new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 13

Contextual Bandits with Online Neural Regression

Recent works have shown a reduction from contextual bandits to online regression under a realizability assumption [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021]. In this work, we investigate the use of neural networks for such online regression and associated Neural Contextual Bandits (NeuCBs). Using existing results for wide networks, one can readily show a {O}(T) regret for online regression with square loss, which via the reduction implies a {O}(K T^{3/4}) regret for NeuCBs. Departing from this standard approach, we first show a O(log T) regret for online regression with almost convex losses that satisfy QG (Quadratic Growth) condition, a generalization of the PL (Polyak-\L ojasiewicz) condition, and that have a unique minima. Although not directly applicable to wide networks since they do not have unique minima, we show that adding a suitable small random perturbation to the network predictions surprisingly makes the loss satisfy QG with unique minima. Based on such a perturbed prediction, we show a {O}(log T) regret for online regression with both squared loss and KL loss, and subsequently convert these respectively to mathcal{O}(KT) and mathcal{O}(KL^* + K) regret for NeuCB, where L^* is the loss of the best policy. Separately, we also show that existing regret bounds for NeuCBs are Omega(T) or assume i.i.d. contexts, unlike this work. Finally, our experimental results on various datasets demonstrate that our algorithms, especially the one based on KL loss, persistently outperform existing algorithms.

  • 5 authors
·
Dec 12, 2023

Oracle Efficient Algorithms for Groupwise Regret

We study the problem of online prediction, in which at each time step t, an individual x_t arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.

  • 5 authors
·
Oct 6, 2023

Efficiently Computing Similarities to Private Datasets

Many methods in differentially private model training rely on computing the similarity between a query point (such as public or synthetic data) and private data. We abstract out this common subroutine and study the following fundamental algorithmic problem: Given a similarity function f and a large high-dimensional private dataset X subset R^d, output a differentially private (DP) data structure which approximates sum_{x in X} f(x,y) for any query y. We consider the cases where f is a kernel function, such as f(x,y) = e^{-|x-y|_2^2/sigma^2} (also known as DP kernel density estimation), or a distance function such as f(x,y) = |x-y|_2, among others. Our theoretical results improve upon prior work and give better privacy-utility trade-offs as well as faster query times for a wide range of kernels and distance functions. The unifying approach behind our results is leveraging `low-dimensional structures' present in the specific functions f that we study, using tools such as provable dimensionality reduction, approximation theory, and one-dimensional decomposition of the functions. Our algorithms empirically exhibit improved query times and accuracy over prior state of the art. We also present an application to DP classification. Our experiments demonstrate that the simple methodology of classifying based on average similarity is orders of magnitude faster than prior DP-SGD based approaches for comparable accuracy.

  • 5 authors
·
Mar 13, 2024

Even your Teacher Needs Guidance: Ground-Truth Targets Dampen Regularization Imposed by Self-Distillation

Knowledge distillation is classically a procedure where a neural network is trained on the output of another network along with the original targets in order to transfer knowledge between the architectures. The special case of self-distillation, where the network architectures are identical, has been observed to improve generalization accuracy. In this paper, we consider an iterative variant of self-distillation in a kernel regression setting, in which successive steps incorporate both model outputs and the ground-truth targets. This allows us to provide the first theoretical results on the importance of using the weighted ground-truth targets in self-distillation. Our focus is on fitting nonlinear functions to training data with a weighted mean square error objective function suitable for distillation, subject to ell_2 regularization of the model parameters. We show that any such function obtained with self-distillation can be calculated directly as a function of the initial fit, and that infinite distillation steps yields the same optimization problem as the original with amplified regularization. Furthermore, we provide a closed form solution for the optimal choice of weighting parameter at each step, and show how to efficiently estimate this weighting parameter for deep learning and significantly reduce the computational requirements compared to a grid search.

  • 2 authors
·
Feb 25, 2021

Debiased Collaborative Filtering with Kernel-Based Causal Balancing

Debiased collaborative filtering aims to learn an unbiased prediction model by removing different biases in observational datasets. To solve this problem, one of the simple and effective methods is based on the propensity score, which adjusts the observational sample distribution to the target one by reweighting observed instances. Ideally, propensity scores should be learned with causal balancing constraints. However, existing methods usually ignore such constraints or implement them with unreasonable approximations, which may affect the accuracy of the learned propensity scores. To bridge this gap, in this paper, we first analyze the gaps between the causal balancing requirements and existing methods such as learning the propensity with cross-entropy loss or manually selecting functions to balance. Inspired by these gaps, we propose to approximate the balancing functions in reproducing kernel Hilbert space and demonstrate that, based on the universal property and representer theorem of kernel functions, the causal balancing constraints can be better satisfied. Meanwhile, we propose an algorithm that adaptively balances the kernel function and theoretically analyze the generalization error bound of our methods. We conduct extensive experiments to demonstrate the effectiveness of our methods, and to promote this research direction, we have released our project at https://github.com/haoxuanli-pku/ICLR24-Kernel-Balancing.

