- Multi-Object Discovery by Low-Dimensional Object Motion Recent work in unsupervised multi-object segmentation shows impressive results by predicting motion from a single image despite the inherent ambiguity in predicting motion without the next image. On the other hand, the set of possible motions for an image can be constrained to a low-dimensional space by considering the scene structure and moving objects in it. We propose to model pixel-wise geometry and object motion to remove ambiguity in reconstructing flow from a single image. Specifically, we divide the image into coherently moving regions and use depth to construct flow bases that best explain the observed flow in each region. We achieve state-of-the-art results in unsupervised multi-object segmentation on synthetic and real-world datasets by modeling the scene structure and object motion. Our evaluation of the predicted depth maps shows reliable performance in monocular depth estimation. 2 authors · Jul 16, 2023
- The Learnable Typewriter: A Generative Approach to Text Analysis We present a generative document-specific approach to character analysis and recognition in text lines. Our main idea is to build on unsupervised multi-object segmentation methods and in particular those that reconstruct images based on a limited amount of visual elements, called sprites. Taking as input a set of text lines with similar font or handwriting, our approach can learn a large number of different characters and leverage line-level annotations when available. Our contribution is twofold. First, we provide the first adaptation and evaluation of a deep unsupervised multi-object segmentation approach for text line analysis. Since these methods have mainly been evaluated on synthetic data in a completely unsupervised setting, demonstrating that they can be adapted and quantitatively evaluated on real images of text and that they can be trained using weak supervision are significant progresses. Second, we show the potential of our method for new applications, more specifically in the field of paleography, which studies the history and variations of handwriting, and for cipher analysis. We demonstrate our approach on three very different datasets: a printed volume of the Google1000 dataset, the Copiale cipher and historical handwritten charters from the 12th and early 13th century. 5 authors · Feb 3, 2023
- OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point Clouds In this paper, we study the problem of 3D object segmentation from raw point clouds. Unlike all existing methods which usually require a large amount of human annotations for full supervision, we propose the first unsupervised method, called OGC, to simultaneously identify multiple 3D objects in a single forward pass, without needing any type of human annotations. The key to our approach is to fully leverage the dynamic motion patterns over sequential point clouds as supervision signals to automatically discover rigid objects. Our method consists of three major components, 1) the object segmentation network to directly estimate multi-object masks from a single point cloud frame, 2) the auxiliary self-supervised scene flow estimator, and 3) our core object geometry consistency component. By carefully designing a series of loss functions, we effectively take into account the multi-object rigid consistency and the object shape invariance in both temporal and spatial scales. This allows our method to truly discover the object geometry even in the absence of annotations. We extensively evaluate our method on five datasets, demonstrating the superior performance for object part instance segmentation and general object segmentation in both indoor and the challenging outdoor scenarios. 2 authors · Oct 10, 2022
- Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation In this paper, we propose a simple yet effective approach for self-supervised video object segmentation (VOS). Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust spatio-temporal correspondences in videos. Furthermore, simple clustering on this correspondence cue is sufficient to yield competitive segmentation results. Previous self-supervised VOS techniques majorly resort to auxiliary modalities or utilize iterative slot attention to assist in object discovery, which restricts their general applicability and imposes higher computational requirements. To deal with these challenges, we develop a simplified architecture that capitalizes on the emerging objectness from DINO-pretrained Transformers, bypassing the need for additional modalities or slot attention. Specifically, we first introduce a single spatio-temporal Transformer block to process the frame-wise DINO features and establish spatio-temporal dependencies in the form of self-attention. Subsequently, utilizing these attention maps, we implement hierarchical clustering to generate object segmentation masks. To train the spatio-temporal block in a fully self-supervised manner, we employ semantic and dynamic motion consistency coupled with entropy normalization. Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and particularly excels in complex real-world multi-object video segmentation tasks such as DAVIS-17-Unsupervised and YouTube-VIS-19. The code and model checkpoints will be released at https://github.com/shvdiwnkozbw/SSL-UVOS. 5 authors · Nov 29, 2023
- Multi-granularity Interaction Simulation for Unsupervised Interactive Segmentation Interactive segmentation enables users to segment as needed by providing cues of objects, which introduces human-computer interaction for many fields, such as image editing and medical image analysis. Typically, massive and expansive pixel-level annotations are spent to train deep models by object-oriented interactions with manually labeled object masks. In this work, we reveal that informative interactions can be made by simulation with semantic-consistent yet diverse region exploration in an unsupervised paradigm. Concretely, we introduce a Multi-granularity Interaction Simulation (MIS) approach to open up a promising direction for unsupervised interactive segmentation. Drawing on the high-quality dense features produced by recent self-supervised models, we propose to gradually merge patches or regions with similar features to form more extensive regions and thus, every merged region serves as a semantic-meaningful multi-granularity proposal. By randomly sampling these proposals and simulating possible interactions based on them, we provide meaningful interaction at multiple granularities to teach the model to understand interactions. Our MIS significantly outperforms non-deep learning unsupervised methods and is even comparable with some previous deep-supervised methods without any annotation. 9 authors · Mar 23, 2023
- Part2Object: Hierarchical Unsupervised 3D Instance Segmentation Unsupervised 3D instance segmentation aims to segment objects from a 3D point cloud without any annotations. Existing methods face the challenge of either too loose or too tight clustering, leading to under-segmentation or over-segmentation. To address this issue, we propose Part2Object, hierarchical clustering with object guidance. Part2Object employs multi-layer clustering from points to object parts and objects, allowing objects to manifest at any layer. Additionally, it extracts and utilizes 3D objectness priors from temporally consecutive 2D RGB frames to guide the clustering process. Moreover, we propose Hi-Mask3D to support hierarchical 3D object part and instance segmentation. By training Hi-Mask3D on the objects and object parts extracted from Part2Object, we achieve consistent and superior performance compared to state-of-the-art models in various settings, including unsupervised instance segmentation, data-efficient fine-tuning, and cross-dataset generalization. Code is release at https://github.com/ChengShiest/Part2Object 6 authors · Jul 14, 2024
- GTPBD: A Fine-Grained Global Terraced Parcel and Boundary Dataset Agricultural parcels serve as basic units for conducting agricultural practices and applications, which is vital for land ownership registration, food security assessment, soil erosion monitoring, etc. However, existing agriculture parcel extraction studies only focus on mid-resolution mapping or regular plain farmlands while lacking representation of complex terraced terrains due to the demands of precision agriculture.In this paper, we introduce a more fine-grained terraced parcel dataset named GTPBD (Global Terraced Parcel and Boundary Dataset), which is the first fine-grained dataset covering major worldwide terraced regions with more than 200,000 complex terraced parcels with manual annotation. GTPBD comprises 47,537 high-resolution images with three-level labels, including pixel-level boundary labels, mask labels, and parcel labels. It covers seven major geographic zones in China and transcontinental climatic regions around the world.Compared to the existing datasets, the GTPBD dataset brings considerable challenges due to the: (1) terrain diversity; (2) complex and irregular parcel objects; and (3) multiple domain styles. Our proposed GTPBD dataset is suitable for four different tasks, including semantic segmentation, edge detection, terraced parcel extraction, and unsupervised domain adaptation (UDA) tasks.Accordingly, we benchmark the GTPBD dataset on eight semantic segmentation methods, four edge extraction methods, three parcel extraction methods, and five UDA methods, along with a multi-dimensional evaluation framework integrating pixel-level and object-level metrics. GTPBD fills a critical gap in terraced remote sensing research, providing a basic infrastructure for fine-grained agricultural terrain analysis and cross-scenario knowledge transfer. 7 authors · Jul 19