- More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory In our era of enormous neural networks, empirical progress has been driven by the philosophy that more is better. Recent deep learning practice has found repeatedly that larger model size, more data, and more computation (resulting in lower training loss) improves performance. In this paper, we give theoretical backing to these empirical observations by showing that these three properties hold in random feature (RF) regression, a class of models equivalent to shallow networks with only the last layer trained. Concretely, we first show that the test risk of RF regression decreases monotonically with both the number of features and the number of samples, provided the ridge penalty is tuned optimally. In particular, this implies that infinite width RF architectures are preferable to those of any finite width. We then proceed to demonstrate that, for a large class of tasks characterized by powerlaw eigenstructure, training to near-zero training loss is obligatory: near-optimal performance can only be achieved when the training error is much smaller than the test error. Grounding our theory in real-world data, we find empirically that standard computer vision tasks with convolutional neural tangent kernels clearly fall into this class. Taken together, our results tell a simple, testable story of the benefits of overparameterization, overfitting, and more data in random feature models. 4 authors · Nov 24, 2023
- The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper limits for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95\% upper limit on the strain amplitude (at a frequency of yr^{-1}) in the power law model of A_{rm gw} < 1.5times 10^{-15}. For a broken power law model, we place priors on the strain amplitude derived from simulations of Sesana (2013) and McWilliams et al. (2014). We find that the data favor a broken power law to a pure power law with odds ratios of 22 and 2.2 to one for the McWilliams and Sesana prior models, respectively. The McWilliams model is essentially ruled out by the data, and the Sesana model is in tension with the data under the assumption of a pure power law. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. We then place the most stringent limits so far on the energy density of relic GWs, Omega_gw(f),h^2 < 4.2 times 10^{-10}, yielding a limit on the Hubble parameter during inflation of H_*=1.6times10^{-2}~m_{Pl}, where m_{Pl} is the Planck mass. Our limit on the cosmic string GWB, Omega_gw(f), h^2 < 2.2 times 10^{-10}, translates to a conservative limit of Gmu<3.3times 10^{-8} - a factor of 4 better than the joint Planck and high-l CMB data from other experiments. 48 authors · Aug 12, 2015
- Power Transform Revisited: Numerically Stable, and Federated Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches. 2 authors · Oct 6 2
- Generative Principal Component Analysis In this paper, we study the problem of principal component analysis with generative modeling assumptions, adopting a general model for the observed matrix that encompasses notable special cases, including spiked matrix recovery and phase retrieval. The key assumption is that the underlying signal lies near the range of an L-Lipschitz continuous generative model with bounded k-dimensional inputs. We propose a quadratic estimator, and show that it enjoys a statistical rate of order frac{klog L{m}}, where m is the number of samples. We also provide a near-matching algorithm-independent lower bound. Moreover, we provide a variant of the classic power method, which projects the calculated data onto the range of the generative model during each iteration. We show that under suitable conditions, this method converges exponentially fast to a point achieving the above-mentioned statistical rate. We perform experiments on various image datasets for spiked matrix and phase retrieval models, and illustrate performance gains of our method to the classic power method and the truncated power method devised for sparse principal component analysis. 5 authors · Mar 17, 2022
2 Measures of the Capital Network of the U.S. Economy About two million U.S. corporations and partnerships are linked to each other and human investors by about 15 million owner-subsidiary links. Comparable social networks such as corporate board memberships and socially-built systems such as the network of Internet links are "small worlds," meaning a network with a small diameter and link densities with a power-law distribution, but these properties had not yet been measured for the business entity network. This article shows that both inbound links and outbound links display a power-law distribution with a coefficient of concentration estimable to within a generally narrow confidence interval, overall, for subnetworks including only business entities, only for the great connected component of the network, and in subnetworks with edges associated with certain industries, for all years 2009-2021. In contrast to other networks with power-law distributed link densities, the network is mostly a tree, and has a diameter an order of magnitude larger than a small-world network with the same link distribution. The regularity of the power-law distribution indicates that its coefficient can be used as a new, well-defined macroeconomic metric for the concentration of capital flows in an economy. Economists might use it as a new measure of market concentration which is more comprehensive than measures based only on the few biggest firms. Comparing capital link concentrations across countries would facilitate modeling the relationship between business network characteristics and other macroeconomic indicators. 1 authors · Jan 22, 2024