  • 7 authors
·
Apr 30, 2024

Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization

Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness. A key component of these models is to learn the score function through score matching. Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. As a first step toward answering this question, this paper establishes a mathematical framework for analyzing score estimation using neural networks trained by gradient descent. Our analysis covers both the optimization and the generalization aspects of the learning procedure. In particular, we propose a parametric form to formulate the denoising score-matching problem as a regression with noisy labels. Compared to the standard supervised learning setup, the score-matching problem introduces distinct challenges, including unbounded input, vector-valued output, and an additional time variable, preventing existing techniques from being applied directly. In this paper, we show that with proper designs, the evolution of neural networks during training can be accurately modeled by a series of kernel regression tasks. Furthermore, by applying an early-stopping rule for gradient descent and leveraging recent developments in neural tangent kernels, we establish the first generalization error (sample complexity) bounds for learning the score function with neural networks, despite the presence of noise in the observations. Our analysis is grounded in a novel parametric form of the neural network and an innovative connection between score matching and regression analysis, facilitating the application of advanced statistical and optimization techniques.

  • 3 authors
·
Jan 28, 2024

UER: A Heuristic Bias Addressing Approach for Online Continual Learning

Online continual learning aims to continuously train neural networks from a continuous data stream with a single pass-through data. As the most effective approach, the rehearsal-based methods replay part of previous data. Commonly used predictors in existing methods tend to generate biased dot-product logits that prefer to the classes of current data, which is known as a bias issue and a phenomenon of forgetting. Many approaches have been proposed to overcome the forgetting problem by correcting the bias; however, they still need to be improved in online fashion. In this paper, we try to address the bias issue by a more straightforward and more efficient method. By decomposing the dot-product logits into an angle factor and a norm factor, we empirically find that the bias problem mainly occurs in the angle factor, which can be used to learn novel knowledge as cosine logits. On the contrary, the norm factor abandoned by existing methods helps remember historical knowledge. Based on this observation, we intuitively propose to leverage the norm factor to balance the new and old knowledge for addressing the bias. To this end, we develop a heuristic approach called unbias experience replay (UER). UER learns current samples only by the angle factor and further replays previous samples by both the norm and angle factors. Extensive experiments on three datasets show that UER achieves superior performance over various state-of-the-art methods. The code is in https://github.com/FelixHuiweiLin/UER.

  • 6 authors
·
Sep 7, 2023

Neural Tangent Kernel: Convergence and Generalization in Neural Networks

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit, thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function f_theta (which maps input vectors to output vectors) follows the kernel gradient of the functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and it stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK. We prove the positive-definiteness of the limiting NTK when the data is supported on the sphere and the non-linearity is non-polynomial. We then focus on the setting of least-squares regression and show that in the infinite-width limit, the network function f_theta follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping. Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.

  • 3 authors
·
Jun 20, 2018

A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee

Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors.

  • 4 authors
·
Feb 1, 2023

Online Matching: A Real-time Bandit System for Large-scale Recommendations

The last decade has witnessed many successes of deep learning-based models for industry-scale recommender systems. These models are typically trained offline in a batch manner. While being effective in capturing users' past interactions with recommendation platforms, batch learning suffers from long model-update latency and is vulnerable to system biases, making it hard to adapt to distribution shift and explore new items or user interests. Although online learning-based approaches (e.g., multi-armed bandits) have demonstrated promising theoretical results in tackling these challenges, their practical real-time implementation in large-scale recommender systems remains limited. First, the scalability of online approaches in servicing a massive online traffic while ensuring timely updates of bandit parameters poses a significant challenge. Additionally, exploring uncertainty in recommender systems can easily result in unfavorable user experience, highlighting the need for devising intricate strategies that effectively balance the trade-off between exploitation and exploration. In this paper, we introduce Online Matching: a scalable closed-loop bandit system learning from users' direct feedback on items in real time. We present a hybrid "offline + online" approach for constructing this system, accompanied by a comprehensive exposition of the end-to-end system architecture. We propose Diag-LinUCB -- a novel extension of the LinUCB algorithm -- to enable distributed updates of bandits parameter in a scalable and timely manner. We conduct live experiments in YouTube and show that Online Matching is able to enhance the capabilities of fresh content discovery and item exploration in the present platform.

