- Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats, which could lead to the generation of inappropriate responses. Conventional defenses, such as refusal and adversarial training, often fail to cover corner cases or rare domains, leaving LLMs still vulnerable to more sophisticated attacks. We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced reasoning capabilities of LLMs for proactive assessment of harmful inputs, rather than simply blocking them. SCoT augments any refusal training datasets to critically analyze the intent behind each request before generating answers. By employing proactive reasoning, SCoT enhances the generalization of LLMs across varied harmful queries and scenarios not covered in the safety alignment corpus. Additionally, it generates detailed refusals specifying the rules violated. Comparative evaluations show that SCoT significantly surpasses existing defenses, reducing vulnerability to out-of-distribution issues and adversarial manipulations while maintaining strong general capabilities. 5 authors · Jan 31
1 ProactiveBench: A Comprehensive Benchmark Evaluating Proactive Interactions in Video Large Language Models With the growing research focus on multimodal dialogue systems, the capability for proactive interaction is gradually gaining recognition. As an alternative to conventional turn-by-turn dialogue, users increasingly expect multimodal systems to be more initiative, for example, by autonomously determining the timing of multi-turn responses in real time during video playback. To facilitate progress in this emerging area, we introduce ProactiveBench, the first comprehensive benchmark to evaluate a system's ability to engage in proactive interaction. Since model responses are generated at varying timestamps, we further propose PAUC, the first metric that accounts for the temporal dynamics of model responses. This enables a more accurate evaluation of systems operating in proactive settings. Through extensive benchmarking of various baseline systems on ProactiveBench and a user study of human preferences, we show that PAUC is in better agreement with human preferences than traditional evaluation metrics, which typically only consider the textual content of responses. These findings demonstrate that PAUC provides a more faithful assessment of user experience in proactive interaction scenarios. Project homepage: https://github.com/yellow-binary-tree/ProactiveBench 5 authors · Jul 12
1 ProMind-LLM: Proactive Mental Health Care via Causal Reasoning with Sensor Data Mental health risk is a critical global public health challenge, necessitating innovative and reliable assessment methods. With the development of large language models (LLMs), they stand out to be a promising tool for explainable mental health care applications. Nevertheless, existing approaches predominantly rely on subjective textual mental records, which can be distorted by inherent mental uncertainties, leading to inconsistent and unreliable predictions. To address these limitations, this paper introduces ProMind-LLM. We investigate an innovative approach integrating objective behavior data as complementary information alongside subjective mental records for robust mental health risk assessment. Specifically, ProMind-LLM incorporates a comprehensive pipeline that includes domain-specific pretraining to tailor the LLM for mental health contexts, a self-refine mechanism to optimize the processing of numerical behavioral data, and causal chain-of-thought reasoning to enhance the reliability and interpretability of its predictions. Evaluations of two real-world datasets, PMData and Globem, demonstrate the effectiveness of our proposed methods, achieving substantial improvements over general LLMs. We anticipate that ProMind-LLM will pave the way for more dependable, interpretable, and scalable mental health case solutions. 6 authors · May 20
- Eyes Wide Open: Ego Proactive Video-LLM for Streaming Video Envision an AI capable of functioning in human-like settings, moving beyond mere observation to actively understand, anticipate, and proactively respond to unfolding events. Towards this vision, we focus on the innovative task where, given ego-streaming video input, an assistant proactively answers diverse, evolving questions at the opportune moment, while maintaining synchronized perception and reasoning. This task embodies three key properties: (1) Proactive Coherence, (2) Just-in-Time Responsiveness, and (3) Synchronized Efficiency. To evaluate and address these properties, we first introduce ESTP-Bench (Ego Streaming Proactive Benchmark) alongside the ESTP-F1 metric-a novel framework designed for their rigorous assessment. Secondly, we propose a comprehensive technical pipeline to enable models to tackle this challenging task. This pipeline comprises: (1) a data engine, (2) a multi-stage training strategy, and (3) a proactive dynamic compression technique. Our proposed model effectively addresses these critical properties while outperforming multiple baselines across diverse online and offline benchmarks. Project Page:https://zhangyl4.github.io/publications/eyes-wide-open/ 4 authors · Oct 16