word_embeddings": false,
|
| 480 |
+
"tokenizer_class": null,
|
| 481 |
+
"top_k": 50,
|
| 482 |
+
"top_p": 1.0,
|
| 483 |
+
"torch_dtype": "float32",
|
| 484 |
+
"torchscript": false,
|
| 485 |
+
"typical_p": 1.0,
|
| 486 |
+
"use_bfloat16": false
|
| 487 |
+
},
|
| 488 |
+
"ocr_pretrained_processor_path": "microsoft/trocr-base-printed",
|
| 489 |
+
"torch_dtype": "float32",
|
| 490 |
+
"transformers_version": "4.47.1"
|
| 491 |
+
}
|
configuration_magiv2.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig, VisionEncoderDecoderConfig
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Magiv2Config(PretrainedConfig):
|
| 6 |
+
model_type = "magiv2"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
crop_embedding_model_config: dict = None,
|
| 11 |
+
crop_embedding_image_preprocessing_config: dict = None,
|
| 12 |
+
**kwargs,
|
| 13 |
+
):
|
| 14 |
+
self.kwargs = kwargs
|
| 15 |
+
self.crop_embedding_model_config = None
|
| 16 |
+
if crop_embedding_model_config is not None:
|
| 17 |
+
self.crop_embedding_model_config = PretrainedConfig.from_dict(crop_embedding_model_config)
|
| 18 |
+
self.crop_embedding_image_preprocessing_config = crop_embedding_image_preprocessing_config
|
| 19 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d6bd5ae35f4bfe26cb4b66b6ae7f23edf56e2d249c10d1d38ff4a97c1a71645
|
| 3 |
+
size 343221032
|
modelling_magiv2.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel, ViTMAEModel
|
| 2 |
+
from .configuration_magiv2 import Magiv2Config
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import ViTImageProcessor
|
| 6 |
+
import PIL
|
| 7 |
+
|
| 8 |
+
def move_to_device(inputs, device):
|
| 9 |
+
if hasattr(inputs, "keys"):
|
| 10 |
+
return {k: move_to_device(v, device) for k, v in inputs.items()}
|
| 11 |
+
elif isinstance(inputs, list):
|
| 12 |
+
return [move_to_device(v, device) for v in inputs]
|
| 13 |
+
elif isinstance(inputs, tuple):
|
| 14 |
+
return tuple([move_to_device(v, device) for v in inputs])
|
| 15 |
+
elif isinstance(inputs, np.ndarray):
|
| 16 |
+
return torch.from_numpy(inputs).to(device)
|
| 17 |
+
else:
|
| 18 |
+
return inputs.to(device)
|
| 19 |
+
|
| 20 |
+
class Magiv2Model(PreTrainedModel):
|
| 21 |
+
config_class = Magiv2Config
|
| 22 |
+
|
| 23 |
+
def __init__(self, config):
|
| 24 |
+
super().__init__(config)
|
| 25 |
+
self.config = config
|
| 26 |
+
self.processor = ViTImageProcessor.from_dict(config.crop_embedding_image_preprocessing_config)
|
| 27 |
+
self.crop_embedding_model = ViTMAEModel(config.crop_embedding_model_config)
|
| 28 |
+
|
| 29 |
+
def move_to_device(self, input):
|
| 30 |
+
return move_to_device(input, self.device)
|
| 31 |
+
|
| 32 |
+
def forward(self, images, move_to_device_fn=None, mask_ratio=0.0, batch_size=256):
|
| 33 |
+
if len(images) == 0:
|
| 34 |
+
return move_to_device_fn(torch.zeros(len(images), self.config.crop_embedding_model_config.hidden_size))
|
| 35 |
+
|
| 36 |
+
assert all(isinstance(image, PIL.Image.Image) for image in images), "please provide a list of PIL images"
|
| 37 |
+
|
| 38 |
+
move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn
|
| 39 |
+
images = [np.array(image.convert("L").convert("RGB")) for image in images]
|
| 40 |
+
images = self.processor(images, return_tensors="pt").pixel_values
|
| 41 |
+
images = move_to_device_fn(images)
|
| 42 |
+
|
| 43 |
+
# temporarily change the mask ratio from default to the one specified
|
| 44 |
+
old_mask_ratio = self.crop_embedding_model.embeddings.config.mask_ratio
|
| 45 |
+
self.crop_embedding_model.embeddings.config.mask_ratio = mask_ratio
|
| 46 |
+
|
| 47 |
+
# process the crops in batches to avoid OOM
|
| 48 |
+
embeddings = []
|
| 49 |
+
for i in range(0, len(images), batch_size):
|
| 50 |
+
crops = images[i:i+batch_size]
|
| 51 |
+
embeddings_per_batch = self.crop_embedding_model(crops).last_hidden_state[:, 0]
|
| 52 |
+
embeddings.append(embeddings_per_batch)
|
| 53 |
+
embeddings = torch.cat(embeddings, dim=0)
|
| 54 |
+
|
| 55 |
+
# restore the mask ratio to the default
|
| 56 |
+
self.crop_embedding_model.embeddings.config.mask_ratio = old_mask_ratio
|
| 57 |
+
|
| 58 |
+
return embeddings
|