  • 9 authors
·
Jul 29, 2023

Offline Planning and Online Learning under Recovering Rewards

Motivated by emerging applications such as live-streaming e-commerce, promotions and recommendations, we introduce and solve a general class of non-stationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to K,(ge 1) out of N different arms in each time period; (ii) the expected reward of an arm immediately drops after it is pulled, and then non-parametrically recovers as the arm's idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of ``Purely Periodic Policies'' that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline problem and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains an approximation ratio that is at the order of 1-mathcal O(1/K), which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have mathcal O(NT) regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with non-stationary and recovering rewards.

  • 3 authors
·
Jun 28, 2021

Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel

Gaussian processes (GPs) stand as crucial tools in machine learning and signal processing, with their effectiveness hinging on kernel design and hyper-parameter optimization. This paper presents a novel GP linear multiple kernel (LMK) and a generic sparsity-aware distributed learning framework to optimize the hyper-parameters. The newly proposed grid spectral mixture product (GSMP) kernel is tailored for multi-dimensional data, effectively reducing the number of hyper-parameters while maintaining good approximation capability. We further demonstrate that the associated hyper-parameter optimization of this kernel yields sparse solutions. To exploit the inherent sparsity of the solutions, we introduce the Sparse LInear Multiple Kernel Learning (SLIM-KL) framework. The framework incorporates a quantized alternating direction method of multipliers (ADMM) scheme for collaborative learning among multiple agents, where the local optimization problem is solved using a distributed successive convex approximation (DSCA) algorithm. SLIM-KL effectively manages large-scale hyper-parameter optimization for the proposed kernel, simultaneously ensuring data privacy and minimizing communication costs. Theoretical analysis establishes convergence guarantees for the learning framework, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our proposed methods.

  • 5 authors
·
Sep 15, 2023

More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory

In our era of enormous neural networks, empirical progress has been driven by the philosophy that more is better. Recent deep learning practice has found repeatedly that larger model size, more data, and more computation (resulting in lower training loss) improves performance. In this paper, we give theoretical backing to these empirical observations by showing that these three properties hold in random feature (RF) regression, a class of models equivalent to shallow networks with only the last layer trained. Concretely, we first show that the test risk of RF regression decreases monotonically with both the number of features and the number of samples, provided the ridge penalty is tuned optimally. In particular, this implies that infinite width RF architectures are preferable to those of any finite width. We then proceed to demonstrate that, for a large class of tasks characterized by powerlaw eigenstructure, training to near-zero training loss is obligatory: near-optimal performance can only be achieved when the training error is much smaller than the test error. Grounding our theory in real-world data, we find empirically that standard computer vision tasks with convolutional neural tangent kernels clearly fall into this class. Taken together, our results tell a simple, testable story of the benefits of overparameterization, overfitting, and more data in random feature models.

  • 4 authors
·
Nov 24, 2023

A survey on online active learning

Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in real time. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research.

  • 2 authors
·
Feb 17, 2023

What learning algorithm is in-context learning? Investigations with linear models

Neural sequence models, especially transformers, exhibit a remarkable capacity for in-context learning. They can construct new predictors from sequences of labeled examples (x, f(x)) presented in the input without further parameter updates. We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly, by encoding smaller models in their activations, and updating these implicit models as new examples appear in the context. Using linear regression as a prototypical problem, we offer three sources of evidence for this hypothesis. First, we prove by construction that transformers can implement learning algorithms for linear models based on gradient descent and closed-form ridge regression. Second, we show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression, transitioning between different predictors as transformer depth and dataset noise vary, and converging to Bayesian estimators for large widths and depths. Third, we present preliminary evidence that in-context learners share algorithmic features with these predictors: learners' late layers non-linearly encode weight vectors and moment matrices. These results suggest that in-context learning is understandable in algorithmic terms, and that (at least in the linear case) learners may rediscover standard estimation algorithms. Code and reference implementations are released at https://github.com/ekinakyurek/google-research/blob/master/incontext.

