Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFinVision: A Multi-Agent Framework for Stock Market Prediction
Financial trading has been a challenging task, as it requires the integration of vast amounts of data from various modalities. Traditional deep learning and reinforcement learning methods require large training data and often involve encoding various data types into numerical formats for model input, which limits the explainability of model behavior. Recently, LLM-based agents have demonstrated remarkable advancements in handling multi-modal data, enabling them to execute complex, multi-step decision-making tasks while providing insights into their thought processes. This research introduces a multi-modal multi-agent system designed specifically for financial trading tasks. Our framework employs a team of specialized LLM-based agents, each adept at processing and interpreting various forms of financial data, such as textual news reports, candlestick charts, and trading signal charts. A key feature of our approach is the integration of a reflection module, which conducts analyses of historical trading signals and their outcomes. This reflective process is instrumental in enhancing the decision-making capabilities of the system for future trading scenarios. Furthermore, the ablation studies indicate that the visual reflection module plays a crucial role in enhancing the decision-making capabilities of our framework.
Training Diffusion Models with Reinforcement Learning
Diffusion models are a class of flexible generative models trained with an approximation to the log-likelihood objective. However, most use cases of diffusion models are not concerned with likelihoods, but instead with downstream objectives such as human-perceived image quality or drug effectiveness. In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for such objectives. We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms, which we refer to as denoising diffusion policy optimization (DDPO), that are more effective than alternative reward-weighted likelihood approaches. Empirically, DDPO is able to adapt text-to-image diffusion models to objectives that are difficult to express via prompting, such as image compressibility, and those derived from human feedback, such as aesthetic quality. Finally, we show that DDPO can improve prompt-image alignment using feedback from a vision-language model without the need for additional data collection or human annotation.
Hi-Agent: Hierarchical Vision-Language Agents for Mobile Device Control
Building agents that autonomously operate mobile devices has attracted increasing attention. While Vision-Language Models (VLMs) show promise, most existing approaches rely on direct state-to-action mappings, which lack structured reasoning and planning, and thus generalize poorly to novel tasks or unseen UI layouts. We introduce Hi-Agent, a trainable hierarchical vision-language agent for mobile control, featuring a high-level reasoning model and a low-level action model that are jointly optimized. For efficient training, we reformulate multi-step decision-making as a sequence of single-step subgoals and propose a foresight advantage function, which leverages execution feedback from the low-level model to guide high-level optimization. This design alleviates the path explosion issue encountered by Group Relative Policy Optimization (GRPO) in long-horizon tasks and enables stable, critic-free joint training. Hi-Agent achieves a new State-Of-The-Art (SOTA) 87.9% task success rate on the Android-in-the-Wild (AitW) benchmark, significantly outperforming prior methods across three paradigms: prompt-based (AppAgent: 17.7%), supervised (Filtered BC: 54.5%), and reinforcement learning-based (DigiRL: 71.9%). It also demonstrates competitive zero-shot generalization on the ScreenSpot-v2 benchmark. On the more challenging AndroidWorld benchmark, Hi-Agent also scales effectively with larger backbones, showing strong adaptability in high-complexity mobile control scenarios.
DriveLM: Driving with Graph Visual Question Answering
We study how vision-language models (VLMs) trained on web-scale data can be integrated into end-to-end driving systems to boost generalization and enable interactivity with human users. While recent approaches adapt VLMs to driving via single-round visual question answering (VQA), human drivers reason about decisions in multiple steps. Starting from the localization of key objects, humans estimate object interactions before taking actions. The key insight is that with our proposed task, Graph VQA, where we model graph-structured reasoning through perception, prediction and planning question-answer pairs, we obtain a suitable proxy task to mimic the human reasoning process. We instantiate datasets (DriveLM-Data) built upon nuScenes and CARLA, and propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving. The experiments demonstrate that Graph VQA provides a simple, principled framework for reasoning about a driving scene, and DriveLM-Data provides a challenging benchmark for this task. Our DriveLM-Agent baseline performs end-to-end autonomous driving competitively in comparison to state-of-the-art driving-specific architectures. Notably, its benefits are pronounced when it is evaluated zero-shot on unseen objects or sensor configurations. We hope this work can be the starting point to shed new light on how to apply VLMs for autonomous driving. To facilitate future research, all code, data, and models are available to the public.
Scaling Autonomous Agents via Automatic Reward Modeling And Planning
Large language models (LLMs) have demonstrated remarkable capabilities across a range of text-generation tasks. However, LLMs still struggle with problems requiring multi-step decision-making and environmental feedback, such as online shopping, scientific reasoning, and mathematical problem-solving. Unlike pure text data, collecting large-scale decision-making data is challenging. Moreover, many powerful LLMs are only accessible through APIs, which hinders their fine-tuning for agent tasks due to cost and complexity. To address LLM agents' limitations, we propose a framework that can automatically learn a reward model from the environment without human annotations. This model can be used to evaluate the action trajectories of LLM agents and provide heuristics for task planning. Specifically, our approach involves employing one LLM-based agent to navigate an environment randomly, generating diverse action trajectories. Subsequently, a separate LLM is leveraged to assign a task intent and synthesize a negative response alongside the correct response for each trajectory. These triplets (task intent, positive response, and negative response) are then utilized as training data to optimize a reward model capable of scoring action trajectories. The effectiveness and generalizability of our framework are demonstrated through evaluations conducted on different agent benchmarks. In conclusion, our proposed framework represents a significant advancement in enhancing LLM agents' decision-making capabilities. By automating the learning of reward models, we overcome the challenges of data scarcity and API limitations, potentially revolutionizing the application of LLMs in complex and interactive environments. This research paves the way for more sophisticated AI agents capable of tackling a wide range of real-world problems requiring multi-step decision-making.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model. The interplay between these two objectives creates useful, accurate models that can then be used for multi-step decision making. This formulation has the additional benefit that it is possible to learn forward models in an abstract feature space and thus alleviate the need of predicting pixels. Our experiments show that this joint modeling approach outperforms alternative methods.
SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories
While MLLMs have demonstrated adequate image understanding capabilities, they still struggle with pixel-level comprehension, limiting their practical applications. Current evaluation tasks like VQA and visual grounding remain too coarse to assess fine-grained pixel comprehension accurately. Though segmentation is foundational for pixel-level understanding, existing methods often require MLLMs to generate implicit tokens, decoded through external pixel decoders. This approach disrupts the MLLM's text output space, potentially compromising language capabilities and reducing flexibility and extensibility, while failing to reflect the model's intrinsic pixel-level understanding. Thus, we introduce the Human-Like Mask Annotation Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools. Modeling segmentation as a multi-step Markov Decision Process, HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens. Through this setup, we develop SegAgent, a model fine-tuned on human-like annotation trajectories, which achieves performance comparable to state-of-the-art (SOTA) methods and supports additional tasks like mask refinement and annotation filtering. HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task that facilitates exploration of MLLMs' visual reasoning abilities. Our adaptations of policy improvement method StaR and PRM-guided tree search further enhance model robustness in complex segmentation tasks, laying a foundation for future advancements in fine-grained visual perception and multi-step decision-making for MLLMs.
Learning to Reason for Hallucination Span Detection
Large language models (LLMs) often generate hallucinations -- unsupported content that undermines reliability. While most prior works frame hallucination detection as a binary task, many real-world applications require identifying hallucinated spans, which is a multi-step decision making process. This naturally raises the question of whether explicit reasoning can help the complex task of detecting hallucination spans. To answer this question, we first evaluate pretrained models with and without Chain-of-Thought (CoT) reasoning, and show that CoT reasoning has the potential to generate at least one correct answer when sampled multiple times. Motivated by this, we propose RL4HS, a reinforcement learning framework that incentivizes reasoning with a span-level reward function. RL4HS builds on Group Relative Policy Optimization and introduces Class-Aware Policy Optimization to mitigate reward imbalance issue. Experiments on the RAGTruth benchmark (summarization, question answering, data-to-text) show that RL4HS surpasses pretrained reasoning models and supervised fine-tuning, demonstrating the necessity of reinforcement learning with span-level rewards for detecting hallucination spans.
Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization
Large language model (LLM)-based agents have recently shown impressive progress in a variety of domains, including open-ended conversation and multi-step decision-making. However, applying these agents to social deduction games such as Werewolf, which requires both strategic decision-making and free-form language interaction, remains non-trivial. Traditional methods based on Counterfactual Regret Minimization (CFR) or reinforcement learning (RL) typically depend on a predefined action space, making them unsuitable for language games with unconstrained text action space. Meanwhile, pure LLM-based agents often suffer from intrinsic biases and require prohibitively large datasets for fine-tuning. We propose Latent Space Policy Optimization (LSPO), an iterative framework that addresses these challenges by first mapping free-form text to a discrete latent space, where methods like CFR and RL can learn strategic policy more effectively. We then translate the learned policy back into natural language dialogues, which are used to fine-tune an LLM via Direct Preference Optimization (DPO). By iteratively alternating between these stages, our LSPO agent progressively enhances both strategic reasoning and language communication. Experiment results on the Werewolf game show that our method improves the agent's performance in each iteration and outperforms existing Werewolf agents, underscoring its promise for free-form language decision-making.
Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model
Enhancing the reasoning capabilities of large language models (LLMs) remains a key challenge, especially for tasks that require complex, multi-step decision-making. Humans excel at these tasks by leveraging deliberate planning with an internal world model to simulate the potential outcomes of various actions. Inspired by this, we propose a novel multi-step reasoning framework for LLMs, referred to as Structure-aware Planning with Accurate World Model (SWAP). Unlike previous approaches that rely solely on Chain-of-Thought (CoT) reasoning in natural language, SWAP incorporates structural information to guide the reasoning process via a world model and provides a soft verification mechanism over the steps. Moreover, SWAP overcomes the challenge of accurate world state predictions in complex reasoning tasks by introducing a Generator-Discriminator architecture, which enables more reliable world modeling. Specifically, the generator predicts the next state, and the discriminator ensures alignment with the logical consistency required by the problem context. SWAP also encourages the policy model to explore a broad range of potential actions to prevent premature convergence. By resolving the bottlenecks of generation diversity for both actions and states using diversity-based modeling (DBM) and improving discrimination accuracy through contrastive ranking (CR), SWAP significantly enhances the reasoning performance of LLMs. We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks. Extensive experiments demonstrate that SWAP achieves substantial improvements over the baselines and consistently outperforms existing LLMs of similar sizes.
UI-TARS: Pioneering Automated GUI Interaction with Native Agents
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions (e.g., keyboard and mouse operations). Unlike prevailing agent frameworks that depend on heavily wrapped commercial models (e.g., GPT-4o) with expert-crafted prompts and workflows, UI-TARS is an end-to-end model that outperforms these sophisticated frameworks. Experiments demonstrate its superior performance: UI-TARS achieves SOTA performance in 10+ GUI agent benchmarks evaluating perception, grounding, and GUI task execution. Notably, in the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively). In AndroidWorld, UI-TARS achieves 46.6, surpassing GPT-4o (34.5). UI-TARS incorporates several key innovations: (1) Enhanced Perception: leveraging a large-scale dataset of GUI screenshots for context-aware understanding of UI elements and precise captioning; (2) Unified Action Modeling, which standardizes actions into a unified space across platforms and achieves precise grounding and interaction through large-scale action traces; (3) System-2 Reasoning, which incorporates deliberate reasoning into multi-step decision making, involving multiple reasoning patterns such as task decomposition, reflection thinking, milestone recognition, etc. (4) Iterative Training with Reflective Online Traces, which addresses the data bottleneck by automatically collecting, filtering, and reflectively refining new interaction traces on hundreds of virtual machines. Through iterative training and reflection tuning, UI-TARS continuously learns from its mistakes and adapts to unforeseen situations with minimal human intervention. We also analyze the evolution path of GUI agents to guide the further development of this domain.
Synapse: Trajectory-as-Exemplar Prompting with Memory for Computer Control
Building agents with large language models (LLMs) for computer control is a burgeoning research area, where the agent receives computer states and performs actions to complete complex tasks. Previous computer agents have demonstrated the benefits of in-context learning (ICL); however, their performance is hindered by several issues. First, the limited context length of LLMs and complex computer states restrict the number of exemplars, as a single webpage can consume the entire context. Second, the exemplars in current methods, such as high-level plans and multi-choice questions, cannot represent complete trajectories, leading to suboptimal performance in long-horizon tasks. Third, existing computer agents rely on task-specific exemplars and overlook the similarity among tasks, resulting in poor generalization to novel tasks. To address these challenges, we introduce Synapse, a computer agent featuring three key components: i) state abstraction, which filters out task-irrelevant information from raw states, allowing more exemplars within the limited context, ii) trajectory-as-exemplar prompting, which prompts the LLM with complete trajectories of the abstracted states and actions to improve multi-step decision-making, and iii) exemplar memory, which stores the embeddings of exemplars and retrieves them via similarity search for generalization to novel tasks. We evaluate Synapse on MiniWoB++, a standard task suite, and Mind2Web, a real-world website benchmark. In MiniWoB++, Synapse achieves a 99.2% average success rate (a 10% relative improvement) across 64 tasks using demonstrations from only 48 tasks. Notably, Synapse is the first ICL method to solve the book-flight task in MiniWoB++. Synapse also exhibits a 56% relative improvement in average step success rate over the previous state-of-the-art prompting scheme in Mind2Web.
