[Docs] backends, better examples
Browse files- README.md +31 -18
- rn-logo-animated.svg +0 -173
README.md
CHANGED
|
@@ -9,15 +9,13 @@ pipeline_tag: text-generation
|
|
| 9 |
<center>
|
| 10 |
<div style="text-align: center;">
|
| 11 |
<img
|
| 12 |
-
src="https://
|
| 13 |
alt="Radical Numerics"
|
| 14 |
style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
|
| 15 |
/>
|
| 16 |
</div>
|
| 17 |
</center>
|
| 18 |
|
| 19 |
-
<br>
|
| 20 |
-
|
| 21 |
# RND1-Base-0910
|
| 22 |
|
| 23 |
RND1 is an experimental diffusion language model with 30B parameters and 3B active parameters per token (sparse Mixture-of-Experts). This model was converted from a pretrained autoregressive base to enable diffusion-based text generation.
|
|
@@ -49,33 +47,44 @@ For faster inference with optimized MoE kernels:
|
|
| 49 |
```bash
|
| 50 |
pip install flashinfer-python
|
| 51 |
pip install sglang[all]
|
|
|
|
| 52 |
```
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
## Quick Start
|
| 57 |
|
| 58 |
```python
|
| 59 |
-
from transformers import
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
# Load model
|
| 63 |
model = AutoModelForMaskedLM.from_pretrained(
|
| 64 |
"radicalnumerics/RND1-Base-0910",
|
|
|
|
|
|
|
| 65 |
trust_remote_code=True,
|
| 66 |
-
|
| 67 |
-
device_map="auto"
|
| 68 |
)
|
| 69 |
-
tokenizer = AutoTokenizer.from_pretrained("radicalnumerics/RND1-Base-0910")
|
| 70 |
|
| 71 |
# Generate - Task mode (for instructions and questions)
|
| 72 |
-
prompt = "Write a Python function that finds the longest common subsequence."
|
| 73 |
-
inputs = tokenizer(f"Question: {prompt}", return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
| 74 |
output = model.generate(
|
| 75 |
-
inputs=
|
| 76 |
max_new_tokens=256,
|
| 77 |
num_diffusion_steps=256,
|
|
|
|
| 78 |
)
|
|
|
|
|
|
|
| 79 |
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 80 |
print(text)
|
| 81 |
```
|
|
@@ -104,20 +113,24 @@ output = model.generate(
|
|
| 104 |
inputs=inputs.input_ids,
|
| 105 |
max_new_tokens=256,
|
| 106 |
num_diffusion_steps=256,
|
|
|
|
| 107 |
)
|
| 108 |
```
|
| 109 |
|
| 110 |
## Command-Line Interface
|
| 111 |
|
|
|
|
|
|
|
|
|
|
| 112 |
```bash
|
| 113 |
-
# Task mode
|
| 114 |
-
python demo_rnd_generation.py --prompt "
|
| 115 |
|
| 116 |
-
# Completion mode
|
| 117 |
-
python demo_rnd_generation.py --mode completion --prompt "The
|
| 118 |
|
| 119 |
-
#
|
| 120 |
-
python demo_rnd_generation.py --top_k 50 --temperature 0.7 --prompt "
|
| 121 |
```
|
| 122 |
|
| 123 |
## Technical Details
|
|
|
|
| 9 |
<center>
|
| 10 |
<div style="text-align: center;">
|
| 11 |
<img
|
| 12 |
+
src="https://raw.githubusercontent.com/RadicalNumerics/assets/refs/heads/main/svg/rn-logo-desktop-vector-animated.svg"
|
| 13 |
alt="Radical Numerics"
|
| 14 |
style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
|
| 15 |
/>
|
| 16 |
</div>
|
| 17 |
</center>
|
| 18 |
|
|
|
|
|
|
|
| 19 |
# RND1-Base-0910
|
| 20 |
|
| 21 |
RND1 is an experimental diffusion language model with 30B parameters and 3B active parameters per token (sparse Mixture-of-Experts). This model was converted from a pretrained autoregressive base to enable diffusion-based text generation.
