Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -18,7 +18,7 @@ tags:
|
|
| 18 |
</h1>
|
| 19 |
</div>
|
| 20 |
<div align="center">
|
| 21 |
-
🤗 <a href="https://huggingface.co/qihoo360">
|
| 22 |
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
| 23 |
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
|
| 24 |
</div>
|
|
@@ -29,22 +29,22 @@ tags:
|
|
| 29 |
|
| 30 |
<br>
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
🎉🎉🎉We
|
| 34 |
- **360Zhinao-7B-Base**
|
| 35 |
- **360Zhinao-7B-Chat-4K**
|
| 36 |
- **360Zhinao-7B-Chat-32K**
|
| 37 |
- **360Zhinao-7B-Chat-360K**
|
| 38 |
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
- **
|
| 42 |
-
- **Chat Model:** Powerful chat capabilities and three different sequence lengths of 4K, 32K and 360K. 360K (about 500k Chinese characters) is the longest sequcence length among open-sourced Chinese models until now.
|
| 43 |
|
| 44 |
<br>
|
| 45 |
|
| 46 |
# News and Updates
|
| 47 |
-
- 2024.04.12 We
|
| 48 |
|
| 49 |
<br>
|
| 50 |
|
|
@@ -59,7 +59,7 @@ The characteristics of the 360Zhinao open-source models are:
|
|
| 59 |
<br>
|
| 60 |
|
| 61 |
# Download URL
|
| 62 |
-
|
| 63 |
| Size | Model | BF16 | Int4|
|
| 64 |
|-|-|-|-|
|
| 65 |
| 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
|
|
@@ -71,7 +71,11 @@ See the following table for this release and download links:
|
|
| 71 |
|
| 72 |
# Model Evaluation
|
| 73 |
## Base Model
|
| 74 |
-
We evaluate
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
| <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
|
| 77 |
|:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
|
@@ -91,28 +95,29 @@ We evaluate the performance of our model on the OpenCompass evaluation datasets,
|
|
| 91 |
| Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
|
| 92 |
| **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
|
| 93 |
|
| 94 |
-
The above results could be viewed or reproduced on [Opencompass](https://rank.opencompass.org.cn/leaderboard-llm).
|
| 95 |
|
| 96 |
## Chat Models
|
| 97 |
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
-
- Firstly, we performed Continual Pretraining on approximately 5B tokens with a 32K context window.
|
| 102 |
-
- Then during the SFT stage, we fine-tuned the model using long data from various sources, including high-quality human-labeled 32K data.
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
We evaluated our models across various lengths and benchmarks.
|
| 111 |
|
| 112 |
- ### Long Context Benchmarks
|
| 113 |
|
| 114 |
|
| 115 |
-
We evaluated our 32K and 360K models on [LongBench](https://github.com/THUDM/LongBench), a multi-task bilingual benchmark for long contexts. We report results on Chinese tasks
|
| 116 |
|
| 117 |
| Model | Avg | Single-Doc QA | Multi-Doc QA | Summarization | Few-Shot Learning | Code Completion |
|
| 118 |
| :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
|
|
@@ -158,18 +163,19 @@ We evaluated our models across various lengths and benchmarks.
|
|
| 158 |
<br>
|
| 159 |
|
| 160 |
# Quickstart
|
| 161 |
-
|
| 162 |
|
| 163 |
## Dependency Installation
|
| 164 |
-
- python 3.8
|
| 165 |
-
- pytorch 2.0
|
| 166 |
-
- transformers 4.37.2
|
| 167 |
-
- CUDA 11.4
|
| 168 |
|
| 169 |
```shell
|
| 170 |
pip install -r requirements.txt
|
| 171 |
```
|
| 172 |
-
|
|
|
|
| 173 |
|
| 174 |
>flash-attn >= 2.3.6
|
| 175 |
```shell
|
|
@@ -179,7 +185,6 @@ FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
|
|
| 179 |
## 🤗 Transformers
|
| 180 |
### Demonstration of Base Model Inference
|
| 181 |
|
| 182 |
-
This code demonstrates fast inference with 360Zhinao-7B-Base models using transformers.
|
| 183 |
```python
|
| 184 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 185 |
from transformers.generation import GenerationConfig
|
|
@@ -207,7 +212,6 @@ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
|
| 207 |
```
|
| 208 |
### Demonstration of Chat Model Inference
|
| 209 |
|
| 210 |
-
This code demo uses transformers to quickly use the 360Zhinao-7B-Chat-4K model for inference.