  • 5 authors
·
Nov 28, 2022

Online Analytic Exemplar-Free Continual Learning with Large Models for Imbalanced Autonomous Driving Task

In the field of autonomous driving, even a meticulously trained model can encounter failures when faced with unfamiliar sceanrios. One of these scenarios can be formulated as an online continual learning (OCL) problem. That is, data come in an online fashion, and models are updated according to these streaming data. Two major OCL challenges are catastrophic forgetting and data imbalance. To address these challenges, in this paper, we propose an Analytic Exemplar-Free Online Continual Learning (AEF-OCL). The AEF-OCL leverages analytic continual learning principles and employs ridge regression as a classifier for features extracted by a large backbone network. It solves the OCL problem by recursively calculating the analytical solution, ensuring an equalization between the continual learning and its joint-learning counterpart, and works without the need to save any used samples (i.e., exemplar-free). Additionally, we introduce a Pseudo-Features Generator (PFG) module that recursively estimates the deviation of real features. The PFG generates offset pseudo-features following a normal distribution, thereby addressing the data imbalance issue. Experimental results demonstrate that despite being an exemplar-free strategy, our method outperforms various methods on the autonomous driving SODA10M dataset. Source code is available at https://github.com/ZHUANGHP/Analytic-continual-learning.

  • 7 authors
·
May 27, 2024

Weighted least-squares approximation with determinantal point processes and generalized volume sampling

We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

  • 2 authors
·
Dec 21, 2023

Kernel Density Estimators in Large Dimensions

This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.

  • 2 authors
·
Aug 11, 2024

Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model

In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is 1-sparse, and extending such bounds to the more general k-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the epsilon non-interactive LDP model and provide a lower bound of Omega(sqrt{dklog d}{nepsilon}) on the ell_2-norm estimation error for sub-Gaussian data, where n is the sample size and d is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of O({dsqrt{k}{nepsilon}}) for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of O(d) if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of Omega({sqrt{dk}{nepsilon}}). As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of O(ksqrt{d}{nepsilon}). Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.

  • 5 authors
·
Oct 11, 2023

Scalable Neural Network Kernels

We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.

  • 5 authors
·
Oct 19, 2023

Accelerating In-Browser Deep Learning Inference on Diverse Edge Clients through Just-in-Time Kernel Optimizations

Web applications are increasingly becoming the primary platform for AI service delivery, making in-browser deep learning (DL) inference more prominent. However, current in-browser inference systems fail to effectively utilize advanced web programming techniques and customize kernels for various client devices, leading to suboptimal performance. To address the issues, this paper presents the first in-browser inference system, nn-JIT.web, which enables just-in-time (JIT) auto-generation of optimized kernels for both CPUs and GPUs during inference. The system achieves this by using two novel web programming techniques that can significantly reduce kernel generation time, compared to other tensor compilers such as TVM, while maintaining or even improving performance. The first technique, Tensor-Web Compiling Co-Design, lowers compiling costs by unifying tensor and web compiling and eliminating redundant and ineffective compiling passes. The second technique, Web-Specific Lite Kernel Optimization Space Design, reduces kernel tuning costs by focusing on web programming requirements and efficient hardware resource utilization, limiting the optimization space to only dozens. nn-JIT.web is evaluated for modern transformer models on a range of client devices, including the mainstream CPUs and GPUs from ARM, Intel, AMD and Nvidia. Results show that nn-JIT.web can achieve up to 8.2x faster within 30 seconds compared to the baselines across various models.

  • 12 authors
·
Sep 16, 2023

A theory of representation learning gives a deep generalisation of kernel methods

The successes of modern deep machine learning methods are founded on their ability to transform inputs across multiple layers to build good high-level representations. It is therefore critical to understand this process of representation learning. However, standard theoretical approaches (formally NNGPs) involving infinite width limits eliminate representation learning. We therefore develop a new infinite width limit, the Bayesian representation learning limit, that exhibits representation learning mirroring that in finite-width models, yet at the same time, retains some of the simplicity of standard infinite-width limits. In particular, we show that Deep Gaussian processes (DGPs) in the Bayesian representation learning limit have exactly multivariate Gaussian posteriors, and the posterior covariances can be obtained by optimizing an interpretable objective combining a log-likelihood to improve performance with a series of KL-divergences which keep the posteriors close to the prior. We confirm these results experimentally in wide but finite DGPs. Next, we introduce the possibility of using this limit and objective as a flexible, deep generalisation of kernel methods, that we call deep kernel machines (DKMs). Like most naive kernel methods, DKMs scale cubically in the number of datapoints. We therefore use methods from the Gaussian process inducing point literature to develop a sparse DKM that scales linearly in the number of datapoints. Finally, we extend these approaches to NNs (which have non-Gaussian posteriors) in the Appendices.

  • 6 authors
·
Aug 30, 2021

Predicting Users' Value Changes by the Friends' Influence from Social Media Usage

Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users' value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users' value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.