- Generalization error of spectral algorithms The asymptotically precise estimation of the generalization of kernel methods has recently received attention due to the parallels between neural networks and their associated kernels. However, prior works derive such estimates for training by kernel ridge regression (KRR), whereas neural networks are typically trained with gradient descent (GD). In the present work, we consider the training of kernels with a family of spectral algorithms specified by profile h(lambda), and including KRR and GD as special cases. Then, we derive the generalization error as a functional of learning profile h(lambda) for two data models: high-dimensional Gaussian and low-dimensional translation-invariant model. Under power-law assumptions on the spectrum of the kernel and target, we use our framework to (i) give full loss asymptotics for both noisy and noiseless observations (ii) show that the loss localizes on certain spectral scales, giving a new perspective on the KRR saturation phenomenon (iii) conjecture, and demonstrate for the considered data models, the universality of the loss w.r.t. non-spectral details of the problem, but only in case of noisy observation. 3 authors · Mar 18, 2024
- Power Lines: Scaling Laws for Weight Decay and Batch Size in LLM Pre-training Efficient LLM pre-training requires well-tuned hyperparameters (HPs), including learning rate {\eta} and weight decay {\lambda}. We study scaling laws for HPs: formulas for how to scale HPs as we scale model size N, dataset size D, and batch size B. Recent work suggests the AdamW timescale, B/({\eta}{\lambda}D), should remain constant across training settings, and we verify the implication that optimal {\lambda} scales linearly with B, for a fixed N,D. However, as N,D scale, we show the optimal timescale obeys a precise power law in the tokens-per-parameter ratio, D/N. This law thus provides a method to accurately predict {\lambda}opt in advance of large-scale training. We also study scaling laws for optimal batch size Bopt (the B enabling lowest loss at a given N,D) and critical batch size Bcrit (the B beyond which further data parallelism becomes ineffective). In contrast with prior work, we find both Bopt and Bcrit scale as power laws in D, independent of model size, N. Finally, we analyze how these findings inform the real-world selection of Pareto-optimal N and D under dual training time and compute objectives. 6 authors · May 19
- Intensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density {cal P}(I) for the single-point intensity I decays as a power law for large intensities: {cal P}(I)sim I^{-(M+2)}, provided there is no internal losses. This behaviour is in marked difference with the Rayleigh law {cal P}(I)sim exp(-I/I) which turns out to be valid only in the limit Mto infty. We also find the joint probability density of intensities I_1, ldots, I_L in L>1 observation points, and then extract the corresponding statistics for the maximal intensity in the observation pattern. For Lto infty the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions. 2 authors · May 21, 2023
- Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond We look at the eigenvalues of the Hessian of a loss function before and after training. The eigenvalue distribution is seen to be composed of two parts, the bulk which is concentrated around zero, and the edges which are scattered away from zero. We present empirical evidence for the bulk indicating how over-parametrized the system is, and for the edges that depend on the input data. 3 authors · Nov 22, 2016
- A Unified Perspective on Orthogonalization and Diagonalization This paper makes a formal connection between two families of widely used matrix factorization algorithms in numerical linear algebra. One family consists of the Jacobi eigenvalue algorithm and its variants for computing the Hermitian eigendecomposition and singular value decomposition. The other consists of Gaussian elimination and the Gram-Schmidt procedure with various pivoting rules for computing the Cholesky decomposition and QR decomposition respectively. Both families are cast as special cases of a more general class of factorization algorithms. We provide a randomized pivoting rule that applies to this general class (which differs substantially from the usual pivoting rules for Gaussian elimination / Gram-Schmidt) which results in the same linear rate of convergence for each algorithm, irrespective of which factorization it computes. A second important consequence of this randomized pivoting rule is a provable, effective bound on the numerical stability of the Jacobi eigenvalue algorithm, which addresses a longstanding open problem of Demmel and Veseli\'c `92. 2 authors · May 4