|
| 211 |
```python
|
| 212 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 213 |
from transformers.generation import GenerationConfig
|
|
@@ -244,8 +248,6 @@ print(messages)
|
|
| 244 |
## 🤖 ModelScope
|
| 245 |
### Demonstration of Base Model Inference
|
| 246 |
|
| 247 |
-
This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Base model for inference.
|
| 248 |
-
|
| 249 |
```python
|
| 250 |
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
| 251 |
from modelscope import GenerationConfig
|
|
@@ -274,8 +276,6 @@ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
|
| 274 |
|
| 275 |
### Demonstration of Chat Model Inference
|
| 276 |
|
| 277 |
-
This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Chat-4K model for inference.
|
| 278 |
-
|
| 279 |
```python
|
| 280 |
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
| 281 |
from modelscope import GenerationConfig
|
|
@@ -310,7 +310,8 @@ print(messages)
|
|
| 310 |
```
|
| 311 |
|
| 312 |
## CLI Demo
|
| 313 |
-
Use terminal
|
|
|
|
| 314 |
```shell
|
| 315 |
python cli_demo.py
|
| 316 |
```
|
|
@@ -319,7 +320,7 @@ python cli_demo.py
|
|
| 319 |
<p>
|
| 320 |
|
| 321 |
## Web Demo
|
| 322 |
-
|
| 323 |
```shell
|
| 324 |
streamlit run web_demo.py
|
| 325 |
```
|
|
@@ -328,12 +329,12 @@ streamlit run web_demo.py
|
|
| 328 |
<p>
|
| 329 |
|
| 330 |
## API Demo
|
| 331 |
-
|
| 332 |
```shell
|
| 333 |
python openai_api.py
|
| 334 |
```
|
| 335 |
|
| 336 |
-
|
| 337 |
```shell
|
| 338 |
curl 'http://localhost:8360/v1/chat/completions' \
|
| 339 |
-H 'Content-Type: application/json' \
|
|
@@ -355,23 +356,23 @@ curl 'http://localhost:8360/v1/chat/completions' \
|
|
| 355 |
|
| 356 |
# Model Inference
|
| 357 |
## Quantization
|
| 358 |
-
We provide quantization schemes based on AutoGPTQ and
|
| 359 |
|
| 360 |
## Deployment
|
| 361 |
### vLLM Installation
|
| 362 |
-
|
| 363 |
|
| 364 |
-
If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with
|
| 365 |
```shell
|
| 366 |
pip install vllm==0.3.3
|
| 367 |
```
|
| 368 |
|
| 369 |
-
Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
| 370 |
|
| 371 |
-
|
| 372 |
-
1. Copy
|
| 373 |
-
2. Copy
|
| 374 |
-
3. Then add a line
|
| 375 |
|
| 376 |
```shell
|
| 377 |
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
|
@@ -379,7 +380,7 @@ Otherwise, please refer to the official vLLM [Installation Instructions](https:/
|
|
| 379 |
|
| 380 |
### vLLM Service Start
|
| 381 |
|
| 382 |
-
|
| 383 |
```shell
|
| 384 |
python -m vllm.entrypoints.openai.api_server \
|
| 385 |
--served-model-name 360Zhinao-7B-Chat-4K \
|
|
@@ -391,7 +392,7 @@ python -m vllm.entrypoints.openai.api_server \
|
|
| 391 |
--port 8360
|
| 392 |
```
|
| 393 |
|
| 394 |
-
Use curl to request the service
|
| 395 |
```shell
|
| 396 |
curl http://localhost:8360/v1/chat/completions \
|
| 397 |
-H "Content-Type: application/json" \
|
|
@@ -414,7 +415,7 @@ curl http://localhost:8360/v1/chat/completions \
|
|
| 414 |
]
|
| 415 |
}'
|
| 416 |
```
|
| 417 |
-
Use python to request the service
|
| 418 |
```python
|
| 419 |
from openai import OpenAI
|
| 420 |
openai_api_key = "EMPTY"
|
|
@@ -442,16 +443,15 @@ chat_response = client.chat.completions.create(
|
|
| 442 |
print("Chat response:", chat_response)
|
| 443 |
```
|
| 444 |
|
| 445 |
-
>