  • 5 authors
·
Sep 12, 2021

Online Prototype Learning for Online Continual Learning

Online continual learning (CL) studies the problem of learning continuously from a single-pass data stream while adapting to new data and mitigating catastrophic forgetting. Recently, by storing a small subset of old data, replay-based methods have shown promising performance. Unlike previous methods that focus on sample storage or knowledge distillation against catastrophic forgetting, this paper aims to understand why the online learning models fail to generalize well from a new perspective of shortcut learning. We identify shortcut learning as the key limiting factor for online CL, where the learned features may be biased, not generalizable to new tasks, and may have an adverse impact on knowledge distillation. To tackle this issue, we present the online prototype learning (OnPro) framework for online CL. First, we propose online prototype equilibrium to learn representative features against shortcut learning and discriminative features to avoid class confusion, ultimately achieving an equilibrium status that separates all seen classes well while learning new classes. Second, with the feedback of online prototypes, we devise a novel adaptive prototypical feedback mechanism to sense the classes that are easily misclassified and then enhance their boundaries. Extensive experimental results on widely-used benchmark datasets demonstrate the superior performance of OnPro over the state-of-the-art baseline methods. Source code is available at https://github.com/weilllllls/OnPro.

  • 5 authors
·
Aug 1, 2023

Learning from Aggregate responses: Instance Level versus Bag Level Loss Functions

Due to the rise of privacy concerns, in many practical applications the training data is aggregated before being shared with the learner, in order to protect privacy of users' sensitive responses. In an aggregate learning framework, the dataset is grouped into bags of samples, where each bag is available only with an aggregate response, providing a summary of individuals' responses in that bag. In this paper, we study two natural loss functions for learning from aggregate responses: bag-level loss and the instance-level loss. In the former, the model is learnt by minimizing a loss between aggregate responses and aggregate model predictions, while in the latter the model aims to fit individual predictions to the aggregate responses. In this work, we show that the instance-level loss can be perceived as a regularized form of the bag-level loss. This observation lets us compare the two approaches with respect to bias and variance of the resulting estimators, and introduce a novel interpolating estimator which combines the two approaches. For linear regression tasks, we provide a precise characterization of the risk of the interpolating estimator in an asymptotic regime where the size of the training set grows in proportion to the features dimension. Our analysis allows us to theoretically understand the effect of different factors, such as bag size on the model prediction risk. In addition, we propose a mechanism for differentially private learning from aggregate responses and derive the optimal bag size in terms of prediction risk-privacy trade-off. We also carry out thorough experiments to corroborate our theory and show the efficacy of the interpolating estimator.

  • 5 authors
·
Jan 19, 2024

Online Orthogonal Dictionary Learning Based on Frank-Wolfe Method

Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works of dictionary learning are in an offline manner. There are mainly two offline ways for dictionary learning. One is to do an alternative optimization of both the dictionary and the sparse code; the other way is to optimize the dictionary by restricting it over the orthogonal group. The latter one is called orthogonal dictionary learning which has a lower complexity implementation, hence, it is more favorable for lowcost devices. However, existing schemes on orthogonal dictionary learning only work with batch data and can not be implemented online, which is not applicable for real-time applications. This paper proposes a novel online orthogonal dictionary scheme to dynamically learn the dictionary from streaming data without storing the historical data. The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis. In the problem formulation, we relax the orthogonal constraint to enable an efficient online algorithm. In the algorithm design, we propose a new Frank-Wolfe-based online algorithm with a convergence rate of O(ln t/t^(1/4)). The convergence rate in terms of key system parameters is also derived. Experiments with synthetic data and real-world sensor readings demonstrate the effectiveness and efficiency of the proposed online orthogonal dictionary learning scheme.

  • 2 authors
·
Mar 2, 2021

PAK-UCB Contextual Bandit: An Online Learning Approach to Prompt-Aware Selection of Generative Models and LLMs

Selecting a sample generation scheme from multiple prompt-based generative models, including large language models (LLMs) and prompt-guided image and video generation models, is typically addressed by choosing the model that maximizes an averaged evaluation score. However, this score-based selection overlooks the possibility that different models achieve the best generation performance for different types of text prompts. An online identification of the best generation model for various input prompts can reduce the costs associated with querying sub-optimal models. In this work, we explore the possibility of varying rankings of text-based generative models for different text prompts and propose an online learning framework to predict the best data generation model for a given input prompt. The proposed PAK-UCB algorithm addresses a contextual bandit (CB) setting with shared context variables across the arms, utilizing the generated data to update kernel-based functions that predict the score of each model available for unseen text prompts. Additionally, we leverage random Fourier features (RFF) to accelerate the online learning process of PAK-UCB. Our numerical experiments on real and simulated text-to-image and image-to-text generative models show that RFF-UCB performs successfully in identifying the best generation model across different sample types. The code is available at: github.com/yannxiaoyanhu/dgm-online-select.

