- SuperDec: 3D Scene Decomposition with Superquadric Primitives We present SuperDec, an approach for creating compact 3D scene representations via decomposition into superquadric primitives. While most recent works leverage geometric primitives to obtain photorealistic 3D scene representations, we propose to leverage them to obtain a compact yet expressive representation. We propose to solve the problem locally on individual objects and leverage the capabilities of instance segmentation methods to scale our solution to full 3D scenes. In doing that, we design a new architecture which efficiently decompose point clouds of arbitrary objects in a compact set of superquadrics. We train our architecture on ShapeNet and we prove its generalization capabilities on object instances extracted from the ScanNet++ dataset as well as on full Replica scenes. Finally, we show how a compact representation based on superquadrics can be useful for a diverse range of downstream applications, including robotic tasks and controllable visual content generation and editing. 5 authors · Apr 1
1 Iterative Superquadric Recomposition of 3D Objects from Multiple Views Humans are good at recomposing novel objects, i.e. they can identify commonalities between unknown objects from general structure to finer detail, an ability difficult to replicate by machines. We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views without training a model that uses 3D supervision. To achieve this, we optimize the superquadric parameters that compose a specific instance of the object, comparing its rendered 3D view and 2D image silhouette. Our ISCO framework iteratively adds new superquadrics wherever the reconstruction error is high, abstracting first coarse regions and then finer details of the target object. With this simple coarse-to-fine inductive bias, ISCO provides consistent superquadrics for related object parts, despite not having any semantic supervision. Since ISCO does not train any neural network, it is also inherently robust to out-of-distribution objects. Experiments show that, compared to recent single instance superquadrics reconstruction approaches, ISCO provides consistently more accurate 3D reconstructions, even from images in the wild. Code available at https://github.com/ExplainableML/ISCO . 3 authors · Sep 5, 2023
1 Experimental demonstration of superdirective spherical dielectric antenna An experimental demonstration of directivities exceeding the fundamental Kildal limit, a phenomenon called superdirectivity, is provided for spherical high-index dielectric antennas with an electric dipole excitation. A directivity factor of about 10 with a total efficiency of more than 80\% for an antenna having a size of a third of the wavelength was measured. High directivities are shown to be associated with constructive interference of particular electric and magnetic modes of an open spherical resonator. Both analytic solution for a point dipole and a full-wave rigorous simulation for a realistic dipole antenna were employed for optimization and analysis, yielding an excellent agreement between experimentally measured and numerically predicted directivities. The use of high-index low-loss ceramics can significantly reduce the physical size of such antennas while maintaining their overall high radiation efficiency. Such antennas can be attractive for various high-frequency applications, such as antennas for the Internet of things, smart city systems, 5G network systems, and others. The demonstrated concept can be scaled in frequency. 8 authors · Nov 30, 2022
1 Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods. 5 authors · Jul 14, 2023