|
| 446 |
|
| 447 |
-
>
|
| 448 |
|
| 449 |
<br>
|
| 450 |
|
| 451 |
# Model Finetune
|
| 452 |
## Training data
|
| 453 |
|
| 454 |
-
Training Data: data/training_data_sample.json
|
| 455 |
|
| 456 |
Data Format:
|
| 457 |
```json
|
|
@@ -475,7 +475,7 @@ Data Format:
|
|
| 475 |
}
|
| 476 |
]
|
| 477 |
```
|
| 478 |
-
##
|
| 479 |
```shell
|
| 480 |
set -x
|
| 481 |
|
|
@@ -531,15 +531,15 @@ deepspeed --hostfile ${HOSTFILE} \
|
|
| 531 |
```shell
|
| 532 |
bash finetune/ds_finetune.sh
|
| 533 |
```
|
| 534 |
-
-
|
| 535 |
-
-
|
| 536 |
-
-
|
| 537 |
-
-
|
| 538 |
|
| 539 |
<br>
|
| 540 |
|
| 541 |
# License
|
| 542 |
|
| 543 |
-
The source code of this
|
| 544 |
|
| 545 |
-
|
|
|
|
| 18 |
</h1>
|
| 19 |
</div>
|
| 20 |
<div align="center">
|
| 21 |
+
🤗 <a href="https://huggingface.co/qihoo360">HuggingFace</a>   |   
|
| 22 |
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
| 23 |
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
|
| 24 |
</div>
|
|
|
|
| 29 |
|
| 30 |
<br>
|
| 31 |
|
| 32 |
+
# Introduction
|
| 33 |
+
🎉🎉🎉 We released the 360Zhinao model series:
|
| 34 |
- **360Zhinao-7B-Base**
|
| 35 |
- **360Zhinao-7B-Chat-4K**
|
| 36 |
- **360Zhinao-7B-Chat-32K**
|
| 37 |
- **360Zhinao-7B-Chat-360K**
|
| 38 |
|
| 39 |
+
Notable features of our 360Zhinao models are:
|
| 40 |
|
| 41 |
+
- **Base Model:** Leveraging a high-quality corpus of 3.4 trillion tokens consisting of mainly Chinese, English and code, we achieved competitive performance on relevant benchmarks against other 7B models.
|
| 42 |
+
- **Chat Models:** Powerful chat capabilities and three context lengths of 4K, 32K and 360K. 360K (around 500k Chinese characters) is the longest context length among Chinese open-sourced models upon release (Apr. 11, 2024).
|
|
|
|
| 43 |
|
| 44 |
<br>
|
| 45 |
|
| 46 |
# News and Updates
|
| 47 |
+
- [2024.04.12] We released **360Zhinao-7B** v1.0, including the base model and three chat models with context lengths 4K, 32K and 360K.
|
| 48 |
|
| 49 |
<br>
|
| 50 |
|
|
|
|
| 59 |
<br>
|
| 60 |
|
| 61 |
# Download URL
|
| 62 |
+
|
| 63 |
| Size | Model | BF16 | Int4|
|
| 64 |
|-|-|-|-|
|
| 65 |
| 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
|
|
|
|
| 71 |
|
| 72 |
# Model Evaluation
|
| 73 |
## Base Model
|
| 74 |
+
We evaluate our model on [OpenCompass](https://opencompass.org.cn/home), more specifically on C-Eval, AGIEval, MMLU, CMMLU, HellaSwag, MATH, GSM8K, HumanEval, MBPP, BBH and LAMBADA.
|
| 75 |
+
These benchmarks test the model on
|
| 76 |
+
natural language understanding, knowledge, mathematics, code generation and logical reasoning, etc.
|
| 77 |
+
|
| 78 |
+
Results are listed as follows and could be viewed or reproduced on [OpenCompass leaderboard](https://rank.opencompass.org.cn/leaderboard-llm).
|
| 79 |
|
| 80 |
| <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
|
| 81 |
|:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
|
|
|
| 95 |
| Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
|
| 96 |
| **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
|
| 97 |
|
|
|
|
| 98 |
|
| 99 |
## Chat Models
|
| 100 |
|
| 101 |
+
The 4K and 32K models are trained separately with the same 4K SFT data.
|
| 102 |
|
| 103 |
+
To train the long-context models, we adopted a two-stage approach.