  • 3 authors
·
Oct 17, 2024

BD-KD: Balancing the Divergences for Online Knowledge Distillation

Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.

  • 5 authors
·
Dec 25, 2022

Online Adversarial Attacks

Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.

  • 7 authors
·
Mar 2, 2021

One Step of Gradient Descent is Provably the Optimal In-Context Learner with One Layer of Linear Self-Attention

Recent works have empirically analyzed in-context learning and shown that transformers trained on synthetic linear regression tasks can learn to implement ridge regression, which is the Bayes-optimal predictor, given sufficient capacity [Aky\"urek et al., 2023], while one-layer transformers with linear self-attention and no MLP layer will learn to implement one step of gradient descent (GD) on a least-squares linear regression objective [von Oswald et al., 2022]. However, the theory behind these observations remains poorly understood. We theoretically study transformers with a single layer of linear self-attention, trained on synthetic noisy linear regression data. First, we mathematically show that when the covariates are drawn from a standard Gaussian distribution, the one-layer transformer which minimizes the pre-training loss will implement a single step of GD on the least-squares linear regression objective. Then, we find that changing the distribution of the covariates and weight vector to a non-isotropic Gaussian distribution has a strong impact on the learned algorithm: the global minimizer of the pre-training loss now implements a single step of pre-conditioned GD. However, if only the distribution of the responses is changed, then this does not have a large effect on the learned algorithm: even when the response comes from a more general family of nonlinear functions, the global minimizer of the pre-training loss still implements a single step of GD on a least-squares linear regression objective.

  • 3 authors
·
Jul 7, 2023

Online hierarchical partitioning of the output space in extreme multi-label data stream

Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.

  • 4 authors
·
Jul 28

FairRec: Fairness-aware News Recommendation with Decomposed Adversarial Learning

News recommendation is important for online news services. Existing news recommendation models are usually learned from users' news click behaviors. Usually the behaviors of users with the same sensitive attributes (e.g., genders) have similar patterns and news recommendation models can easily capture these patterns. It may lead to some biases related to sensitive user attributes in the recommendation results, e.g., always recommending sports news to male users, which is unfair since users may not receive diverse news information. In this paper, we propose a fairness-aware news recommendation approach with decomposed adversarial learning and orthogonality regularization, which can alleviate unfairness in news recommendation brought by the biases of sensitive user attributes. In our approach, we propose to decompose the user interest model into two components. One component aims to learn a bias-aware user embedding that captures the bias information on sensitive user attributes, and the other aims to learn a bias-free user embedding that only encodes attribute-independent user interest information for fairness-aware news recommendation. In addition, we propose to apply an attribute prediction task to the bias-aware user embedding to enhance its ability on bias modeling, and we apply adversarial learning to the bias-free user embedding to remove the bias information from it. Moreover, we propose an orthogonality regularization method to encourage the bias-free user embeddings to be orthogonal to the bias-aware one to better distinguish the bias-free user embedding from the bias-aware one. For fairness-aware news ranking, we only use the bias-free user embedding. Extensive experiments on benchmark dataset show that our approach can effectively improve fairness in news recommendation with minor performance loss.

  • 5 authors
·
Jun 30, 2020

Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization

Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance sigma_{1:T}^2 and the cumulative adversarial variation Sigma_{1:T}^2 for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance sigma_{max}^2 and the maximal adversarial variation Sigma_{max}^2 for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same O(sigma_{1:T^2}+Sigma_{1:T^2}) regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an O(min{log (sigma_{1:T}^2+Sigma_{1:T}^2), (sigma_{max}^2 + Sigma_{max}^2) log T}) bound, better than their O((sigma_{max}^2 + Sigma_{max}^2) log T) bound. For exp-concave and smooth functions, we achieve a new O(dlog(sigma_{1:T}^2+Sigma_{1:T}^2)) bound. Owing to the OMD framework, we can further extend our result to obtain dynamic regret guarantees, which are more favorable in non-stationary online scenarios. The attained results allow us to recover excess risk bounds of the stochastic setting and regret bounds of the adversarial setting, and derive new guarantees for many intermediate scenarios.

  • 4 authors
·
Feb 9, 2023

Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design

A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.

