Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSuperMapNet for Long-Range and High-Accuracy Vectorized HD Map Construction
Vectorized HD map is essential for autonomous driving. Remarkable work has been achieved in recent years, but there are still major issues: (1) in the generation of the BEV features, single modality-based methods are of limited perception capability, while direct concatenation-based multi-modal methods fail to capture synergies and disparities between different modalities, resulting in limited ranges with feature holes; (2) in the classification and localization of map elements, only point information is used without the consideration of element infor-mation and neglects the interaction between point information and element information, leading to erroneous shapes and element entanglement with low accuracy. To address above issues, we introduce SuperMapNet for long-range and high-accuracy vectorized HD map construction. It uses both camera images and LiDAR point clouds as input, and first tightly couple semantic information from camera images and geometric information from LiDAR point clouds by a cross-attention based synergy enhancement module and a flow-based disparity alignment module for long-range BEV feature generation. And then, local features from point queries and global features from element queries are tightly coupled by three-level interactions for high-accuracy classification and localization, where Point2Point interaction learns local geometric information between points of the same element and of each point, Element2Element interaction learns relation constraints between different elements and semantic information of each elements, and Point2Element interaction learns complement element information for its constituent points. Experiments on the nuScenes and Argoverse2 datasets demonstrate superior performances, surpassing SOTAs over 14.9/8.8 mAP and 18.5/3.1 mAP under hard/easy settings, respectively. The code is made publicly available1.
Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning
Spatial reasoning plays a vital role in both human cognition and machine intelligence, prompting new research into language models' (LMs) capabilities in this regard. However, existing benchmarks reveal shortcomings in evaluating qualitative spatial reasoning (QSR). These benchmarks typically present oversimplified scenarios or unclear natural language descriptions, hindering effective evaluation. We present a novel benchmark for assessing QSR in LMs, which is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships. This approach provides a more detailed and context-rich narrative for spatial reasoning evaluation, diverging from traditional, toy-task-oriented scenarios. Our benchmark encompasses a broad spectrum of qualitative spatial relationships, including topological, directional, and distance relations. These are presented with different viewing points, varied granularities, and density of relation constraints to mimic real-world complexities. A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions, aligning with real-world scenarios where spatial relationships are often open to interpretation. Our benchmark evaluation of advanced LMs reveals their strengths and limitations in spatial reasoning. They face difficulties with multi-hop spatial reasoning and interpreting a mix of different view descriptions, pointing to areas for future improvement.
SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP^2OT) problem, which progressively transports each sample to imbalanced clusters under several prior distribution and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve SP^2OT, we develop a Majorization-Minimization-based optimization algorithm. To be more precise, we employ the strategy of majorization to reformulate the SP^2OT problem into a Progressive Partial Optimal Transport problem, which can be transformed into an unbalanced optimal transport problem with augmented constraints and can be solved efficiently by a fast matrix scaling algorithm. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method.
Improving Knowledge Graph Embedding Using Simple Constraints
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Early works performed this task via simple models developed over KG triples. Recent attempts focused on either designing more complicated triple scoring models, or incorporating extra information beyond triples. This paper, by contrast, investigates the potential of using very simple constraints to improve KG embedding. We examine non-negativity constraints on entity representations and approximate entailment constraints on relation representations. The former help to learn compact and interpretable representations for entities. The latter further encode regularities of logical entailment between relations into their distributed representations. These constraints impose prior beliefs upon the structure of the embedding space, without negative impacts on efficiency or scalability. Evaluation on WordNet, Freebase, and DBpedia shows that our approach is simple yet surprisingly effective, significantly and consistently outperforming competitive baselines. The constraints imposed indeed improve model interpretability, leading to a substantially increased structuring of the embedding space. Code and data are available at https://github.com/iieir-km/ComplEx-NNE_AER.
Logic Induced High-Order Reasoning Network for Event-Event Relation Extraction
To understand a document with multiple events, event-event relation extraction (ERE) emerges as a crucial task, aiming to discern how natural events temporally or structurally associate with each other. To achieve this goal, our work addresses the problems of temporal event relation extraction (TRE) and subevent relation extraction (SRE). The latest methods for such problems have commonly built document-level event graphs for global reasoning across sentences. However, the edges between events are usually derived from external tools heuristically, which are not always reliable and may introduce noise. Moreover, they are not capable of preserving logical constraints among event relations, e.g., coreference constraint, symmetry constraint and conjunction constraint. These constraints guarantee coherence between different relation types,enabling the generation of a uniffed event evolution graph. In this work, we propose a novel method named LogicERE, which performs high-order event relation reasoning through modeling logic constraints. Speciffcally, different from conventional event graphs, we design a logic constraint induced graph (LCG) without any external tools. LCG involves event nodes where the interactions among them can model the coreference constraint, and event pairs nodes where the interactions among them can retain the symmetry constraint and conjunction constraint. Then we perform high-order reasoning on LCG with relational graph transformer to obtain enhanced event and event pair embeddings. Finally, we further incorporate logic constraint information via a joint logic learning module. Extensive experiments demonstrate the effectiveness of the proposed method with state-of-the-art performance on benchmark datasets.