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
**First stage**: We increased RoPE base and extended the context length to 32K.
|
| 106 |
+
- Firstly, we performed Continual Pretraining on approximately 5B tokens with a 32K context window.
|
| 107 |
+
- Then during the SFT stage, we finetuned the model using long data from various sources, including high-quality human-labeled 32K data.
|
| 108 |
+
|
| 109 |
+
**Second stage**: We extended the context length to 360K, training with the following data:
|
| 110 |
+
- A small amount of high-quality human-labeled super-long data.
|
| 111 |
+
- Due to the scarcity of annotated super-long data, we constructed various forms of synthetic data.
|
| 112 |
+
- Multi-Doc QA: Similar to [Ziya-Reader](https://arxiv.org/abs/2311.09198), we generated multi-document QA pairs based on 360's database. Multiple QA pairs are constructed for one row of Multi-Doc QA data input, resulting in a multi-turn format and significantly improving the training efficiency.
|
| 113 |
+
- Single-Doc QA: Similar to [LLama2 Long](https://arxiv.org/abs/2309.16039), we constructed multi-turn QA data based on different segments within one row of long-text input.
|
| 114 |
|
| 115 |
We evaluated our models across various lengths and benchmarks.
|
| 116 |
|
| 117 |
- ### Long Context Benchmarks
|
| 118 |
|
| 119 |
|
| 120 |
+
We evaluated our 32K and 360K models on [LongBench](https://github.com/THUDM/LongBench), a multi-task bilingual benchmark for long contexts. We report results on **Chinese** tasks most relevant to downstream applications: Single/Multi-Doc QA, Summarization, Few-Shot Learning and Code Completion.
|
| 121 |
|
| 122 |
| Model | Avg | Single-Doc QA | Multi-Doc QA | Summarization | Few-Shot Learning | Code Completion |
|
| 123 |
| :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
|
|
|
|
| 163 |
<br>
|
| 164 |
|
| 165 |
# Quickstart
|
| 166 |
+
We provide simple examples illustrating the use of 360Zhinao-7B-Base and 360Zhinao-7B-Chat on 🤖ModelScope and 🤗Transformers.
|
| 167 |
|
| 168 |
## Dependency Installation
|
| 169 |
+
- python >= 3.8
|
| 170 |
+
- pytorch >= 2.0
|
| 171 |
+
- transformers >= 4.37.2
|
| 172 |
+
- CUDA >= 11.4
|
| 173 |
|
| 174 |
```shell
|
| 175 |
pip install -r requirements.txt
|
| 176 |
```
|
| 177 |
+
|
| 178 |
+
Optionally, we recommend installing Flash-Attention 2 to improve performance and reduce memory footprint.
|
| 179 |
|
| 180 |
>flash-attn >= 2.3.6
|
| 181 |
```shell
|
|
|
|
| 185 |
## 🤗 Transformers
|
| 186 |
### Demonstration of Base Model Inference
|
| 187 |
|
|
|
|
| 188 |
```python
|
| 189 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 190 |
from transformers.generation import GenerationConfig
|
|
|
|
| 212 |
```
|
| 213 |
### Demonstration of Chat Model Inference
|
| 214 |
|
|
|
|
| 215 |
```python
|
| 216 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 217 |
from transformers.generation import GenerationConfig
|
|
|
|
| 248 |
## 🤖 ModelScope
|
| 249 |
### Demonstration of Base Model Inference
|
| 250 |
|
|
|
|
|
|
|
| 251 |
```python
|
| 252 |
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
| 253 |
from modelscope import GenerationConfig
|
|
|
|
| 276 |
|
| 277 |
### Demonstration of Chat Model Inference
|
| 278 |
|
|
|
|
|
|
|
| 279 |
```python
|
| 280 |
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
| 281 |
from modelscope import GenerationConfig
|
|
|
|
| 310 |
```
|
| 311 |
|
| 312 |
## CLI Demo
|
| 313 |
+
Use terminal for command-line interface:
|
| 314 |
+
|
| 315 |
```shell
|
| 316 |
python cli_demo.py
|
| 317 |
```
|
|
|
|
| 320 |
<p>
|
| 321 |
|
| 322 |
## Web Demo
|
| 323 |
+
|
| 324 |
```shell
|
| 325 |
streamlit run web_demo.py
|
| 326 |
```
|
|
|
|
| 329 |
<p>
|
| 330 |
|
| 331 |
## API Demo
|
| 332 |
+
Launch api:
|
| 333 |
```shell
|
| 334 |
python openai_api.py
|
| 335 |
```
|
| 336 |
|
| 337 |
+
Then request with parameters:
|
| 338 |
```shell
|
| 339 |
curl 'http://localhost:8360/v1/chat/completions' \
|
| 340 |
-H 'Content-Type: application/json' \
|
|
|
|
| 356 |
|
| 357 |
# Model Inference
|
| 358 |
## Quantization
|
| 359 |
+
We provide quantization schemes based on AutoGPTQ and release the Int4 quantization models.