  • 3 authors
·
Oct 10, 2024

Generative Kernel Continual learning

Kernel continual learning by derakhshani2021kernel has recently emerged as a strong continual learner due to its non-parametric ability to tackle task interference and catastrophic forgetting. Unfortunately its success comes at the expense of an explicit memory to store samples from past tasks, which hampers scalability to continual learning settings with a large number of tasks. In this paper, we introduce generative kernel continual learning, which explores and exploits the synergies between generative models and kernels for continual learning. The generative model is able to produce representative samples for kernel learning, which removes the dependence on memory in kernel continual learning. Moreover, as we replay only on the generative model, we avoid task interference while being computationally more efficient compared to previous methods that need replay on the entire model. We further introduce a supervised contrastive regularization, which enables our model to generate even more discriminative samples for better kernel-based classification performance. We conduct extensive experiments on three widely-used continual learning benchmarks that demonstrate the abilities and benefits of our contributions. Most notably, on the challenging SplitCIFAR100 benchmark, with just a simple linear kernel we obtain the same accuracy as kernel continual learning with variational random features for one tenth of the memory, or a 10.1\% accuracy gain for the same memory budget.

  • 4 authors
·
Dec 26, 2021

Harnessing Density Ratios for Online Reinforcement Learning

The theories of offline and online reinforcement learning, despite having evolved in parallel, have begun to show signs of the possibility for a unification, with algorithms and analysis techniques for one setting often having natural counterparts in the other. However, the notion of density ratio modeling, an emerging paradigm in offline RL, has been largely absent from online RL, perhaps for good reason: the very existence and boundedness of density ratios relies on access to an exploratory dataset with good coverage, but the core challenge in online RL is to collect such a dataset without having one to start. In this work we show -- perhaps surprisingly -- that density ratio-based algorithms have online counterparts. Assuming only the existence of an exploratory distribution with good coverage, a structural condition known as coverability (Xie et al., 2023), we give a new algorithm (GLOW) that uses density ratio realizability and value function realizability to perform sample-efficient online exploration. GLOW addresses unbounded density ratios via careful use of truncation, and combines this with optimism to guide exploration. GLOW is computationally inefficient; we complement it with a more efficient counterpart, HyGLOW, for the Hybrid RL setting (Song et al., 2022) wherein online RL is augmented with additional offline data. HyGLOW is derived as a special case of a more general meta-algorithm that provides a provable black-box reduction from hybrid RL to offline RL, which may be of independent interest.

  • 5 authors
·
Jan 17, 2024

Learning Hierarchical Polynomials with Three-Layer Neural Networks

We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form h = g circ p where p : R^d rightarrow R is a degree k polynomial and g: R rightarrow R is a degree q polynomial. This function class generalizes the single-index model, which corresponds to k=1, and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree k polynomials p, a three-layer neural network trained via layerwise gradient descent on the square loss learns the target h up to vanishing test error in mathcal{O}(d^k) samples and polynomial time. This is a strict improvement over kernel methods, which require widetilde Theta(d^{kq}) samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of p being a quadratic. When p is indeed a quadratic, we achieve the information-theoretically optimal sample complexity mathcal{O}(d^2), which is an improvement over prior work~nichani2023provable requiring a sample size of widetildeTheta(d^4). Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature p with mathcal{O}(d^k) samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.

  • 3 authors
·
Nov 22, 2023

Deep Regression Unlearning

With the introduction of data protection and privacy regulations, it has become crucial to remove the lineage of data on demand from a machine learning (ML) model. In the last few years, there have been notable developments in machine unlearning to remove the information of certain training data efficiently and effectively from ML models. In this work, we explore unlearning for the regression problem, particularly in deep learning models. Unlearning in classification and simple linear regression has been considerably investigated. However, unlearning in deep regression models largely remains an untouched problem till now. In this work, we introduce deep regression unlearning methods that generalize well and are robust to privacy attacks. We propose the Blindspot unlearning method which uses a novel weight optimization process. A randomly initialized model, partially exposed to the retain samples and a copy of the original model are used together to selectively imprint knowledge about the data that we wish to keep and scrub off the information of the data we wish to forget. We also propose a Gaussian fine tuning method for regression unlearning. The existing unlearning metrics for classification are not directly applicable to regression unlearning. Therefore, we adapt these metrics for the regression setting. We conduct regression unlearning experiments for computer vision, natural language processing and forecasting applications. Our methods show excellent performance for all these datasets across all the metrics. Source code: https://github.com/ayu987/deep-regression-unlearning