Enhancing Decision-Making for LLM Agents via Step-Level Q-Value Models
Agents significantly enhance the capabilities of standalone Large Language Models (LLMs) by perceiving environments, making decisions, and executing actions. However, LLM agents still face challenges in tasks that require multiple decision-making steps. Estimating the value of actions in specific tasks is difficult when intermediate actions are neither appropriately rewarded nor penalized. In this paper, we propose leveraging a task-relevant Q-value model to guide action selection. Specifically, we first collect decision-making trajectories annotated with step-level Q values via Monte Carlo Tree Search (MCTS) and construct preference data. We then use another LLM to fit these preferences through step-level Direct Policy Optimization (DPO), which serves as the Q-value model. During inference, at each decision-making step, LLM agents select the action with the highest Q value before interacting with the environment. We apply our method to various open-source and API-based LLM agents, demonstrating that Q-value models significantly improve their performance. Notably, the performance of the agent built with Phi-3-mini-4k-instruct improved by 103% on WebShop and 75% on HotPotQA when enhanced with Q-value models, even surpassing GPT-4o-mini. Additionally, Q-value models offer several advantages, such as generalization to different LLM agents and seamless integration with existing prompting strategies.
DeLLMa: A Framework for Decision Making Under Uncertainty with Large Language Models
Large language models (LLMs) are increasingly used across society, including in domains like business, engineering, and medicine. These fields often grapple with decision-making under uncertainty, a critical yet challenging task. In this paper, we show that directly prompting LLMs on these types of decision-making problems yields poor results, especially as the problem complexity increases. To overcome this limitation, we propose DeLLMa (Decision-making Large Language Model assistant), a framework designed to enhance decision-making accuracy in uncertain environments. DeLLMa involves a multi-step scaffolding procedure, drawing upon principles from decision theory and utility theory, to provide an optimal and human-auditable decision-making process. We validate our framework on decision-making environments involving real agriculture and finance data. Our results show that DeLLMa can significantly improve LLM decision-making performance, achieving up to a 40% increase in accuracy over competing methods.
VIVA+: Human-Centered Situational Decision-Making
Multimodal Large Language Models (MLLMs) show promising results for embodied agents in operating meaningfully in complex, human-centered environments. Yet, evaluating their capacity for nuanced, human-like reasoning and decision-making remains challenging. In this work, we introduce VIVA+, a cognitively grounded benchmark for evaluating the reasoning and decision-making of MLLMs in human-centered situations. VIVA+ consists of 1,317 real-world situations paired with 6,373 multiple-choice questions, targeting three core abilities for decision-making: (1) Foundational Situation Comprehension, (2) Context-Driven Action Justification, and (3) Reflective Reasoning. Together, these dimensions provide a systematic framework for assessing a model's ability to perceive, reason, and act in socially meaningful ways. We evaluate the latest commercial and open-source models on VIVA+, where we reveal distinct performance patterns and highlight significant challenges. We further explore targeted training and multi-step reasoning strategies, which yield consistent performance improvements. Finally, our in-depth analysis highlights current model limitations and provides actionable insights for advancing MLLMs toward more robust, context-aware, and socially adept decision-making in real-world settings.
GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with Generative Flow Networks
Vision-Language Models (VLMs) have recently shown promising advancements in sequential decision-making tasks through task-specific fine-tuning. However, common fine-tuning methods, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) techniques like Proximal Policy Optimization (PPO), present notable limitations: SFT assumes Independent and Identically Distributed (IID) data, while PPO focuses on maximizing cumulative rewards. These limitations often restrict solution diversity and hinder generalization in multi-step reasoning tasks. To address these challenges, we introduce a novel framework, GFlowVLM, a framework that fine-tune VLMs using Generative Flow Networks (GFlowNets) to promote generation of diverse solutions for complex reasoning tasks. GFlowVLM models the environment as a non-Markovian decision process, allowing it to capture long-term dependencies essential for real-world applications. It takes observations and task descriptions as inputs to prompt chain-of-thought (CoT) reasoning which subsequently guides action selection. We use task based rewards to fine-tune VLM with GFlowNets. This approach enables VLMs to outperform prior fine-tuning methods, including SFT and RL. Empirical results demonstrate the effectiveness of GFlowVLM on complex tasks such as card games (NumberLine, BlackJack) and embodied planning tasks (ALFWorld), showing enhanced training efficiency, solution diversity, and stronger generalization capabilities across both in-distribution and out-of-distribution scenarios.
Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning
Large vision-language models (VLMs) fine-tuned on specialized visual instruction-following data have exhibited impressive language reasoning capabilities across various scenarios. However, this fine-tuning paradigm may not be able to efficiently learn optimal decision-making agents in multi-step goal-directed tasks from interactive environments. To address this challenge, we propose an algorithmic framework that fine-tunes VLMs with reinforcement learning (RL). Specifically, our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning, enabling the VLM to efficiently explore intermediate reasoning steps that lead to the final text-based action. Next, the open-ended text output is parsed into an executable action to interact with the environment to obtain goal-directed task rewards. Finally, our framework uses these task rewards to fine-tune the entire VLM with RL. Empirically, we demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks, enabling 7b models to outperform commercial models such as GPT4-V or Gemini. Furthermore, we find that CoT reasoning is a crucial component for performance improvement, as removing the CoT reasoning results in a significant decrease in the overall performance of our method.
Visual Backdoor Attacks on MLLM Embodied Decision Making via Contrastive Trigger Learning
Multimodal large language models (MLLMs) have advanced embodied agents by enabling direct perception, reasoning, and planning task-oriented actions from visual inputs. However, such vision driven embodied agents open a new attack surface: visual backdoor attacks, where the agent behaves normally until a visual trigger appears in the scene, then persistently executes an attacker-specified multi-step policy. We introduce BEAT, the first framework to inject such visual backdoors into MLLM-based embodied agents using objects in the environments as triggers. Unlike textual triggers, object triggers exhibit wide variation across viewpoints and lighting, making them difficult to implant reliably. BEAT addresses this challenge by (1) constructing a training set that spans diverse scenes, tasks, and trigger placements to expose agents to trigger variability, and (2) introducing a two-stage training scheme that first applies supervised fine-tuning (SFT) and then our novel Contrastive Trigger Learning (CTL). CTL formulates trigger discrimination as preference learning between trigger-present and trigger-free inputs, explicitly sharpening the decision boundaries to ensure precise backdoor activation. Across various embodied agent benchmarks and MLLMs, BEAT achieves attack success rates up to 80%, while maintaining strong benign task performance, and generalizes reliably to out-of-distribution trigger placements. Notably, compared to naive SFT, CTL boosts backdoor activation accuracy up to 39% under limited backdoor data. These findings expose a critical yet unexplored security risk in MLLM-based embodied agents, underscoring the need for robust defenses before real-world deployment.
Is Multi-Agent Debate (MAD) the Silver Bullet? An Empirical Analysis of MAD in Code Summarization and Translation
Large Language Models (LLMs) have advanced autonomous agents' planning and decision-making, yet they struggle with complex tasks requiring diverse expertise and multi-step reasoning. Multi-Agent Debate (MAD) systems, introduced in NLP research, address this gap by enabling structured debates among LLM-based agents to refine solutions iteratively. MAD promotes divergent thinking through role-specific agents, dynamic interactions, and structured decision-making. Recognizing parallels between Software Engineering (SE) and collaborative human problem-solving, this study investigates MAD's effectiveness on two SE tasks. We adapt MAD systems from NLP, analyze agent interactions to assess consensus-building and iterative refinement, and propose two enhancements targeting observed weaknesses. Our findings show that structured debate and collaboration improve problem-solving and yield strong performance in some cases, highlighting MAD's potential for SE automation while identifying areas for exploration.
PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
In the field of MLLM-based GUI agents, compared to smartphones, the PC scenario not only features a more complex interactive environment, but also involves more intricate intra- and inter-app workflows. To address these issues, we propose a hierarchical agent framework named PC-Agent. Specifically, from the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content. From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture that decomposes decision-making processes into Instruction-Subtask-Action levels. Within this architecture, three agents (i.e., Manager, Progress and Decision) are set up for instruction decomposition, progress tracking and step-by-step decision-making respectively. Additionally, a Reflection agent is adopted to enable timely bottom-up error feedback and adjustment. We also introduce a new benchmark PC-Eval with 25 real-world complex instructions. Empirical results on PC-Eval show that our PC-Agent achieves a 32% absolute improvement of task success rate over previous state-of-the-art methods. The code will be publicly available.
BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents
The massive successes of large language models (LLMs) encourage the emerging exploration of LLM-augmented Autonomous Agents (LAAs). An LAA is able to generate actions with its core LLM and interact with environments, which facilitates the ability to resolve complex tasks by conditioning on past interactions such as observations and actions. Since the investigation of LAA is still very recent, limited explorations are available. Therefore, we provide a comprehensive comparison of LAA in terms of both agent architectures and LLM backbones. Additionally, we propose a new strategy to orchestrate multiple LAAs such that each labor LAA focuses on one type of action, i.e. BOLAA, where a controller manages the communication among multiple agents. We conduct simulations on both decision-making and multi-step reasoning environments, which comprehensively justify the capacity of LAAs. Our performance results provide quantitative suggestions for designing LAA architectures and the optimal choice of LLMs, as well as the compatibility of both. We release our implementation code of LAAs to the public at https://github.com/salesforce/BOLAA.
Accelerating exploration and representation learning with offline pre-training
Sequential decision-making agents struggle with long horizon tasks, since solving them requires multi-step reasoning. Most reinforcement learning (RL) algorithms address this challenge by improved credit assignment, introducing memory capability, altering the agent's intrinsic motivation (i.e. exploration) or its worldview (i.e. knowledge representation). Many of these components could be learned from offline data. In this work, we follow the hypothesis that exploration and representation learning can be improved by separately learning two different models from a single offline dataset. We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward separately from a single collection of human demonstrations can significantly improve the sample efficiency on the challenging NetHack benchmark. We also ablate various components of our experimental setting and highlight crucial insights.
Implicit Reasoning in Large Language Models: A Comprehensive Survey
Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textit{how and where internal computation unfolds}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.
TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools
Precision therapeutics require multimodal adaptive models that generate personalized treatment recommendations. We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge retrieval across a toolbox of 211 tools to analyze drug interactions, contraindications, and patient-specific treatment strategies. TxAgent evaluates how drugs interact at molecular, pharmacokinetic, and clinical levels, identifies contraindications based on patient comorbidities and concurrent medications, and tailors treatment strategies to individual patient characteristics. It retrieves and synthesizes evidence from multiple biomedical sources, assesses interactions between drugs and patient conditions, and refines treatment recommendations through iterative reasoning. It selects tools based on task objectives and executes structured function calls to solve therapeutic tasks that require clinical reasoning and cross-source validation. The ToolUniverse consolidates 211 tools from trusted sources, including all US FDA-approved drugs since 1939 and validated clinical insights from Open Targets. TxAgent outperforms leading LLMs, tool-use models, and reasoning agents across five new benchmarks: DrugPC, BrandPC, GenericPC, TreatmentPC, and DescriptionPC, covering 3,168 drug reasoning tasks and 456 personalized treatment scenarios. It achieves 92.1% accuracy in open-ended drug reasoning tasks, surpassing GPT-4o and outperforming DeepSeek-R1 (671B) in structured multi-step reasoning. TxAgent generalizes across drug name variants and descriptions. By integrating multi-step inference, real-time knowledge grounding, and tool-assisted decision-making, TxAgent ensures that treatment recommendations align with established clinical guidelines and real-world evidence, reducing the risk of adverse events and improving therapeutic decision-making.
Agentic Reasoning and Tool Integration for LLMs via Reinforcement Learning
Large language models (LLMs) have achieved remarkable progress in complex reasoning tasks, yet they remain fundamentally limited by their reliance on static internal knowledge and text-only reasoning. Real-world problem solving often demands dynamic, multi-step reasoning, adaptive decision making, and the ability to interact with external tools and environments. In this work, we introduce ARTIST (Agentic Reasoning and Tool Integration in Self-improving Transformers), a unified framework that tightly couples agentic reasoning, reinforcement learning, and tool integration for LLMs. ARTIST enables models to autonomously decide when, how, and which tools to invoke within multi-turn reasoning chains, leveraging outcome-based RL to learn robust strategies for tool use and environment interaction without requiring step-level supervision. Extensive experiments on mathematical reasoning and multi-turn function calling benchmarks show that ARTIST consistently outperforms state-of-the-art baselines, with up to 22% absolute improvement over base models and strong gains on the most challenging tasks. Detailed studies and metric analyses reveal that agentic RL training leads to deeper reasoning, more effective tool use, and higher-quality solutions. Our results establish agentic RL with tool integration as a powerful new frontier for robust, interpretable, and generalizable problem-solving in LLMs.
Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming
While large language models (LLMs) have recently demonstrated strong potential in solving planning problems, there is a trade-off between flexibility and complexity. LLMs, as zero-shot planners themselves, are still not capable of directly generating valid plans for complex planning problems such as multi-constraint or long-horizon tasks. On the other hand, many frameworks aiming to solve complex planning problems often rely on task-specific preparatory efforts, such as task-specific in-context examples and pre-defined critics/verifiers, which limits their cross-task generalization capability. In this paper, we tackle these challenges by observing that the core of many planning problems lies in optimization problems: searching for the optimal solution (best plan) with goals subject to constraints (preconditions and effects of decisions). With LLMs' commonsense, reasoning, and programming capabilities, this opens up the possibilities of a universal LLM-based approach to planning problems. Inspired by this observation, we propose LLMFP, a general-purpose framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch, with no task-specific examples needed. We apply LLMFP to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LLMFP achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Sonnet, significantly outperforming the best baseline (direct planning with OpenAI o1-preview) with 37.6% and 40.7% improvements. We also validate components of LLMFP with ablation experiments and analyzed the underlying success and failure reasons.
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
FLAG-Trader: Fusion LLM-Agent with Gradient-based Reinforcement Learning for Financial Trading
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose FLAG-Trader, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.
From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review
Large language models and autonomous AI agents have evolved rapidly, resulting in a diverse array of evaluation benchmarks, frameworks, and collaboration protocols. However, the landscape remains fragmented and lacks a unified taxonomy or comprehensive survey. Therefore, we present a side-by-side comparison of benchmarks developed between 2019 and 2025 that evaluate these models and agents across multiple domains. In addition, we propose a taxonomy of approximately 60 benchmarks that cover general and academic knowledge reasoning, mathematical problem-solving, code generation and software engineering, factual grounding and retrieval, domain-specific evaluations, multimodal and embodied tasks, task orchestration, and interactive assessments. Furthermore, we review AI-agent frameworks introduced between 2023 and 2025 that integrate large language models with modular toolkits to enable autonomous decision-making and multi-step reasoning. Moreover, we present real-world applications of autonomous AI agents in materials science, biomedical research, academic ideation, software engineering, synthetic data generation, chemical reasoning, mathematical problem-solving, geographic information systems, multimedia, healthcare, and finance. We then survey key agent-to-agent collaboration protocols, namely the Agent Communication Protocol (ACP), the Model Context Protocol (MCP), and the Agent-to-Agent Protocol (A2A). Finally, we discuss recommendations for future research, focusing on advanced reasoning strategies, failure modes in multi-agent LLM systems, automated scientific discovery, dynamic tool integration via reinforcement learning, integrated search capabilities, and security vulnerabilities in agent protocols.
State and Memory is All You Need for Robust and Reliable AI Agents
Large language models (LLMs) have enabled powerful advances in natural language understanding and generation. Yet their application to complex, real-world scientific workflows remain limited by challenges in memory, planning, and tool integration. Here, we introduce SciBORG (Scientific Bespoke Artificial Intelligence Agents Optimized for Research Goals), a modular agentic framework that allows LLM-based agents to autonomously plan, reason, and achieve robust and reliable domain-specific task execution. Agents are constructed dynamically from source code documentation and augmented with finite-state automata (FSA) memory, enabling persistent state tracking and context-aware decision-making. This approach eliminates the need for manual prompt engineering and allows for robust, scalable deployment across diverse applications via maintaining context across extended workflows and to recover from tool or execution failures. We validate SciBORG through integration with both physical and virtual hardware, such as microwave synthesizers for executing user-specified reactions, with context-aware decision making and demonstrate its use in autonomous multi-step bioassay retrieval from the PubChem database utilizing multi-step planning, reasoning, agent-to-agent communication and coordination for execution of exploratory tasks. Systematic benchmarking shows that SciBORG agents achieve reliable execution, adaptive planning, and interpretable state transitions. Our results show that memory and state awareness are critical enablers of agentic planning and reliability, offering a generalizable foundation for deploying AI agents in complex environments.
Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard
Tabular data, a fundamental data format in machine learning, is predominantly utilized in competitions and real-world applications. The performance of tabular models--such as gradient boosted decision trees and neural networks--can vary significantly across datasets due to differences in feature distributions and task characteristics. Achieving top performance on each dataset often requires specialized expert knowledge. To address this variability, practitioners often aggregate the predictions of multiple models. However, conventional aggregation strategies typically rely on static combination rules and lack instance-level adaptability. In this work, we propose an in-context ensemble framework for tabular prediction that leverages large language models (LLMs) to perform dynamic, instance-specific integration of external model predictions. Without access to raw tabular features or semantic information, our method constructs a context around each test instance using its nearest neighbors and the predictions from a pool of external models. Within this enriched context, we introduce Chain of Tabular Thoughts (CoT^2), a prompting strategy that guides LLMs through multi-step, interpretable reasoning, making still further progress toward expert-level decision-making. Experimental results show that our method outperforms well-tuned baselines and standard ensemble techniques across a wide range of tabular datasets.
Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning
Despite the remarkable success of large language models (LLMs) on traditional natural language processing tasks, their planning ability remains a critical bottleneck in tackling complex multi-step reasoning tasks. Existing approaches mainly rely on prompting or task-specific fine-tuning, often suffering from poor robustness and cross-task generalization. To address the limitation, we introduce CodePlan, a scalable framework that empowers LLMs to generate and follow code-form plans -- pseudocode that outlines high-level, structured reasoning processes. By leveraging the structured and versatile nature of code, CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks. Importantly, CodePlan allows automatic extraction of code-form plans from massive, wide-ranging text corpora without the need for curated, task-specific datasets. This enables it to scale up efficiently and improve LLM's reasoning capabilities across diverse scenarios. To train CodePlan, we construct a large-scale dataset of 2M examples that integrate code-form plans with standard prompt-response pairs from existing corpora. With minimal computation overhead during both training and inference, CodePlan achieves a 25.1\% relative improvement compared with directly generating responses, averaged across 13 challenging multi-step reasoning benchmarks, spanning mathematical reasoning, symbolic reasoning, instruction-following, multi-hop QA, and decision-making tasks. Further analysis reveals CodePlan's increasing performance gains on more complex reasoning tasks, as well as significant data efficiency thanks to its generalization ability.
CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis
Single-cell RNA sequencing (scRNA-seq) data analysis is crucial for biological research, as it enables the precise characterization of cellular heterogeneity. However, manual manipulation of various tools to achieve desired outcomes can be labor-intensive for researchers. To address this, we introduce CellAgent (http://cell.agent4science.cn/), an LLM-driven multi-agent framework, specifically designed for the automatic processing and execution of scRNA-seq data analysis tasks, providing high-quality results with no human intervention. Firstly, to adapt general LLMs to the biological field, CellAgent constructs LLM-driven biological expert roles - planner, executor, and evaluator - each with specific responsibilities. Then, CellAgent introduces a hierarchical decision-making mechanism to coordinate these biological experts, effectively driving the planning and step-by-step execution of complex data analysis tasks. Furthermore, we propose a self-iterative optimization mechanism, enabling CellAgent to autonomously evaluate and optimize solutions, thereby guaranteeing output quality. We evaluate CellAgent on a comprehensive benchmark dataset encompassing dozens of tissues and hundreds of distinct cell types. Evaluation results consistently show that CellAgent effectively identifies the most suitable tools and hyperparameters for single-cell analysis tasks, achieving optimal performance. This automated framework dramatically reduces the workload for science data analyses, bringing us into the "Agent for Science" era.
Graph Neural Networks for Decentralized Multi-Robot Path Planning
Effective communication is key to successful, decentralized, multi-robot path planning. Yet, it is far from obvious what information is crucial to the task at hand, and how and when it must be shared among robots. To side-step these issues and move beyond hand-crafted heuristics, we propose a combined model that automatically synthesizes local communication and decision-making policies for robots navigating in constrained workspaces. Our architecture is composed of a convolutional neural network (CNN) that extracts adequate features from local observations, and a graph neural network (GNN) that communicates these features among robots. We train the model to imitate an expert algorithm, and use the resulting model online in decentralized planning involving only local communication and local observations. We evaluate our method in simulations {by navigating teams of robots to their destinations in 2D} cluttered workspaces. We measure the success rates and sum of costs over the planned paths. The results show a performance close to that of our expert algorithm, demonstrating the validity of our approach. In particular, we show our model's capability to generalize to previously unseen cases (involving larger environments and larger robot teams).
MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.
PKRD-CoT: A Unified Chain-of-thought Prompting for Multi-Modal Large Language Models in Autonomous Driving
There is growing interest in leveraging the capabilities of robust Multi-Modal Large Language Models (MLLMs) directly within autonomous driving contexts. However, the high costs and complexity of designing and training end-to-end autonomous driving models make them challenging for many enterprises and research entities. To address this, our study explores a seamless integration of MLLMs into autonomous driving systems by proposing a Zero-Shot Chain-of-Thought (Zero-Shot-CoT) prompt design named PKRD-CoT. PKRD-CoT is based on the four fundamental capabilities of autonomous driving: perception, knowledge, reasoning, and decision-making. This makes it particularly suitable for understanding and responding to dynamic driving environments by mimicking human thought processes step by step, thus enhancing decision-making in real-time scenarios. Our design enables MLLMs to tackle problems without prior experience, thereby increasing their utility within unstructured autonomous driving environments. In experiments, we demonstrate the exceptional performance of GPT-4.0 with PKRD-CoT across autonomous driving tasks, highlighting its effectiveness in autonomous driving scenarios. Additionally, our benchmark analysis reveals the promising viability of PKRD-CoT for other MLLMs, such as Claude, LLava1.6, and Qwen-VL-Plus. Overall, this study contributes a novel and unified prompt-design framework for GPT-4.0 and other MLLMs in autonomous driving, while also rigorously evaluating the efficacy of these widely recognized MLLMs in the autonomous driving domain through comprehensive comparisons.
PrefPalette: Personalized Preference Modeling with Latent Attributes
Personalizing AI systems requires understanding not just what users prefer, but the reasons that underlie those preferences - yet current preference models typically treat human judgment as a black box. We introduce PrefPalette, a framework that decomposes preferences into attribute dimensions and tailors its preference prediction to distinct social community values in a human-interpretable manner. PrefPalette operationalizes a cognitive science principle known as multi-attribute decision making in two ways: (1) a scalable counterfactual attribute synthesis step that involves generating synthetic training data to isolate for individual attribute effects (e.g., formality, humor, cultural values), and (2) attention-based preference modeling that learns how different social communities dynamically weight these attributes. This approach moves beyond aggregate preference modeling to capture the diverse evaluation frameworks that drive human judgment. When evaluated on 45 social communities from the online platform Reddit, PrefPalette outperforms GPT-4o by 46.6% in average prediction accuracy. Beyond raw predictive improvements, PrefPalette also shed light on intuitive, community-specific profiles: scholarly communities prioritize verbosity and stimulation, conflict-oriented communities value sarcasm and directness, and support-based communities emphasize empathy. By modeling the attribute-mediated structure of human judgment, PrefPalette delivers both superior preference modeling and transparent, interpretable insights, and serves as a first step toward more trustworthy, value-aware personalized applications.
Language Model Agents Suffer from Compositional Generalization in Web Automation
Language model agents (LMA) recently emerged as a promising paradigm on muti-step decision making tasks, often outperforming humans and other reinforcement learning agents. Despite the promise, their performance on real-world applications that often involve combinations of tasks is still underexplored. In this work, we introduce a new benchmark, called CompWoB -- 50 new compositional web automation tasks reflecting more realistic assumptions. We show that while existing prompted LMAs (gpt-3.5-turbo or gpt-4) achieve 94.0% average success rate on base tasks, their performance degrades to 24.9% success rate on compositional tasks. On the other hand, transferred LMAs (finetuned only on base tasks) show less generalization gap, dropping from 85.4% to 54.8%. By balancing data distribution across tasks, we train a new model, HTML-T5++, that surpasses human-level performance (95.2%) on MiniWoB, and achieves the best zero-shot performance on CompWoB (61.5%). While these highlight the promise of small-scale finetuned and transferred models for compositional generalization, their performance further degrades under different instruction compositions changing combinational order. In contrast to the recent remarkable success of LMA, our benchmark and detailed analysis emphasize the necessity of building LMAs that are robust and generalizable to task compositionality for real-world deployment.
ACPBench: Reasoning about Action, Change, and Planning
There is an increasing body of work using Large Language Models (LLMs) as agents for orchestrating workflows and making decisions in domains that require planning and multi-step reasoning. As a result, it is imperative to evaluate LLMs on core skills required for planning. In this work, we present ACPBench, a benchmark for evaluating the reasoning tasks in the field of planning. The benchmark consists of 7 reasoning tasks over 13 planning domains. The collection is constructed from planning domains described in a formal language. This allows us to synthesize problems with provably correct solutions across many tasks and domains. Further, it allows us the luxury of scale without additional human effort, i.e., many additional problems can be created automatically. Our extensive evaluation of 22 open-sourced and frontier LLMs highlight the significant gap in the reasoning capability of the LLMs. The average accuracy of one of the best-performing frontier LLMs -- GPT-4o on these tasks can fall as low as 52.50% ACPBench collection is available at https://ibm.github.io/ACPBench.