JAGB 2.0: Improved Constraints on the J-region Asymptotic Giant Branch-based Hubble Constant from an Expanded Sample of JWST Observations
The J-region Asymptotic Giant Branch (JAGB) is an overdensity of stars in the near-infrared, attributed to carbon-rich asymptotic giant branch stars, and recently used as a standard candle for measuring extragalactic distances and the Hubble constant. Using JWST in Cycle 2, we extend JAGB measurements to 6 hosts of 9 Type Ia supernovae (SNe Ia) (NGC 2525, NGC 3147, NGC 3370, NGC 3447, NGC 5468, and NGC 5861), with two at D sim 40 Mpc, all calibrated by the maser host NGC 4258. We investigate the effects of incompleteness and find that we are unable to recover a robust JAGB measurement in one of the two most distant hosts at R sim 40 Mpc, NGC 3147. We compile all JWST JAGB observations in SNe Ia hosts, 15 galaxies hosting 18 SNe Ia, from the SH0ES and CCHP programs and employ all literature measures (mode, mean, median, model). We find no significant mean difference between these distances and those from HST Cepheids, -0.03pm0.02 (stat) pm 0.05 (sys) mag. We find a difference of 0.11 pm 0.02 mag between JAGB mode measurements in the CCHP analyses of two fields in NGC 4258, a feature also seen in two SH0ES fields (see field-to-field variations in Li et al. 2024a), indicating significant field-to-field variation of JAGB measurements in NGC 4258 which produce a large absolute calibration uncertainty. Variations are also seen in the shape of the JAGB LF across galaxies so that different measures produce different values of the Hubble constant. We look for but do not (yet) find a standardizing relation between JAGB LF skew or color dependence and the apparent variation. Using the middle result of all JAGB measures to calibrate SNe Ia yields a Hubble constant of H_0 = 73.3 pm 1.4 (stat) pm 2.0 (sys) km/s/Mpc with the systematic dominated by apparent differences across NGC 4258 calibrating fields or their measures.
Joint-Relation Transformer for Multi-Person Motion Prediction
Multi-person motion prediction is a challenging problem due to the dependency of motion on both individual past movements and interactions with other people. Transformer-based methods have shown promising results on this task, but they miss the explicit relation representation between joints, such as skeleton structure and pairwise distance, which is crucial for accurate interaction modeling. In this paper, we propose the Joint-Relation Transformer, which utilizes relation information to enhance interaction modeling and improve future motion prediction. Our relation information contains the relative distance and the intra-/inter-person physical constraints. To fuse relation and joint information, we design a novel joint-relation fusion layer with relation-aware attention to update both features. Additionally, we supervise the relation information by forecasting future distance. Experiments show that our method achieves a 13.4% improvement of 900ms VIM on 3DPW-SoMoF/RC and 17.8%/12.0% improvement of 3s MPJPE on CMU-Mpcap/MuPoTS-3D dataset.
Relation-Aware Diffusion Model for Controllable Poster Layout Generation
Poster layout is a crucial aspect of poster design. Prior methods primarily focus on the correlation between visual content and graphic elements. However, a pleasant layout should also consider the relationship between visual and textual contents and the relationship between elements. In this study, we introduce a relation-aware diffusion model for poster layout generation that incorporates these two relationships in the generation process. Firstly, we devise a visual-textual relation-aware module that aligns the visual and textual representations across modalities, thereby enhancing the layout's efficacy in conveying textual information. Subsequently, we propose a geometry relation-aware module that learns the geometry relationship between elements by comprehensively considering contextual information. Additionally, the proposed method can generate diverse layouts based on user constraints. To advance research in this field, we have constructed a poster layout dataset named CGL-Dataset V2. Our proposed method outperforms state-of-the-art methods on CGL-Dataset V2. The data and code will be available at https://github.com/liuan0803/RADM.
KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction
Recently, prompt-tuning has achieved promising results for specific few-shot classification tasks. The core idea of prompt-tuning is to insert text pieces (i.e., templates) into the input and transform a classification task into a masked language modeling problem. However, for relation extraction, determining an appropriate prompt template requires domain expertise, and it is cumbersome and time-consuming to obtain a suitable label word. Furthermore, there exists abundant semantic and prior knowledge among the relation labels that cannot be ignored. To this end, we focus on incorporating knowledge among relation labels into prompt-tuning for relation extraction and propose a Knowledge-aware Prompt-tuning approach with synergistic optimization (KnowPrompt). Specifically, we inject latent knowledge contained in relation labels into prompt construction with learnable virtual type words and answer words. Then, we synergistically optimize their representation with structured constraints. Extensive experimental results on five datasets with standard and low-resource settings demonstrate the effectiveness of our approach. Our code and datasets are available in https://github.com/zjunlp/KnowPrompt for reproducibility.
EnriCo: Enriched Representation and Globally Constrained Inference for Entity and Relation Extraction
Joint entity and relation extraction plays a pivotal role in various applications, notably in the construction of knowledge graphs. Despite recent progress, existing approaches often fall short in two key aspects: richness of representation and coherence in output structure. These models often rely on handcrafted heuristics for computing entity and relation representations, potentially leading to loss of crucial information. Furthermore, they disregard task and/or dataset-specific constraints, resulting in output structures that lack coherence. In our work, we introduce EnriCo, which mitigates these shortcomings. Firstly, to foster rich and expressive representation, our model leverage attention mechanisms that allow both entities and relations to dynamically determine the pertinent information required for accurate extraction. Secondly, we introduce a series of decoding algorithms designed to infer the highest scoring solutions while adhering to task and dataset-specific constraints, thus promoting structured and coherent outputs. Our model demonstrates competitive performance compared to baselines when evaluated on Joint IE datasets.
Investigating and Improving Counter-Stereotypical Action Relation in Text-to-Image Diffusion Models
Text-to-image diffusion models consistently fail at generating counter-stereotypical action relationships (e.g., "mouse chasing cat"), defaulting to frequent stereotypes even when explicitly prompted otherwise. Through systematic investigation, we discover this limitation stems from distributional biases rather than inherent model constraints. Our key insight reveals that while models fail on rare compositions when their inversions are common, they can successfully generate similar intermediate compositions (e.g., "mouse chasing boy"). To test this hypothesis, we develop a Role-Bridging Decomposition framework that leverages these intermediates to gradually teach rare relationships without architectural modifications. We introduce ActionBench, a comprehensive benchmark specifically designed to evaluate action-based relationship generation across stereotypical and counter-stereotypical configurations. Our experiments validate that intermediate compositions indeed facilitate counter-stereotypical generation, with both automatic metrics and human evaluations showing significant improvements over existing approaches. This work not only identifies fundamental biases in current text-to-image systems but demonstrates a promising direction for addressing them through compositional reasoning.
Budget Sensitive Reannotation of Noisy Relation Classification Data Using Label Hierarchy
Large crowd-sourced datasets are often noisy and relation classification (RC) datasets are no exception. Reannotating the entire dataset is one probable solution however it is not always viable due to time and budget constraints. This paper addresses the problem of efficient reannotation of a large noisy dataset for the RC. Our goal is to catch more annotation errors in the dataset while reannotating fewer instances. Existing work on RC dataset reannotation lacks the flexibility about how much data to reannotate. We introduce the concept of a reannotation budget to overcome this limitation. The immediate follow-up problem is: Given a specific reannotation budget, which subset of the data should we reannotate? To address this problem, we present two strategies to selectively reannotate RC datasets. Our strategies utilize the taxonomic hierarchy of relation labels. The intuition of our work is to rely on the graph distance between actual and predicted relation labels in the label hierarchy graph. We evaluate our reannotation strategies on the well-known TACRED dataset. We design our experiments to answer three specific research questions. First, does our strategy select novel candidates for reannotation? Second, for a given reannotation budget is our reannotation strategy more efficient at catching annotation errors? Third, what is the impact of data reannotation on RC model performance measurement? Experimental results show that our both reannotation strategies are novel and efficient. Our analysis indicates that the current reported performance of RC models on noisy TACRED data is inflated.
What and When to Look?: Temporal Span Proposal Network for Video Relation Detection
Identifying relations between objects is central to understanding the scene. While several works have been proposed for relation modeling in the image domain, there have been many constraints in the video domain due to challenging dynamics of spatio-temporal interactions (e.g., between which objects are there an interaction? when do relations start and end?). To date, two representative methods have been proposed to tackle Video Visual Relation Detection (VidVRD): segment-based and window-based. We first point out limitations of these methods and propose a novel approach named Temporal Span Proposal Network (TSPN). TSPN tells what to look: it sparsifies relation search space by scoring relationness of object pair, i.e., measuring how probable a relation exist. TSPN tells when to look: it simultaneously predicts start-end timestamps (i.e., temporal spans) and categories of the all possible relations by utilizing full video context. These two designs enable a win-win scenario: it accelerates training by 2X or more than existing methods and achieves competitive performance on two VidVRD benchmarks (ImageNet-VidVDR and VidOR). Moreover, comprehensive ablative experiments demonstrate the effectiveness of our approach. Codes are available at https://github.com/sangminwoo/Temporal-Span-Proposal-Network-VidVRD.