  • 4 authors
·
Oct 15, 2022

Scale Mixtures of Neural Network Gaussian Processes

Recent works have revealed that infinitely-wide feed-forward or recurrent neural networks of any architecture correspond to Gaussian processes referred to as Neural Network Gaussian Processes (NNGPs). While these works have extended the class of neural networks converging to Gaussian processes significantly, however, there has been little focus on broadening the class of stochastic processes that such neural networks converge to. In this work, inspired by the scale mixture of Gaussian random variables, we propose the scale mixture of NNGPs for which we introduce a prior distribution on the scale of the last-layer parameters. We show that simply introducing a scale prior on the last-layer parameters can turn infinitely-wide neural networks of any architecture into a richer class of stochastic processes. With certain scale priors, we obtain heavy-tailed stochastic processes, and in the case of inverse gamma priors, we recover Student's t processes. We further analyze the distributions of the neural networks initialized with our prior setting and trained with gradient descents and obtain similar results as for NNGPs. We present a practical posterior-inference algorithm for the scale mixture of NNGPs and empirically demonstrate its usefulness on regression and classification tasks. In particular, we show that in both tasks, the heavy-tailed stochastic processes obtained from our framework are robust to out-of-distribution data.

  • 4 authors
·
Jul 3, 2021

Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions

Hyperparameter optimization can be formulated as a bilevel optimization problem, where the optimal parameters on the training set depend on the hyperparameters. We aim to adapt regularization hyperparameters for neural networks by fitting compact approximations to the best-response function, which maps hyperparameters to optimal weights and biases. We show how to construct scalable best-response approximations for neural networks by modeling the best-response as a single network whose hidden units are gated conditionally on the regularizer. We justify this approximation by showing the exact best-response for a shallow linear network with L2-regularized Jacobian can be represented by a similar gating mechanism. We fit this model using a gradient-based hyperparameter optimization algorithm which alternates between approximating the best-response around the current hyperparameters and optimizing the hyperparameters using the approximate best-response function. Unlike other gradient-based approaches, we do not require differentiating the training loss with respect to the hyperparameters, allowing us to tune discrete hyperparameters, data augmentation hyperparameters, and dropout probabilities. Because the hyperparameters are adapted online, our approach discovers hyperparameter schedules that can outperform fixed hyperparameter values. Empirically, our approach outperforms competing hyperparameter optimization methods on large-scale deep learning problems. We call our networks, which update their own hyperparameters online during training, Self-Tuning Networks (STNs).

  • 5 authors
·
Mar 7, 2019

Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization

Combining offline and online reinforcement learning (RL) is crucial for efficient and safe learning. However, previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance. We ask: Can we achieve straightforward yet effective offline and online learning without introducing extra conservatism or regularization? In this study, we propose Uni-o4, which utilizes an on-policy objective for both offline and online learning. Owning to the alignment of objectives in two phases, the RL agent can transfer between offline and online learning seamlessly. This property enhances the flexibility of the learning paradigm, allowing for arbitrary combinations of pretraining, fine-tuning, offline, and online learning. In the offline phase, specifically, Uni-o4 leverages diverse ensemble policies to address the mismatch issues between the estimated behavior policy and the offline dataset. Through a simple offline policy evaluation (OPE) approach, Uni-o4 can achieve multi-step policy improvement safely. We demonstrate that by employing the method above, the fusion of these two paradigms can yield superior offline initialization as well as stable and rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight the benefits of this paradigm for rapid deployment in challenging, previously unseen real-world environments. Additionally, through comprehensive evaluations using numerous simulated benchmarks, we substantiate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning. Our website: https://lei-kun.github.io/uni-o4/ .

  • 6 authors
·
Nov 6, 2023

Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning

Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops UDS (Utility-Diversity Sampling), a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.

  • 5 authors
·
Oct 19

Online Video Understanding: A Comprehensive Benchmark and Memory-Augmented Method

Multimodal Large Language Models (MLLMs) have shown significant progress in offline video understanding. However, applying these models to real-world scenarios, such as autonomous driving and human-computer interaction, presents unique challenges due to the need for real-time processing of continuous online video streams. To this end, this paper presents systematic efforts from three perspectives: evaluation benchmark, model architecture, and training strategy. First, we introduce OVBench, a comprehensive question-answering benchmark specifically designed to evaluate models' ability to perceive, memorize, and reason within online video contexts. It features six core task types across three temporal contexts-past, present, and future-forming 16 subtasks from diverse datasets. Second, we propose a new Pyramid Memory Bank (PMB) that effectively retains key spatiotemporal information in video streams. Third, we proposed an offline-to-online learning paradigm, designing an interleaved dialogue format for online video data and constructing an instruction-tuning dataset tailored for online video training. This framework led to the development of VideoChat-Online, a robust and efficient model for online video understanding. Despite the lower computational cost and higher efficiency, VideoChat-Online outperforms existing state-of-the-art offline and online models across popular offline video benchmarks and OVBench, demonstrating the effectiveness of our model architecture and training strategy.

  • 10 authors
·
Dec 31, 2024