Improving Autonomous AI Agents with Reflective Tree Search and Self-Learning
Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon planning tasks. To address these limitations, we introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test-time algorithm designed to enhance the ability of AI agents, e.g., powered by GPT-4o, to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate to provide reliable state evaluation. Moreover, we improve the agent's performance by fine-tuning GPT-4o through self-learning, using R-MCTS generated tree traversals without any human-provided labels. On the challenging VisualWebArena benchmark, our GPT-4o-based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. The fine-tuned GPT-4o matches 97% of R-MCTS's performance while reducing compute usage by a factor of four at test time. Furthermore, qualitative results reveal that the fine-tuned GPT-4o model demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success. Moreover, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' reasoning and planning capabilities for agentic applications via test-time search and self-learning.
StepWiser: Stepwise Generative Judges for Wiser Reasoning
As models increasingly leverage multi-step reasoning strategies to solve complex problems, supervising the logical validity of these intermediate steps has become a critical research challenge. Process reward models address this by providing step-by-step feedback, but current approaches have two major drawbacks: they typically function as classifiers without providing explanations, and their reliance on supervised fine-tuning with static datasets limits generalization. Inspired by recent advances, we reframe stepwise reward modeling from a classification task to a reasoning task itself. We thus propose a generative judge that reasons about the policy model's reasoning steps (i.e., meta-reasons), outputting thinking tokens before delivering a final verdict. Our model, StepWiser, is trained by reinforcement learning using relative outcomes of rollouts. We show it provides (i) better judgment accuracy on intermediate steps than existing methods; (ii) can be used to improve the policy model at training time; and (iii) improves inference-time search.
Learning to Make Adherence-Aware Advice
As artificial intelligence (AI) systems play an increasingly prominent role in human decision-making, challenges surface in the realm of human-AI interactions. One challenge arises from the suboptimal AI policies due to the inadequate consideration of humans disregarding AI recommendations, as well as the need for AI to provide advice selectively when it is most pertinent. This paper presents a sequential decision-making model that (i) takes into account the human's adherence level (the probability that the human follows/rejects machine advice) and (ii) incorporates a defer option so that the machine can temporarily refrain from making advice. We provide learning algorithms that learn the optimal advice policy and make advice only at critical time stamps. Compared to problem-agnostic reinforcement learning algorithms, our specialized learning algorithms not only enjoy better theoretical convergence properties but also show strong empirical performance.
Self-supervised Pretraining for Decision Foundation Model: Formulation, Pipeline and Challenges
Decision-making is a dynamic process requiring perception, memory, and reasoning to make choices and find optimal policies. Traditional approaches to decision-making suffer from sample efficiency and generalization, while large-scale self-supervised pretraining has enabled fast adaptation with fine-tuning or few-shot learning in language and vision. We thus argue to integrate knowledge acquired from generic large-scale self-supervised pretraining into downstream decision-making problems. We propose Pretrain-Then-Adapt pipeline and survey recent work on data collection, pretraining objectives and adaptation strategies for decision-making pretraining and downstream inference. Finally, we identify critical challenges and future directions for developing decision foundation model with the help of generic and flexible self-supervised pretraining.
AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence
Current approaches for training Process Reward Models (PRMs) often involve breaking down responses into multiple reasoning steps using rule-based techniques, such as using predefined placeholder tokens or setting the reasoning step's length into a fixed size. These approaches overlook the fact that specific words do not typically mark true decision points in a text. To address this, we propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word. This division method provides more decision-making information at each step, enhancing downstream tasks, such as reward model learning. Moreover, our method does not require manual annotation. We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks. Experimental results indicate that the outcome PRM achieves state-of-the-art Best-of-N performance, surpassing greedy search strategy with token-level value-guided decoding, while also reducing construction costs by over 30% compared to existing open-source PRMs. In addition, we provide a thorough analysis and case study on the PRM's performance, transferability, and generalization capabilities.
What Can I Do Now? Guiding Users in a World of Automated Decisions
More and more processes governing our lives use in some part an automatic decision step, where -- based on a feature vector derived from an applicant -- an algorithm has the decision power over the final outcome. Here we present a simple idea which gives some of the power back to the applicant by providing her with alternatives which would make the decision algorithm decide differently. It is based on a formalization reminiscent of methods used for evasion attacks, and consists in enumerating the subspaces where the classifiers decides the desired output. This has been implemented for the specific case of decision forests (ensemble methods based on decision trees), mapping the problem to an iterative version of enumerating k-cliques.
STRUX: An LLM for Decision-Making with Structured Explanations
Countless decisions shape our daily lives, and it is paramount to understand the how and why behind these choices. In this paper, we introduce a new LLM decision-making framework called STRUX, which enhances LLM decision-making by providing structured explanations. These include favorable and adverse facts related to the decision, along with their respective strengths. STRUX begins by distilling lengthy information into a concise table of key facts. It then employs a series of self-reflection steps to determine which of these facts are pivotal, categorizing them as either favorable or adverse in relation to a specific decision. Lastly, we fine-tune an LLM to identify and prioritize these key facts to optimize decision-making. STRUX has been evaluated on the challenging task of forecasting stock investment decisions based on earnings call transcripts and demonstrated superior performance against strong baselines. It enhances decision transparency by allowing users to understand the impact of different factors, representing a meaningful step towards practical decision-making with LLMs.
Agents Thinking Fast and Slow: A Talker-Reasoner Architecture
Large language models have enabled agents of all kinds to interact with users through natural conversation. Consequently, agents now have two jobs: conversing and planning/reasoning. Their conversational responses must be informed by all available information, and their actions must help to achieve goals. This dichotomy between conversing with the user and doing multi-step reasoning and planning can be seen as analogous to the human systems of "thinking fast and slow" as introduced by Kahneman. Our approach is comprised of a "Talker" agent (System 1) that is fast and intuitive, and tasked with synthesizing the conversational response; and a "Reasoner" agent (System 2) that is slower, more deliberative, and more logical, and is tasked with multi-step reasoning and planning, calling tools, performing actions in the world, and thereby producing the new agent state. We describe the new Talker-Reasoner architecture and discuss its advantages, including modularity and decreased latency. We ground the discussion in the context of a sleep coaching agent, in order to demonstrate real-world relevance.
Multicriteria Group Decision-Making Under Uncertainty Using Interval Data and Cloud Models
In this study, we propose a multicriteria group decision making (MCGDM) algorithm under uncertainty where data is collected as intervals. The proposed MCGDM algorithm aggregates the data, determines the optimal weights for criteria and ranks alternatives with no further input. The intervals give flexibility to experts in assessing alternatives against criteria and provide an opportunity to gain maximum information. We also propose a novel method to aggregate expert judgements using cloud models. We introduce an experimental approach to check the validity of the aggregation method. After that, we use the aggregation method for an MCGDM problem. Here, we find the optimal weights for each criterion by proposing a bilevel optimisation model. Then, we extend the technique for order of preference by similarity to ideal solution (TOPSIS) for data based on cloud models to prioritise alternatives. As a result, the algorithm can gain information from decision makers with different levels of uncertainty and examine alternatives with no more information from decision-makers. The proposed MCGDM algorithm is implemented on a case study of a cybersecurity problem to illustrate its feasibility and effectiveness. The results verify the robustness and validity of the proposed MCGDM using sensitivity analysis and comparison with other existing algorithms.
Actionable Recourse in Linear Classification
Machine learning models are increasingly used to automate decisions that affect humans - deciding who should receive a loan, a job interview, or a social service. In such applications, a person should have the ability to change the decision of a model. When a person is denied a loan by a credit score, for example, they should be able to alter its input variables in a way that guarantees approval. Otherwise, they will be denied the loan as long as the model is deployed. More importantly, they will lack the ability to influence a decision that affects their livelihood. In this paper, we frame these issues in terms of recourse, which we define as the ability of a person to change the decision of a model by altering actionable input variables (e.g., income vs. age or marital status). We present integer programming tools to ensure recourse in linear classification problems without interfering in model development. We demonstrate how our tools can inform stakeholders through experiments on credit scoring problems. Our results show that recourse can be significantly affected by standard practices in model development, and motivate the need to evaluate recourse in practice.
A toolkit of dilemmas: Beyond debiasing and fairness formulas for responsible AI/ML
Approaches to fair and ethical AI have recently fell under the scrutiny of the emerging, chiefly qualitative, field of critical data studies, placing emphasis on the lack of sensitivity to context and complex social phenomena of such interventions. We employ some of these lessons to introduce a tripartite decision-making toolkit, informed by dilemmas encountered in the pursuit of responsible AI/ML. These are: (a) the opportunity dilemma between the availability of data shaping problem statements vs problem statements shaping data; (b) the trade-off between scalability and contextualizability (too much data versus too specific data); and (c) the epistemic positioning between the pragmatic technical objectivism and the reflexive relativism in acknowledging the social. This paper advocates for a situated reasoning and creative engagement with the dilemmas surrounding responsible algorithmic/data-driven systems, and going beyond the formulaic bias elimination and ethics operationalization narratives found in the fair-AI literature.
Understanding the Role of Human Intuition on Reliance in Human-AI Decision-Making with Explanations
AI explanations are often mentioned as a way to improve human-AI decision-making, but empirical studies have not found consistent evidence of explanations' effectiveness and, on the contrary, suggest that they can increase overreliance when the AI system is wrong. While many factors may affect reliance on AI support, one important factor is how decision-makers reconcile their own intuition -- beliefs or heuristics, based on prior knowledge, experience, or pattern recognition, used to make judgments -- with the information provided by the AI system to determine when to override AI predictions. We conduct a think-aloud, mixed-methods study with two explanation types (feature- and example-based) for two prediction tasks to explore how decision-makers' intuition affects their use of AI predictions and explanations, and ultimately their choice of when to rely on AI. Our results identify three types of intuition involved in reasoning about AI predictions and explanations: intuition about the task outcome, features, and AI limitations. Building on these, we summarize three observed pathways for decision-makers to apply their own intuition and override AI predictions. We use these pathways to explain why (1) the feature-based explanations we used did not improve participants' decision outcomes and increased their overreliance on AI, and (2) the example-based explanations we used improved decision-makers' performance over feature-based explanations and helped achieve complementary human-AI performance. Overall, our work identifies directions for further development of AI decision-support systems and explanation methods that help decision-makers effectively apply their intuition to achieve appropriate reliance on AI.
DeFine: Decision-Making with Analogical Reasoning over Factor Profiles
LLMs are ideal for decision-making thanks to their ability to reason over long contexts. However, challenges arise when processing speech transcripts that describe complex scenarios, as they are verbose and include repetition, hedging, and vagueness. E.g., during a company's earnings call, an executive might project a positive revenue outlook to reassure investors, despite uncertainty regarding future earnings. It is crucial for LLMs to incorporate this uncertainty systematically when making decisions. In this paper, we introduce DeFine, a modular framework that constructs probabilistic factor profiles from complex scenarios. It then integrates these profiles with analogical reasoning, leveraging insights from similar past experiences to guide LLMs in making critical decisions in new situations. Our framework separates the tasks of quantifying uncertainty and incorporating it into LLM decision-making. This approach is particularly useful in areas such as consulting and financial deliberation, where making decisions under uncertainty is vital.
Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms
This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.
Hierarchical Reinforcement Learning with AI Planning Models
Two common approaches to sequential decision-making are AI planning (AIP) and reinforcement learning (RL). Each has strengths and weaknesses. AIP is interpretable, easy to integrate with symbolic knowledge, and often efficient, but requires an up-front logical domain specification and is sensitive to noise; RL only requires specification of rewards and is robust to noise but is sample inefficient and not easily supplied with external knowledge. We propose an integrative approach that combines high-level planning with RL, retaining interpretability, transfer, and efficiency, while allowing for robust learning of the lower-level plan actions. Our approach defines options in hierarchical reinforcement learning (HRL) from AIP operators by establishing a correspondence between the state transition model of AI planning problem and the abstract state transition system of a Markov Decision Process (MDP). Options are learned by adding intrinsic rewards to encourage consistency between the MDP and AIP transition models. We demonstrate the benefit of our integrated approach by comparing the performance of RL and HRL algorithms in both MiniGrid and N-rooms environments, showing the advantage of our method over the existing ones.
Model-based Reinforcement Learning: A Survey
Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is a important challenge in artificial intelligence. Two key approaches to this problem are reinforcement learning (RL) and planning. This paper presents a survey of the integration of both fields, better known as model-based reinforcement learning. Model-based RL has two main steps. First, we systematically cover approaches to dynamics model learning, including challenges like dealing with stochasticity, uncertainty, partial observability, and temporal abstraction. Second, we present a systematic categorization of planning-learning integration, including aspects like: where to start planning, what budgets to allocate to planning and real data collection, how to plan, and how to integrate planning in the learning and acting loop. After these two sections, we also discuss implicit model-based RL as an end-to-end alternative for model learning and planning, and we cover the potential benefits of model-based RL. Along the way, the survey also draws connections to several related RL fields, like hierarchical RL and transfer learning. Altogether, the survey presents a broad conceptual overview of the combination of planning and learning for MDP optimization.