|
|
|
|
| 47 |
```bash
|
| 48 |
pip install flashinfer-python
|
| 49 |
pip install sglang[all]
|
| 50 |
+
pip install vllm
|
| 51 |
```
|
| 52 |
|
| 53 |
+
> [!WARNING]
|
| 54 |
+
> Selecting a non-Huggingface MoE backend is highly encouraged for faster generation. Note however that non-HF backends currently support a single GPU only, so you need to set e.g. `export CUDA_VISIBLE_DEVICES=0` before running the script. If you use `flashinfer-python`, JIT compilation the first time the code is run may take a while unless `flashinfer-jit-cache` is installed.
|
| 55 |
+
|
| 56 |
|
| 57 |
## Quick Start
|
| 58 |
|
| 59 |
```python
|
| 60 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 61 |
+
|
| 62 |
+
# Load tokenizer
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained("radicalnumerics/RND1-Base-0910", trust_remote_code=True)
|
| 64 |
|
| 65 |
# Load model
|
| 66 |
model = AutoModelForMaskedLM.from_pretrained(
|
| 67 |
"radicalnumerics/RND1-Base-0910",
|
| 68 |
+
dtype="bfloat16",
|
| 69 |
+
device_map="auto",
|
| 70 |
trust_remote_code=True,
|
| 71 |
+
moe_backend="vllm", # hf, sglang, vllm, flashinfer
|
|
|
|
| 72 |
)
|
|
|
|
| 73 |
|
| 74 |
# Generate - Task mode (for instructions and questions)
|
| 75 |
+
prompt = "Write a Python function that finds the longest common subsequence of two strings. Include comments explaining the algorithm."
|
| 76 |
+
inputs = tokenizer(f"Question: {prompt}\nAnswer:", return_tensors="pt")
|
| 77 |
+
input_ids = inputs.input_ids.to(model.device)
|
| 78 |
+
|
| 79 |
+
# Generate
|
| 80 |
output = model.generate(
|
| 81 |
+
inputs=input_ids,
|
| 82 |
max_new_tokens=256,
|
| 83 |
num_diffusion_steps=256,
|
| 84 |
+
temperature=0.01,
|
| 85 |
)
|
| 86 |
+
|
| 87 |
+
# Decode only the generated part
|
| 88 |
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 89 |
print(text)
|
| 90 |
```
|
|
|
|
| 113 |
inputs=inputs.input_ids,
|
| 114 |
max_new_tokens=256,
|
| 115 |
num_diffusion_steps=256,
|
| 116 |
+
temperature=0.01,
|
| 117 |
)
|
| 118 |
```
|
| 119 |
|
| 120 |
## Command-Line Interface
|
| 121 |
|
| 122 |
+
Following the Github repo's demo script [demo_rnd_generation.py](https://github.com/RadicalNumerics/RND1/blob/main/demo_rnd_generation.py):
|
| 123 |
+
|
| 124 |
+
|
| 125 |
```bash
|
| 126 |
+
# Task mode (default) - for instructions, questions, or requests
|
| 127 |
+
python demo_rnd_generation.py --prompt "Write a Python function that finds the longest common subsequence of two strings. Include comments explaining the algorithm." --moe_backend hf
|
| 128 |
|
| 129 |
+
# Completion mode - for text continuation
|
| 130 |
+
python demo_rnd_generation.py --mode completion --prompt "The key to understanding quantum computing lies in" --moe_backend hf
|
| 131 |
|
| 132 |
+
# Sampling parameters
|
| 133 |
+
python demo_rnd_generation.py --top_k 50 --temperature 0.7 --prompt "Explain how neural networks learn in simple terms" --moe_backend hf
|
| 134 |
```
|
| 135 |
|
| 136 |
## Technical Details
|
rn-logo-animated.svg
DELETED