|
| 360 |
|
| 361 |
## Deployment
|
| 362 |
### vLLM Installation
|
| 363 |
+
We recommend using `vLLM==0.3.3`.
|
| 364 |
|
| 365 |
+
If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with:
|
| 366 |
```shell
|
| 367 |
pip install vllm==0.3.3
|
| 368 |
```
|
| 369 |
|
| 370 |
+
Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html).
|
| 371 |
|
| 372 |
+
After installation, perform the following steps:
|
| 373 |
+
1. Copy `vllm/zhinao.py` into `vllm/model_executor/models` in your vllm installation directory (in python/conda env).
|
| 374 |
+
2. Copy `vllm/serving_chat.py` into `vllm/entrypoints/openai` in your vllm installation directory.
|
| 375 |
+
3. Then add a line in `vllm/model_executor/models/__init__.py`
|
| 376 |
|
| 377 |
```shell
|
| 378 |
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
|
|
|
| 380 |
|
| 381 |
### vLLM Service Start
|
| 382 |
|
| 383 |
+
Start the service:
|
| 384 |
```shell
|
| 385 |
python -m vllm.entrypoints.openai.api_server \
|
| 386 |
--served-model-name 360Zhinao-7B-Chat-4K \
|
|
|
|
| 392 |
--port 8360
|
| 393 |
```
|
| 394 |
|
| 395 |
+
Use curl to request the service:
|
| 396 |
```shell
|
| 397 |
curl http://localhost:8360/v1/chat/completions \
|
| 398 |
-H "Content-Type: application/json" \
|
|
|
|
| 415 |
]
|
| 416 |
}'
|
| 417 |
```
|
| 418 |
+
Use python to request the service:
|
| 419 |
```python
|
| 420 |
from openai import OpenAI
|
| 421 |
openai_api_key = "EMPTY"
|
|
|
|
| 443 |
print("Chat response:", chat_response)
|
| 444 |
```
|
| 445 |
|
| 446 |
+
> If you need to enable repetition penalty, we recommend setting `presence_penalty` and `frequency_penalty` instead of `repetition_penalty`.
|
| 447 |
|
|
|
|
| 448 |
|
| 449 |
<br>
|
| 450 |
|
| 451 |
# Model Finetune
|
| 452 |
## Training data
|
| 453 |
|
| 454 |
+
Training Data: `data/training_data_sample.json`. This example data has 10,000 rows sampled from [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) with converted format.
|
| 455 |
|
| 456 |
Data Format:
|
| 457 |
```json
|
|
|
|
| 475 |
}
|
| 476 |
]
|
| 477 |
```
|
| 478 |
+
## Finetuning scripts
|
| 479 |
```shell
|
| 480 |
set -x
|
| 481 |
|
|
|
|
| 531 |
```shell
|
| 532 |
bash finetune/ds_finetune.sh
|
| 533 |
```
|
| 534 |
+
- Configuring `HOSTFILE` switches between single-machine and multi-machine training.
|
| 535 |
+
- configuring `ds_config` switches between zero1, zero2 and zero3.
|
| 536 |
+
- `fp16, bf16` could configure mixed precision training. bf16 is recommended to be consistent with the pretrained model.
|
| 537 |
+
- `is_concat` configures whether the training data is concatenated or not.
|
| 538 |
|
| 539 |
<br>
|
| 540 |
|
| 541 |
# License
|
| 542 |
|
| 543 |
+
The source code of this repository follows the open-source license Apache 2.0.
|
| 544 |
|
| 545 |
+
360Zhinao open-source models support commercial use. If you wish to use these models or continue training them for commercial purposes, please contact us via email ([email protected]) to apply. For the specific license agreement, please see [<<360 Zhinao Open-Source Model License>>](https://github.com/Qihoo360/360zhinao/blob/main/360%E6%99%BA%E8%84%91%E5%BC%80%E6%BA%90%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E8%AF%81.txt).
|