A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models
Recent studies have highlighted their proficiency in some simple tasks like writing and coding through various reasoning strategies. However, LLM agents still struggle with tasks that require comprehensive planning, a process that challenges current models and remains a critical research issue. In this study, we concentrate on travel planning, a Multi-Phases planning problem, that involves multiple interconnected stages, such as outlining, information gathering, and planning, often characterized by the need to manage various constraints and uncertainties. Existing reasoning approaches have struggled to effectively address this complex task. Our research aims to address this challenge by developing a human-like planning framework for LLM agents, i.e., guiding the LLM agent to simulate various steps that humans take when solving Multi-Phases problems. Specifically, we implement several strategies to enable LLM agents to generate a coherent outline for each travel query, mirroring human planning patterns. Additionally, we integrate Strategy Block and Knowledge Block into our framework: Strategy Block facilitates information collection, while Knowledge Block provides essential information for detailed planning. Through our extensive experiments, we demonstrate that our framework significantly improves the planning capabilities of LLM agents, enabling them to tackle the travel planning task with improved efficiency and effectiveness. Our experimental results showcase the exceptional performance of the proposed framework; when combined with GPT-4-Turbo, it attains 10times the performance gains in comparison to the baseline framework deployed on GPT-4-Turbo.
OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities
In most current research, large language models (LLMs) are able to perform reasoning tasks by generating chains of thought through the guidance of specific prompts. However, there still exists a significant discrepancy between their capability in solving complex reasoning problems and that of humans. At present, most approaches focus on chains of thought (COT) and tool use, without considering the adoption and application of human cognitive frameworks. It is well-known that when confronting complex reasoning challenges, humans typically employ various cognitive abilities, and necessitate interaction with all aspects of tools, knowledge, and the external environment information to accomplish intricate tasks. This paper introduces a novel intelligent framework, referred to as OlaGPT. OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms. Inspired by the active learning mechanism of human beings, it proposes a learning unit to record previous mistakes and expert opinions, and dynamically refer to them to strengthen their ability to solve similar problems. The paper also outlines common effective reasoning frameworks for human problem-solving and designs Chain-of-Thought (COT) templates accordingly. A comprehensive decision-making mechanism is also proposed to maximize model accuracy. The efficacy of OlaGPT has been stringently evaluated on multiple reasoning datasets, and the experimental outcomes reveal that OlaGPT surpasses state-of-the-art benchmarks, demonstrating its superior performance. Our implementation of OlaGPT is available on GitHub: https://github.com/oladata-team/OlaGPT.
Bridging adaptive management and reinforcement learning for more robust decisions
From out-competing grandmasters in chess to informing high-stakes healthcare decisions, emerging methods from artificial intelligence are increasingly capable of making complex and strategic decisions in diverse, high-dimensional, and uncertain situations. But can these methods help us devise robust strategies for managing environmental systems under great uncertainty? Here we explore how reinforcement learning, a subfield of artificial intelligence, approaches decision problems through a lens similar to adaptive environmental management: learning through experience to gradually improve decisions with updated knowledge. We review where reinforcement learning (RL) holds promise for improving evidence-informed adaptive management decisions even when classical optimization methods are intractable. For example, model-free deep RL might help identify quantitative decision strategies even when models are nonidentifiable. Finally, we discuss technical and social issues that arise when applying reinforcement learning to adaptive management problems in the environmental domain. Our synthesis suggests that environmental management and computer science can learn from one another about the practices, promises, and perils of experience-based decision-making.
Stratify: Unifying Multi-Step Forecasting Strategies
A key aspect of temporal domains is the ability to make predictions multiple time steps into the future, a process known as multi-step forecasting (MSF). At the core of this process is selecting a forecasting strategy, however, with no existing frameworks to map out the space of strategies, practitioners are left with ad-hoc methods for strategy selection. In this work, we propose Stratify, a parameterised framework that addresses multi-step forecasting, unifying existing strategies and introducing novel, improved strategies. We evaluate Stratify on 18 benchmark datasets, five function classes, and short to long forecast horizons (10, 20, 40, 80). In over 84% of 1080 experiments, novel strategies in Stratify improved performance compared to all existing ones. Importantly, we find that no single strategy consistently outperforms others in all task settings, highlighting the need for practitioners explore the Stratify space to carefully search and select forecasting strategies based on task-specific requirements. Our results are the most comprehensive benchmarking of known and novel forecasting strategies. We make code available to reproduce our results.
Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models
We present Multi-expert Prompting, a novel enhancement of ExpertPrompting (Xu et al., 2023), designed to improve the large language model (LLM) generation. Specifically, it guides an LLM to fulfill an input instruction by simulating multiple experts, aggregating their responses, and selecting the best among individual and aggregated responses. This process is performed in a single chain of thoughts through our seven carefully designed subtasks derived from the Nominal Group Technique (Ven and Delbecq, 1974), a well-established decision-making framework. Our evaluations demonstrate that Multi-expert Prompting significantly outperforms ExpertPrompting and comparable baselines in enhancing the truthfulness, factuality, informativeness, and usefulness of responses while reducing toxicity and hurtfulness. It further achieves state-of-the-art truthfulness by outperforming the best baseline by 8.69% with ChatGPT. Multi-expert Prompting is efficient, explainable, and highly adaptable to diverse scenarios, eliminating the need for manual prompt construction.
Provably Efficient UCB-type Algorithms For Learning Predictive State Representations
The general sequential decision-making problem, which includes Markov decision processes (MDPs) and partially observable MDPs (POMDPs) as special cases, aims at maximizing a cumulative reward by making a sequence of decisions based on a history of observations and actions over time. Recent studies have shown that the sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs). Despite these advancements, existing approaches typically involve oracles or steps that are computationally intractable. On the other hand, the upper confidence bound (UCB) based approaches, which have served successfully as computationally efficient methods in bandits and MDPs, have not been investigated for more general PSRs, due to the difficulty of optimistic bonus design in these more challenging settings. This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models. We further characterize the sample complexity bounds for our designed UCB-type algorithms for both online and offline PSRs. In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning
Many challenging tasks such as managing traffic systems, electricity grids, or supply chains involve complex decision-making processes that must balance multiple conflicting objectives and coordinate the actions of various independent decision-makers (DMs). One perspective for formalising and addressing such tasks is multi-objective multi-agent reinforcement learning (MOMARL). MOMARL broadens reinforcement learning (RL) to problems with multiple agents each needing to consider multiple objectives in their learning process. In reinforcement learning research, benchmarks are crucial in facilitating progress, evaluation, and reproducibility. The significance of benchmarks is underscored by the existence of numerous benchmark frameworks developed for various RL paradigms, including single-agent RL (e.g., Gymnasium), multi-agent RL (e.g., PettingZoo), and single-agent multi-objective RL (e.g., MO-Gymnasium). To support the advancement of the MOMARL field, we introduce MOMAland, the first collection of standardised environments for multi-objective multi-agent reinforcement learning. MOMAland addresses the need for comprehensive benchmarking in this emerging field, offering over 10 diverse environments that vary in the number of agents, state representations, reward structures, and utility considerations. To provide strong baselines for future research, MOMAland also includes algorithms capable of learning policies in such settings.
One STEP at a time: Language Agents are Stepwise Planners
Language agents have shown promising adaptability in dynamic environments to perform complex tasks. However, despite the versatile knowledge embedded in large language models, these agents still fall short when it comes to tasks that require planning. We introduce STEP, a novel framework designed to efficiently learn from previous experiences to enhance the planning capabilities of language agents in future steps. Concretely, STEP functions through four interconnected components. First, the Planner takes on the task, breaks it down into subtasks and provides relevant insights. Then the Executor generates action candidates, while the Evaluator ensures the actions align with learned rules from previous experiences. Lastly, Memory stores experiences to inform future decisions. In the ScienceWorld benchmark, our results show that STEP consistently outperforms state-of-the-art models, achieving an overall score of 67.4 and successfully completing 12 out of 18 tasks. These findings highlight STEP's potential as a framework for enhancing planning capabilities in language agents, paving the way for more sophisticated task-solving in dynamic environments.
Hindsight Learning for MDPs with Exogenous Inputs
Many resource management problems require sequential decision-making under uncertainty, where the only uncertainty affecting the decision outcomes are exogenous variables outside the control of the decision-maker. We model these problems as Exo-MDPs (Markov Decision Processes with Exogenous Inputs) and design a class of data-efficient algorithms for them termed Hindsight Learning (HL). Our HL algorithms achieve data efficiency by leveraging a key insight: having samples of the exogenous variables, past decisions can be revisited in hindsight to infer counterfactual consequences that can accelerate policy improvements. We compare HL against classic baselines in the multi-secretary and airline revenue management problems. We also scale our algorithms to a business-critical cloud resource management problem -- allocating Virtual Machines (VMs) to physical machines, and simulate their performance with real datasets from a large public cloud provider. We find that HL algorithms outperform domain-specific heuristics, as well as state-of-the-art reinforcement learning methods.
R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization
Recent studies generally enhance MLLMs' reasoning capabilities via supervised fine-tuning on high-quality chain-of-thought reasoning data, which often leads models to merely imitate successful reasoning paths without understanding what the wrong reasoning paths are. In this work, we aim to enhance the MLLMs' reasoning ability beyond passively imitating positive reasoning paths. To this end, we design Step-wise Group Relative Policy Optimization (StepGRPO), a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding. Specifically, StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR). StepRAR rewards the reasoning paths that contain necessary intermediate reasoning steps via a soft key-step matching technique, while StepRAR rewards reasoning paths that follow a well-structured and logically consistent reasoning process through a reasoning completeness and logic evaluation strategy. With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning. Extensive experiments over 8 benchmarks demonstrate the superiority of our methods.
Near-optimal Conservative Exploration in Reinforcement Learning under Episode-wise Constraints
This paper investigates conservative exploration in reinforcement learning where the performance of the learning agent is guaranteed to be above a certain threshold throughout the learning process. It focuses on the tabular episodic Markov Decision Process (MDP) setting that has finite states and actions. With the knowledge of an existing safe baseline policy, an algorithm termed as StepMix is proposed to balance the exploitation and exploration while ensuring that the conservative constraint is never violated in each episode with high probability. StepMix features a unique design of a mixture policy that adaptively and smoothly interpolates between the baseline policy and the optimistic policy. Theoretical analysis shows that StepMix achieves near-optimal regret order as in the constraint-free setting, indicating that obeying the stringent episode-wise conservative constraint does not compromise the learning performance. Besides, a randomization-based EpsMix algorithm is also proposed and shown to achieve the same performance as StepMix. The algorithm design and theoretical analysis are further extended to the setting where the baseline policy is not given a priori but must be learned from an offline dataset, and it is proved that similar conservative guarantee and regret can be achieved if the offline dataset is sufficiently large. Experiment results corroborate the theoretical analysis and demonstrate the effectiveness of the proposed conservative exploration strategies.
Scaling up ML-based Black-box Planning with Partial STRIPS Models
A popular approach for sequential decision-making is to perform simulator-based search guided with Machine Learning (ML) methods like policy learning. On the other hand, model-relaxation heuristics can guide the search effectively if a full declarative model is available. In this work, we consider how a practitioner can improve ML-based black-box planning on settings where a complete symbolic model is not available. We show that specifying an incomplete STRIPS model that describes only part of the problem enables the use of relaxation heuristics. Our findings on several planning domains suggest that this is an effective way to improve ML-based black-box planning beyond collecting more data or tuning ML architectures.
What Are Step-Level Reward Models Rewarding? Counterintuitive Findings from MCTS-Boosted Mathematical Reasoning
Step-level reward models (SRMs) can significantly enhance mathematical reasoning performance through process supervision or step-level preference alignment based on reinforcement learning. The performance of SRMs is pivotal, as they serve as critical guidelines, ensuring that each step in the reasoning process is aligned with desired outcomes. Recently, AlphaZero-like methods, where Monte Carlo Tree Search (MCTS) is employed for automatic step-level preference annotation, have proven particularly effective. However, the precise mechanisms behind the success of SRMs remain largely unexplored. To address this gap, this study delves into the counterintuitive aspects of SRMs, particularly focusing on MCTS-based approaches. Our findings reveal that the removal of natural language descriptions of thought processes has minimal impact on the efficacy of SRMs. Furthermore, we demonstrate that SRMs are adept at assessing the complex logical coherence present in mathematical language while having difficulty in natural language. These insights provide a nuanced understanding of the core elements that drive effective step-level reward modeling in mathematical reasoning. By shedding light on these mechanisms, this study offers valuable guidance for developing more efficient and streamlined SRMs, which can be achieved by focusing on the crucial parts of mathematical reasoning.
Design principles for a hybrid intelligence decision support system for business model validation
One of the most critical tasks for startups is to validate their business model. Therefore, entrepreneurs try to collect information such as feedback from other actors to assess the validity of their assumptions and make decisions. However, previous work on decisional guidance for business model validation provides no solution for the highly uncertain and complex context of earlystage startups. The purpose of this paper is, thus, to develop design principles for a Hybrid Intelligence decision support system (HI-DSS) that combines the complementary capabilities of human and machine intelligence. We follow a design science research approach to design a prototype artifact and a set of design principles. Our study provides prescriptive knowledge for HI-DSS and contributes to previous work on decision support for business models, the applications of complementary strengths of humans and machines for making decisions, and support systems for extremely uncertain decision-making problems.