The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints
We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.
RESTORE: Towards Feature Shift for Vision-Language Prompt Learning
Prompt learning is effective for fine-tuning foundation models to improve their generalization across a variety of downstream tasks. However, the prompts that are independently optimized along a single modality path, may sacrifice the vision-language alignment of pre-trained models in return for improved performance on specific tasks and classes, leading to poorer generalization. In this paper, we first demonstrate that prompt tuning along only one single branch of CLIP (e.g., language or vision) is the reason why the misalignment occurs. Without proper regularization across the learnable parameters in different modalities, prompt learning violates the original pre-training constraints inherent in the two-tower architecture. To address such misalignment, we first propose feature shift, which is defined as the variation of embeddings after introducing the learned prompts, to serve as an explanatory tool. We dive into its relation with generalizability and thereafter propose RESTORE, a multi-modal prompt learning method that exerts explicit constraints on cross-modal consistency. To be more specific, to prevent feature misalignment, a feature shift consistency is introduced to synchronize inter-modal feature shifts by measuring and regularizing the magnitude of discrepancy during prompt tuning. In addition, we propose a "surgery" block to avoid short-cut hacking, where cross-modal misalignment can still be severe if the feature shift of each modality varies drastically at the same rate. It is implemented as feed-forward adapters upon both modalities to alleviate the misalignment problem. Extensive experiments on 15 datasets demonstrate that our method outperforms the state-of-the-art prompt tuning methods without compromising feature alignment.
RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
UniKeyphrase: A Unified Extraction and Generation Framework for Keyphrase Prediction
Keyphrase Prediction (KP) task aims at predicting several keyphrases that can summarize the main idea of the given document. Mainstream KP methods can be categorized into purely generative approaches and integrated models with extraction and generation. However, these methods either ignore the diversity among keyphrases or only weakly capture the relation across tasks implicitly. In this paper, we propose UniKeyphrase, a novel end-to-end learning framework that jointly learns to extract and generate keyphrases. In UniKeyphrase, stacked relation layer and bag-of-words constraint are proposed to fully exploit the latent semantic relation between extraction and generation in the view of model structure and training process, respectively. Experiments on KP benchmarks demonstrate that our joint approach outperforms mainstream methods by a large margin.
Explanation Graph Generation via Pre-trained Language Models: An Empirical Study with Contrastive Learning
Pre-trained sequence-to-sequence language models have led to widespread success in many natural language generation tasks. However, there has been relatively less work on analyzing their ability to generate structured outputs such as graphs. Unlike natural language, graphs have distinct structural and semantic properties in the context of a downstream NLP task, e.g., generating a graph that is connected and acyclic can be attributed to its structural constraints, while the semantics of a graph can refer to how meaningfully an edge represents the relation between two node concepts. In this work, we study pre-trained language models that generate explanation graphs in an end-to-end manner and analyze their ability to learn the structural constraints and semantics of such graphs. We first show that with limited supervision, pre-trained language models often generate graphs that either violate these constraints or are semantically incoherent. Since curating large amount of human-annotated graphs is expensive and tedious, we propose simple yet effective ways of graph perturbations via node and edge edit operations that lead to structurally and semantically positive and negative graphs. Next, we leverage these graphs in different contrastive learning models with Max-Margin and InfoNCE losses. Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs and also generalize to other similar graph generation tasks. Lastly, we show that human errors are the best negatives for contrastive learning and also that automatically generating more such human-like negative graphs can lead to further improvements. Our code and models are publicly available at https://github.com/swarnaHub/ExplagraphGen
PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval
Recently, dense passage retrieval has become a mainstream approach to finding relevant information in various natural language processing tasks. A number of studies have been devoted to improving the widely adopted dual-encoder architecture. However, most of the previous studies only consider query-centric similarity relation when learning the dual-encoder retriever. In order to capture more comprehensive similarity relations, we propose a novel approach that leverages both query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval. To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations, generating high-quality pseudo labeled data via knowledge distillation, and designing an effective two-stage training procedure that incorporates passage-centric similarity relation constraint. Extensive experiments show that our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets.