How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments
Decision-making, a complicated task requiring various types of abilities, presents an excellent framework for assessing Large Language Models (LLMs). Our research investigates LLMs' decision-making capabilities through the lens of a well-established field, Game Theory. We focus specifically on games that support the participation of more than two agents simultaneously. Subsequently, we introduce our framework, GAMA-Bench, including eight classical multi-agent games. We design a scoring scheme to assess a model's performance in these games quantitatively. Through GAMA-Bench, we investigate LLMs' robustness, generalizability, and enhancement strategies. Results reveal that while GPT-3.5 shows satisfying robustness, its generalizability is relatively limited. However, its performance can be improved through approaches such as Chain-of-Thought. Additionally, we conduct evaluations across various LLMs and find that GPT-4 outperforms other models on GAMA-Bench, achieving a score of 60.5. Moreover, Gemini-1.0-Pro and GPT-3.5 (0613, 1106, 0125) demonstrate similar intelligence on GAMA-Bench. The code and experimental results are made publicly available via https://github.com/CUHK-ARISE/GAMABench.
MyGO Multiplex CoT: A Method for Self-Reflection in Large Language Models via Double Chain of Thought Thinking
Recent advancements in large language models (LLMs) have demonstrated their impressive abilities in various reasoning and decision-making tasks. However, the quality and coherence of the reasoning process can still benefit from enhanced introspection and self-reflection. In this paper, we introduce Multiplex CoT (Chain of Thought), a method that enables LLMs to simulate a form of self-review while reasoning, by initiating double Chain of Thought (CoT) thinking. Multiplex CoT leverages the power of iterative reasoning, where the model generates an initial chain of thought and subsequently critiques and refines this reasoning with a second round of thought generation. This recursive approach allows for more coherent, logical, and robust answers, improving the overall decision-making process. We demonstrate how this method can be effectively implemented using simple prompt engineering in existing LLM architectures, achieving an effect similar to that of the Learning-Refinement Model (LRM) without the need for additional training. Additionally, we present a practical guide for implementing the method in Google Colab, enabling easy integration into real-world applications.
Decision-Oriented Dialogue for Human-AI Collaboration
We describe a class of tasks called decision-oriented dialogues, in which AI assistants such as large language models (LMs) must collaborate with one or more humans via natural language to help them make complex decisions. We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends. In each of these settings, AI assistants and users have disparate abilities that they must combine to arrive at the best decision: assistants can access and process large amounts of information, while users have preferences and constraints external to the system. For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach. We evaluate LMs in self-play and in collaboration with humans and find that they fall short compared to human assistants, achieving much lower rewards despite engaging in longer dialogues. We highlight a number of challenges models face in decision-oriented dialogues, ranging from goal-directed behavior to reasoning and optimization, and release our environments as a testbed for future work.
Designing Multi-Step Action Models for Enterprise AI Adoption
This paper introduces the Multi-Step Action Model (MSAM), a closed-source AI model designed by Empsing to address challenges hindering AI adoption in enterprises. Through a holistic examination, this paper explores MSAM's foundational principles, design architecture, and future trajectory. It evaluates MSAM's performance via rigorous testing methodologies and envisions its potential impact on advancing AI adoption within organizations.
MoReBench: Evaluating Procedural and Pluralistic Moral Reasoning in Language Models, More than Outcomes
As AI systems progress, we rely more on them to make decisions with us and for us. To ensure that such decisions are aligned with human values, it is imperative for us to understand not only what decisions they make but also how they come to those decisions. Reasoning language models, which provide both final responses and (partially transparent) intermediate thinking traces, present a timely opportunity to study AI procedural reasoning. Unlike math and code problems which often have objectively correct answers, moral dilemmas are an excellent testbed for process-focused evaluation because they allow for multiple defensible conclusions. To do so, we present MoReBench: 1,000 moral scenarios, each paired with a set of rubric criteria that experts consider essential to include (or avoid) when reasoning about the scenarios. MoReBench contains over 23 thousand criteria including identifying moral considerations, weighing trade-offs, and giving actionable recommendations to cover cases on AI advising humans moral decisions as well as making moral decisions autonomously. Separately, we curate MoReBench-Theory: 150 examples to test whether AI can reason under five major frameworks in normative ethics. Our results show that scaling laws and existing benchmarks on math, code, and scientific reasoning tasks fail to predict models' abilities to perform moral reasoning. Models also show partiality towards specific moral frameworks (e.g., Benthamite Act Utilitarianism and Kantian Deontology), which might be side effects of popular training paradigms. Together, these benchmarks advance process-focused reasoning evaluation towards safer and more transparent AI.
Markov Chain of Thought for Efficient Mathematical Reasoning
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions, significantly enhancing the mathematical reasoning capabilities of large language models. As the prevalence of long CoT, the number of reasoning steps exceeds manageable token limits and leads to higher computational demands. Inspired by the fundamental logic of human cognition, ``derive, then reduce'', we conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT). In this study, we consider the mathematical reasoning task, defining each reasoning step as text accompanied by a Python code snippet. To facilitate a longer reasoning path, self-correction is enabled through interactions with the code interpreter. Our MCoT aims to compress previous reasoning steps into a simplified question, enabling efficient next-step inference without relying on a lengthy KV cache. In our experiments, we curate the MCoTInstruct dataset, and the empirical results indicate that MCoT not only significantly enhances efficiency but also maintains comparable accuracy. While much remains to be explored, this work paves the way for exploring the long CoT reasoning abilities of LLMs.
Is Conditional Generative Modeling all you need for Decision-Making?
Recent improvements in conditional generative modeling have made it possible to generate high-quality images from language descriptions alone. We investigate whether these methods can directly address the problem of sequential decision-making. We view decision-making not through the lens of reinforcement learning (RL), but rather through conditional generative modeling. To our surprise, we find that our formulation leads to policies that can outperform existing offline RL approaches across standard benchmarks. By modeling a policy as a return-conditional diffusion model, we illustrate how we may circumvent the need for dynamic programming and subsequently eliminate many of the complexities that come with traditional offline RL. We further demonstrate the advantages of modeling policies as conditional diffusion models by considering two other conditioning variables: constraints and skills. Conditioning on a single constraint or skill during training leads to behaviors at test-time that can satisfy several constraints together or demonstrate a composition of skills. Our results illustrate that conditional generative modeling is a powerful tool for decision-making.
Provable Benefits of Multi-task RL under Non-Markovian Decision Making Processes
In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures among multiple MDPs has been shown to yield significant benefits to the sample efficiency compared to single-task RL. In this paper, we investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs). The main challenge here is that the large and complex model space makes it hard to identify what types of common latent structure of multi-task PSRs can reduce the model complexity and improve sample efficiency. To this end, we posit a joint model class for tasks and use the notion of eta-bracketing number to quantify its complexity; this number also serves as a general metric to capture the similarity of tasks and thus determines the benefit of multi-task over single-task RL. We first study upstream multi-task learning over PSRs, in which all tasks share the same observation and action spaces. We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSRs has a smaller eta-bracketing number compared to that of individual single-task learning. We also provide several example multi-task PSRs with small eta-bracketing numbers, which reap the benefits of multi-task learning. We further investigate downstream learning, in which the agent needs to learn a new target task that shares some commonalities with the upstream tasks via a similarity constraint. By exploiting the learned PSRs from the upstream, we develop a sample-efficient algorithm that provably finds a near-optimal policy.
Self-Harmonized Chain of Thought
Chain-of-Thought (CoT) prompting reveals that large language models are capable of performing complex reasoning via intermediate steps. CoT prompting is primarily categorized into three approaches. The first approach utilizes straightforward prompts like ``Let's think step by step'' to generate a sequential thought process before yielding an answer. The second approach makes use of human-crafted, step-by-step demonstrations to guide the model's reasoning process. The third automates the generation of reasoned demonstrations with the 'Let's think step by step'.This approach sometimes leads to reasoning errors, highlighting the need to diversify demonstrations to mitigate its misleading effects. However, diverse demonstrations pose challenges for effective representations. In this work, we propose ECHO, a self-harmonized chain-of-thought prompting method. It consolidates diverse solution paths into a uniform and effective solution pattern.ECHO demonstrates the best overall performance across three reasoning domains.
POMRL: No-Regret Learning-to-Plan with Increasing Horizons
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding
As more non-AI experts use complex AI systems for daily tasks, there has been an increasing effort to develop methods that produce explanations of AI decision making that are understandable by non-AI experts. Towards this effort, leveraging higher-level concepts and producing concept-based explanations have become a popular method. Most concept-based explanations have been developed for classification techniques, and we posit that the few existing methods for sequential decision making are limited in scope. In this work, we first contribute a desiderata for defining concepts in sequential decision making settings. Additionally, inspired by the Protege Effect which states explaining knowledge often reinforces one's self-learning, we explore how concept-based explanations of an RL agent's decision making can in turn improve the agent's learning rate, as well as improve end-user understanding of the agent's decision making. To this end, we contribute a unified framework, State2Explanation (S2E), that involves learning a joint embedding model between state-action pairs and concept-based explanations, and leveraging such learned model to both (1) inform reward shaping during an agent's training, and (2) provide explanations to end-users at deployment for improved task performance. Our experimental validations, in Connect 4 and Lunar Lander, demonstrate the success of S2E in providing a dual-benefit, successfully informing reward shaping and improving agent learning rate, as well as significantly improving end user task performance at deployment time.
The Update-Equivalence Framework for Decision-Time Planning
The process of revising (or constructing) a policy at execution time -- known as decision-time planning -- has been key to achieving superhuman performance in perfect-information games like chess and Go. A recent line of work has extended decision-time planning to imperfect-information games, leading to superhuman performance in poker. However, these methods involve solving subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence. In this update-equivalence framework, decision-time planning algorithms replicate the updates of last-iterate algorithms, which need not rely on public information. This facilitates scalability to games with large amounts of non-public information. Using this framework, we derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent. We validate the performance of these algorithms in cooperative and adversarial domains, notably in Hanabi, the standard benchmark for search in fully cooperative imperfect-information games. Here, our mirror descent approach exceeds or matches the performance of public information-based search while using two orders of magnitude less search time. This is the first instance of a non-public-information-based algorithm outperforming public-information-based approaches in a domain they have historically dominated.
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality by training ML models in an end-to-end system. This approach shows significant potential to revolutionize combinatorial decision-making in real-world applications that operate under uncertainty, where estimating unknown parameters within decision models is a major challenge. This paper presents a comprehensive review of DFL, providing an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization. It evaluates the strengths and limitations of these techniques and includes an extensive empirical evaluation of eleven methods across seven problems. The survey also offers insights into recent advancements and future research directions in DFL. Code and benchmark: https://github.com/PredOpt/predopt-benchmarks
Consistent Aggregation of Objectives with Diverse Time Preferences Requires Non-Markovian Rewards
As the capabilities of artificial agents improve, they are being increasingly deployed to service multiple diverse objectives and stakeholders. However, the composition of these objectives is often performed ad hoc, with no clear justification. This paper takes a normative approach to multi-objective agency: from a set of intuitively appealing axioms, it is shown that Markovian aggregation of Markovian reward functions is not possible when the time preference (discount factor) for each objective may vary. It follows that optimal multi-objective agents must admit rewards that are non-Markovian with respect to the individual objectives. To this end, a practical non-Markovian aggregation scheme is proposed, which overcomes the impossibility with only one additional parameter for each objective. This work offers new insights into sequential, multi-objective agency and intertemporal choice, and has practical implications for the design of AI systems deployed to serve multiple generations of principals with varying time preference.
Mapping, modeling, and reprogramming cell-fate decision making systems
Many cellular processes involve information processing and decision making. We can probe these processes at increasing molecular detail. The analysis of heterogeneous data remains a challenge that requires new ways of thinking about cells in quantitative, predictive, and mechanistic ways. We discuss the role of mathematical models in the context of cell-fate decision making systems across the tree of life. Complex multi-cellular organisms have been a particular focus, but single celled organisms also have to sense and respond to their environment. We center our discussion around the idea of design principles which we can learn from observations and modeling, and exploit in order to (re)-design or guide cellular behavior.
Stochastic Contextual Dueling Bandits under Linear Stochastic Transitivity Models
We consider the regret minimization task in a dueling bandits problem with context information. In every round of the sequential decision problem, the learner makes a context-dependent selection of two choice alternatives (arms) to be compared with each other and receives feedback in the form of noisy preference information. We assume that the feedback process is determined by a linear stochastic transitivity model with contextualized utilities (CoLST), and the learner's task is to include the best arm (with highest latent context-dependent utility) in the duel. We propose a computationally efficient algorithm, CoLSTIM, which makes its choice based on imitating the feedback process using perturbed context-dependent utility estimates of the underlying CoLST model. If each arm is associated with a d-dimensional feature vector, we show that CoLSTIM achieves a regret of order tilde O( dT) after T learning rounds. Additionally, we also establish the optimality of CoLSTIM by showing a lower bound for the weak regret that refines the existing average regret analysis. Our experiments demonstrate its superiority over state-of-art algorithms for special cases of CoLST models.
Tree of Thoughts: Deliberate Problem Solving with Large Language Models
Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought approach to prompting language models, and enables exploration over coherent units of text (thoughts) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices. Our experiments show that ToT significantly enhances language models' problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4% of tasks, our method achieved a success rate of 74%. Code repo with all prompts: https://github.com/ysymyth/tree-of-thought-llm.
Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice
The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.
Probably Anytime-Safe Stochastic Combinatorial Semi-Bandits
Motivated by concerns about making online decisions that incur undue amount of risk at each time step, in this paper, we formulate the probably anytime-safe stochastic combinatorial semi-bandits problem. In this problem, the agent is given the option to select a subset of size at most K from a set of L ground items. Each item is associated to a certain mean reward as well as a variance that represents its risk. To mitigate the risk that the agent incurs, we require that with probability at least 1-delta, over the entire horizon of time T, each of the choices that the agent makes should contain items whose sum of variances does not exceed a certain variance budget. We call this probably anytime-safe constraint. Under this constraint, we design and analyze an algorithm {\sc PASCombUCB} that minimizes the regret over the horizon of time T. By developing accompanying information-theoretic lower bounds, we show that under both the problem-dependent and problem-independent paradigms, {\sc PASCombUCB} is almost asymptotically optimal. Experiments are conducted to corroborate our theoretical findings. Our problem setup, the proposed {\sc PASCombUCB} algorithm, and novel analyses are applicable to domains such as recommendation systems and transportation in which an agent is allowed to choose multiple items at a single time step and wishes to control the risk over the whole time horizon.
Beyond Memorization: Extending Reasoning Depth with Recurrence, Memory and Test-Time Compute Scaling
Reasoning is a core capability of large language models, yet understanding how they learn and perform multi-step reasoning remains an open problem. In this study, we explore how different architectures and training methods affect model multi-step reasoning capabilities within a cellular automata framework. By training on state sequences generated with random Boolean functions for random initial conditions to exclude memorization, we demonstrate that most neural architectures learn to abstract the underlying rules. While models achieve high accuracy in next-state prediction, their performance declines sharply if multi-step reasoning is required. We confirm that increasing model depth plays a crucial role for sequential computations. We demonstrate that an extension of the effective model depth with recurrence, memory, and test-time compute scaling substantially enhances reasoning capabilities.
Answering Questions by Meta-Reasoning over Multiple Chains of Thought
Modern systems for multi-hop question answering (QA) typically break questions into a sequence of reasoning steps, termed chain-of-thought (CoT), before arriving at a final answer. Often, multiple chains are sampled and aggregated through a voting mechanism over the final answers, but the intermediate steps themselves are discarded. While such approaches improve performance, they do not consider the relations between intermediate steps across chains and do not provide a unified explanation for the predicted answer. We introduce Multi-Chain Reasoning (MCR), an approach which prompts large language models to meta-reason over multiple chains of thought, rather than aggregating their answers. MCR examines different reasoning chains, mixes information between them and selects the most relevant facts in generating an explanation and predicting the answer. MCR outperforms strong baselines on 7 multi-hop QA datasets. Moreover, our analysis reveals that MCR explanations exhibit high quality, enabling humans to verify its answers.
Procedural Fairness Through Decoupling Objectionable Data Generating Components
We reveal and address the frequently overlooked yet important issue of disguised procedural unfairness, namely, the potentially inadvertent alterations on the behavior of neutral (i.e., not problematic) aspects of data generating process, and/or the lack of procedural assurance of the greatest benefit of the least advantaged individuals. Inspired by John Rawls's advocacy for pure procedural justice, we view automated decision-making as a microcosm of social institutions, and consider how the data generating process itself can satisfy the requirements of procedural fairness. We propose a framework that decouples the objectionable data generating components from the neutral ones by utilizing reference points and the associated value instantiation rule. Our findings highlight the necessity of preventing disguised procedural unfairness, drawing attention not only to the objectionable data generating components that we aim to mitigate, but also more importantly, to the neutral components that we intend to keep unaffected.
DNNs May Determine Major Properties of Their Outputs Early, with Timing Possibly Driven by Bias
This paper argues that deep neural networks (DNNs) mostly determine their outputs during the early stages of inference, where biases inherent in the model play a crucial role in shaping this process. We draw a parallel between this phenomenon and human decision-making, which often relies on fast, intuitive heuristics. Using diffusion models (DMs) as a case study, we demonstrate that DNNs often make early-stage decision-making influenced by the type and extent of bias in their design and training. Our findings offer a new perspective on bias mitigation, efficient inference, and the interpretation of machine learning systems. By identifying the temporal dynamics of decision-making in DNNs, this paper aims to inspire further discussion and research within the machine learning community.
Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight
This paper studies the sample-efficiency of learning in Partially Observable Markov Decision Processes (POMDPs), a challenging problem in reinforcement learning that is known to be exponentially hard in the worst-case. Motivated by real-world settings such as loading in game playing, we propose an enhanced feedback model called ``multiple observations in hindsight'', where after each episode of interaction with the POMDP, the learner may collect multiple additional observations emitted from the encountered latent states, but may not observe the latent states themselves. We show that sample-efficient learning under this feedback model is possible for two new subclasses of POMDPs: multi-observation revealing POMDPs and distinguishable POMDPs. Both subclasses generalize and substantially relax revealing POMDPs -- a widely studied subclass for which sample-efficient learning is possible under standard trajectory feedback. Notably, distinguishable POMDPs only require the emission distributions from different latent states to be different instead of linearly independent as required in revealing POMDPs.
Why think step by step? Reasoning emerges from the locality of experience
Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite the fact that we get no additional data from the world. Similarly, when large language models generate a series of intermediate steps (a chain of thought) before answering a question, they often produce better answers than they otherwise would. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables improves inference, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis empirically in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models' ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables and that the combination of locally-structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.
Decision Market Based Learning For Multi-agent Contextual Bandit Problems
Information is often stored in a distributed and proprietary form, and agents who own information are often self-interested and require incentives to reveal their information. Suitable mechanisms are required to elicit and aggregate such distributed information for decision making. In this paper, we use simulations to investigate the use of decision markets as mechanisms in a multi-agent learning system to aggregate distributed information for decision-making in a contextual bandit problem. The system utilises strictly proper decision scoring rules to assess the accuracy of probabilistic reports from agents, which allows agents to learn to solve the contextual bandit problem jointly. Our simulations show that our multi-agent system with distributed information can be trained as efficiently as a centralised counterpart with a single agent that receives all information. Moreover, we use our system to investigate scenarios with deterministic decision scoring rules which are not incentive compatible. We observe the emergence of more complex dynamics with manipulative behaviour, which agrees with existing theoretical analyses.
Trajectory-Aware Eligibility Traces for Off-Policy Reinforcement Learning
Off-policy learning from multistep returns is crucial for sample-efficient reinforcement learning, but counteracting off-policy bias without exacerbating variance is challenging. Classically, off-policy bias is corrected in a per-decision manner: past temporal-difference errors are re-weighted by the instantaneous Importance Sampling (IS) ratio after each action via eligibility traces. Many off-policy algorithms rely on this mechanism, along with differing protocols for cutting the IS ratios to combat the variance of the IS estimator. Unfortunately, once a trace has been fully cut, the effect cannot be reversed. This has led to the development of credit-assignment strategies that account for multiple past experiences at a time. These trajectory-aware methods have not been extensively analyzed, and their theoretical justification remains uncertain. In this paper, we propose a multistep operator that can express both per-decision and trajectory-aware methods. We prove convergence conditions for our operator in the tabular setting, establishing the first guarantees for several existing methods as well as many new ones. Finally, we introduce Recency-Bounded Importance Sampling (RBIS), which leverages trajectory awareness to perform robustly across lambda-values in an off-policy control task.
Multi-Step Reasoning in Korean and the Emergent Mirage
We introduce HRMCR (HAE-RAE Multi-Step Commonsense Reasoning), a benchmark designed to evaluate large language models' ability to perform multi-step reasoning in culturally specific contexts, focusing on Korean. The questions are automatically generated via templates and algorithms, requiring LLMs to integrate Korean cultural knowledge into sequential reasoning steps. Consistent with prior observations on emergent abilities, our experiments reveal that models trained on fewer than \(2 \cdot 10^{25}\) training FLOPs struggle to solve any questions, showing near-zero performance. Beyond this threshold, performance improves sharply. State-of-the-art models (e.g., O1) still score under 50\%, underscoring the difficulty of our tasks. Notably, stepwise analysis suggests the observed emergent behavior may stem from compounding errors across multiple steps rather than reflecting a genuinely new capability. We publicly release the benchmark and commit to regularly updating the dataset to prevent contamination.
Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination
Multi-agent reinforcement learning shines as the pinnacle of multi-agent systems, conquering intricate real-world challenges, fostering collaboration and coordination among agents, and unleashing the potential for intelligent decision-making across domains. However, training a multi-agent reinforcement learning network is a formidable endeavor, demanding substantial computational resources to interact with diverse environmental variables, extract state representations, and acquire decision-making knowledge. The recent breakthroughs in large-scale pre-trained models ignite our curiosity: Can we uncover shared knowledge in multi-agent reinforcement learning and leverage pre-trained models to expedite training for future tasks? Addressing this issue, we present an innovative multi-task learning approach that aims to extract and harness common decision-making knowledge, like cooperation and competition, across different tasks. Our approach involves concurrent training of multiple multi-agent tasks, with each task employing independent front-end perception layers while sharing back-end decision-making layers. This effective decoupling of state representation extraction from decision-making allows for more efficient training and better transferability. To evaluate the efficacy of our proposed approach, we conduct comprehensive experiments in two distinct environments: the StarCraft Multi-agent Challenge (SMAC) and the Google Research Football (GRF) environments. The experimental results unequivocally demonstrate the smooth transferability of the shared decision-making network to other tasks, thereby significantly reducing training costs and improving final performance. Furthermore, visualizations authenticate the presence of general multi-agent decision-making knowledge within the shared network layers, further validating the effectiveness of our approach.
PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers
In this paper, we conduct a study to utilize LLMs as a solution for decision making that requires complex data analysis. We define Decision QA as the task of answering the best decision, d_{best}, for a decision-making question Q, business rules R and a database D. Since there is no benchmark that can examine Decision QA, we propose Decision QA benchmark, DQA. It has two scenarios, Locating and Building, constructed from two video games (Europa Universalis IV and Victoria 3) that have almost the same goal as Decision QA. To address Decision QA effectively, we also propose a new RAG technique called the iterative plan-then-retrieval augmented generation (PlanRAG). Our PlanRAG-based LM generates the plan for decision making as the first step, and the retriever generates the queries for data analysis as the second step. The proposed method outperforms the state-of-the-art iterative RAG method by 15.8% in the Locating scenario and by 7.4% in the Building scenario, respectively. We release our code and benchmark at https://github.com/myeon9h/PlanRAG.
Risk-sensitive Reinforcement Learning Based on Convex Scoring Functions
We propose a reinforcement learning (RL) framework under a broad class of risk objectives, characterized by convex scoring functions. This class covers many common risk measures, such as variance, Expected Shortfall, entropic Value-at-Risk, and mean-risk utility. To resolve the time-inconsistency issue, we consider an augmented state space and an auxiliary variable and recast the problem as a two-state optimization problem. We propose a customized Actor-Critic algorithm and establish some theoretical approximation guarantees. A key theoretical contribution is that our results do not require the Markov decision process to be continuous. Additionally, we propose an auxiliary variable sampling method inspired by the alternating minimization algorithm, which is convergent under certain conditions. We validate our approach in simulation experiments with a financial application in statistical arbitrage trading, demonstrating the effectiveness of the algorithm.
Lower Bounds for Learning in Revealing POMDPs
This paper studies the fundamental limits of reinforcement learning (RL) in the challenging partially observable setting. While it is well-established that learning in Partially Observable Markov Decision Processes (POMDPs) requires exponentially many samples in the worst case, a surge of recent work shows that polynomial sample complexities are achievable under the revealing condition -- A natural condition that requires the observables to reveal some information about the unobserved latent states. However, the fundamental limits for learning in revealing POMDPs are much less understood, with existing lower bounds being rather preliminary and having substantial gaps from the current best upper bounds. We establish strong PAC and regret lower bounds for learning in revealing POMDPs. Our lower bounds scale polynomially in all relevant problem parameters in a multiplicative fashion, and achieve significantly smaller gaps against the current best upper bounds, providing a solid starting point for future studies. In particular, for multi-step revealing POMDPs, we show that (1) the latent state-space dependence is at least Omega(S^{1.5}) in the PAC sample complexity, which is notably harder than the Theta(S) scaling for fully-observable MDPs; (2) Any polynomial sublinear regret is at least Omega(T^{2/3}), suggesting its fundamental difference from the single-step case where O(T) regret is achievable. Technically, our hard instance construction adapts techniques in distribution testing, which is new to the RL literature and may be of independent interest.
Model-Based Opponent Modeling
When one agent interacts with a multi-agent environment, it is challenging to deal with various opponents unseen before. Modeling the behaviors, goals, or beliefs of opponents could help the agent adjust its policy to adapt to different opponents. In addition, it is also important to consider opponents who are learning simultaneously or capable of reasoning. However, existing work usually tackles only one of the aforementioned types of opponents. In this paper, we propose model-based opponent modeling (MBOM), which employs the environment model to adapt to all kinds of opponents. MBOM simulates the recursive reasoning process in the environment model and imagines a set of improving opponent policies. To effectively and accurately represent the opponent policy, MBOM further mixes the imagined opponent policies according to the similarity with the real behaviors of opponents. Empirically, we show that MBOM achieves more effective adaptation than existing methods in a variety of tasks, respectively with different types of opponents, i.e., fixed policy, na\"ive learner, and reasoning learner.
A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
Fast and Slow Planning
The concept of Artificial Intelligence has gained a lot of attention over the last decade. In particular, AI-based tools have been employed in several scenarios and are, by now, pervading our everyday life. Nonetheless, most of these systems lack many capabilities that we would naturally consider to be included in a notion of "intelligence". In this work, we present an architecture that, inspired by the cognitive theory known as Thinking Fast and Slow by D. Kahneman, is tasked with solving planning problems in different settings, specifically: classical and multi-agent epistemic. The system proposed is an instance of a more general AI paradigm, referred to as SOFAI (for Slow and Fast AI). SOFAI exploits multiple solving approaches, with different capabilities that characterize them as either fast or slow, and a metacognitive module to regulate them. This combination of components, which roughly reflects the human reasoning process according to D. Kahneman, allowed us to enhance the reasoning process that, in this case, is concerned with planning in two different settings. The behavior of this system is then compared to state-of-the-art solvers, showing that the newly introduced system presents better results in terms of generality, solving a wider set of problems with an acceptable trade-off between solving times and solution accuracy.
Synthesizing mixed-integer linear programming models from natural language descriptions
Numerous real-world decision-making problems can be formulated and solved using Mixed-Integer Linear Programming (MILP) models. However, the transformation of these problems into MILP models heavily relies on expertise in operations research and mathematical optimization, which restricts non-experts' accessibility to MILP. To address this challenge, we propose a framework for automatically formulating MILP models from unstructured natural language descriptions of decision problems, which integrates Large Language Models (LLMs) and mathematical modeling techniques. This framework consists of three phases: i) identification of decision variables, ii) classification of objective and constraints, and iii) finally, generation of MILP models. In this study, we present a constraint classification scheme and a set of constraint templates that can guide the LLMs in synthesizing a complete MILP model. After fine-tuning LLMs, our approach can identify and synthesize logic constraints in addition to classic demand and resource constraints. The logic constraints have not been studied in existing work. To evaluate the performance of the proposed framework, we extend the NL4Opt dataset with more problem descriptions and constraint types, and with the new dataset, we compare our framework with one-step model generation methods offered by LLMs. The experimental results reveal that with respect to the accuracies of generating the correct model, objective, and constraints, our method which integrates constraint classification and templates with LLMs significantly outperforms the others. The prototype system that we developed has a great potential to capture more constraints for more complex MILPs. It opens up opportunities for developing training tools for operations research practitioners and has the potential to be a powerful tool for automatic decision problem modeling and solving in practice.
Is Computational Complexity a Barrier to Manipulation?
When agents are acting together, they may need a simple mechanism to decide on joint actions. One possibility is to have the agents express their preferences in the form of a ballot and use a voting rule to decide the winning action(s). Unfortunately, agents may try to manipulate such an election by misreporting their preferences. Fortunately, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. To address this issue, I suggest studying empirically if computational complexity is in practice a barrier to manipulation. The basic tool used in my investigations is the identification of computational "phase transitions". Such an approach has been fruitful in identifying hard instances of propositional satisfiability and other NP-hard problems. I show that phase transition behaviour gives insight into the hardness of manipulating voting rules, increasing concern that computational complexity is indeed any sort of barrier. Finally, I look at the problem of computing manipulation of other, related problems like stable marriage and tournament problems.
Towards a statistical theory of data selection under weak supervision
Given a sample of size N, it is often useful to select a subsample of smaller size n<N to be used for statistical estimation or learning. Such a data selection step is useful to reduce the requirements of data labeling and the computational complexity of learning. We assume to be given N unlabeled samples {{boldsymbol x}_i}_{ile N}, and to be given access to a `surrogate model' that can predict labels y_i better than random guessing. Our goal is to select a subset of the samples, to be denoted by {{boldsymbol x}_i}_{iin G}, of size |G|=n<N. We then acquire labels for this set and we use them to train a model via regularized empirical risk minimization. By using a mixture of numerical experiments on real and synthetic data, and mathematical derivations under low- and high- dimensional asymptotics, we show that: (i)~Data selection can be very effective, in particular beating training on the full sample in some cases; (ii)~Certain popular choices in data selection methods (e.g. unbiased reweighted subsampling, or influence function-based subsampling) can be substantially suboptimal.
EthicsMH: A Pilot Benchmark for Ethical Reasoning in Mental Health AI
The deployment of large language models (LLMs) in mental health and other sensitive domains raises urgent questions about ethical reasoning, fairness, and responsible alignment. Yet, existing benchmarks for moral and clinical decision-making do not adequately capture the unique ethical dilemmas encountered in mental health practice, where confidentiality, autonomy, beneficence, and bias frequently intersect. To address this gap, we introduce Ethical Reasoning in Mental Health (EthicsMH), a pilot dataset of 125 scenarios designed to evaluate how AI systems navigate ethically charged situations in therapeutic and psychiatric contexts. Each scenario is enriched with structured fields, including multiple decision options, expert-aligned reasoning, expected model behavior, real-world impact, and multi-stakeholder viewpoints. This structure enables evaluation not only of decision accuracy but also of explanation quality and alignment with professional norms. Although modest in scale and developed with model-assisted generation, EthicsMH establishes a task framework that bridges AI ethics and mental health decision-making. By releasing this dataset, we aim to provide a seed resource that can be expanded through community and expert contributions, fostering the development of AI systems capable of responsibly handling some of society's most delicate decisions.
Can Large Language Models Serve as Rational Players in Game Theory? A Systematic Analysis
Game theory, as an analytical tool, is frequently utilized to analyze human behavior in social science research. With the high alignment between the behavior of Large Language Models (LLMs) and humans, a promising research direction is to employ LLMs as substitutes for humans in game experiments, enabling social science research. However, despite numerous empirical researches on the combination of LLMs and game theory, the capability boundaries of LLMs in game theory remain unclear. In this research, we endeavor to systematically analyze LLMs in the context of game theory. Specifically, rationality, as the fundamental principle of game theory, serves as the metric for evaluating players' behavior -- building a clear desire, refining belief about uncertainty, and taking optimal actions. Accordingly, we select three classical games (dictator game, Rock-Paper-Scissors, and ring-network game) to analyze to what extent LLMs can achieve rationality in these three aspects. The experimental results indicate that even the current state-of-the-art LLM (GPT-4) exhibits substantial disparities compared to humans in game theory. For instance, LLMs struggle to build desires based on uncommon preferences, fail to refine belief from many simple patterns, and may overlook or modify refined belief when taking actions. Therefore, we consider that introducing LLMs into game experiments in the field of social science should be approached with greater caution.
In Search of Verifiability: Explanations Rarely Enable Complementary Performance in AI-Advised Decision Making
The current literature on AI-advised decision making -- involving explainable AI systems advising human decision makers -- presents a series of inconclusive and confounding results. To synthesize these findings, we propose a simple theory that elucidates the frequent failure of AI explanations to engender appropriate reliance and complementary decision making performance. We argue explanations are only useful to the extent that they allow a human decision maker to verify the correctness of an AI's prediction, in contrast to other desiderata, e.g., interpretability or spelling out the AI's reasoning process. Prior studies find in many decision making contexts AI explanations do not facilitate such verification. Moreover, most tasks fundamentally do not allow easy verification, regardless of explanation method, limiting the potential benefit of any type of explanation. We also compare the objective of complementary performance with that of appropriate reliance, decomposing the latter into the notions of outcome-graded and strategy-graded reliance.
MSDiagnosis: An EMR-based Dataset for Clinical Multi-Step Diagnosis
Clinical diagnosis is critical in medical practice, typically requiring a continuous and evolving process that includes primary diagnosis, differential diagnosis, and final diagnosis. However, most existing clinical diagnostic tasks are single-step processes, which does not align with the complex multi-step diagnostic procedures found in real-world clinical settings. In this paper, we propose a multi-step diagnostic task and annotate a clinical diagnostic dataset (MSDiagnosis). This dataset includes primary diagnosis, differential diagnosis, and final diagnosis questions. Additionally, we propose a novel and effective framework. This framework combines forward inference, backward inference, reflection, and refinement, enabling the LLM to self-evaluate and adjust its diagnostic results. To assess the effectiveness of our proposed method, we design and conduct extensive experiments. The experimental results demonstrate the effectiveness of the proposed method. We also provide a comprehensive experimental analysis and suggest future research directions for this task.
Answer, Refuse, or Guess? Investigating Risk-Aware Decision Making in Language Models
Knowing when to answer or refuse is crucial for safe and reliable decision-making language agents. Although prior work has introduced refusal strategies to boost LMs' reliability, how these models adapt their decisions to different risk levels remains underexplored. We formalize the task of risk-aware decision-making, expose critical weaknesses in existing LMs, and propose skill-decomposition solutions to mitigate them. Our findings show that even cutting-edge LMs--both regular and reasoning models--still require explicit prompt chaining to handle the task effectively, revealing the challenges that must be overcome to achieve truly autonomous decision-making agents.
Semi-Markov Offline Reinforcement Learning for Healthcare
Reinforcement learning (RL) tasks are typically framed as Markov Decision Processes (MDPs), assuming that decisions are made at fixed time intervals. However, many applications of great importance, including healthcare, do not satisfy this assumption, yet they are commonly modelled as MDPs after an artificial reshaping of the data. In addition, most healthcare (and similar) problems are offline by nature, allowing for only retrospective studies. To address both challenges, we begin by discussing the Semi-MDP (SMDP) framework, which formally handles actions of variable timings. We next present a formal way to apply SMDP modifications to nearly any given value-based offline RL method. We use this theory to introduce three SMDP-based offline RL algorithms, namely, SDQN, SDDQN, and SBCQ. We then experimentally demonstrate that only these SMDP-based algorithms learn the optimal policy in variable-time environments, whereas their MDP counterparts do not. Finally, we apply our new algorithms to a real-world offline dataset pertaining to warfarin dosing for stroke prevention and demonstrate similar results.
The Impact of Reasoning Step Length on Large Language Models
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
Offline Reinforcement Learning for LLM Multi-Step Reasoning
Improving the multi-step reasoning ability of large language models (LLMs) with offline reinforcement learning (RL) is essential for quickly adapting them to complex tasks. While Direct Preference Optimization (DPO) has shown promise in aligning LLMs with human preferences, it is less suitable for multi-step reasoning tasks because (1) DPO relies on paired preference data, which is not readily available for multi-step reasoning tasks, and (2) it treats all tokens uniformly, making it ineffective for credit assignment in multi-step reasoning tasks, which often come with sparse reward. In this work, we propose OREO (Offline Reasoning Optimization), an offline RL method for enhancing LLM multi-step reasoning. Building on insights from previous works of maximum entropy reinforcement learning, it jointly learns a policy model and value function by optimizing the soft Bellman Equation. We show in principle that it reduces the need to collect pairwise data and enables better credit assignment. Empirically, OREO surpasses existing offline learning methods on multi-step reasoning benchmarks, including mathematical reasoning tasks (GSM8K, MATH) and embodied agent control (ALFWorld). The approach can be extended to a multi-iteration framework when additional resources are available. Furthermore, the learned value function can be leveraged to guide the tree search for free, which can further boost performance during test time.
Thinking Fast and Slow in AI
This paper proposes a research direction to advance AI which draws inspiration from cognitive theories of human decision making. The premise is that if we gain insights about the causes of some human capabilities that are still lacking in AI (for instance, adaptability, generalizability, common sense, and causal reasoning), we may obtain similar capabilities in an AI system by embedding these causal components. We hope that the high-level description of our vision included in this paper, as well as the several research questions that we propose to consider, can stimulate the AI research community to define, try and evaluate new methodologies, frameworks, and evaluation metrics, in the spirit of achieving a better understanding of both human and machine intelligence.
SMACE: A New Method for the Interpretability of Composite Decision Systems
Interpretability is a pressing issue for decision systems. Many post hoc methods have been proposed to explain the predictions of a single machine learning model. However, business processes and decision systems are rarely centered around a unique model. These systems combine multiple models that produce key predictions, and then apply decision rules to generate the final decision. To explain such decisions, we propose the Semi-Model-Agnostic Contextual Explainer (SMACE), a new interpretability method that combines a geometric approach for decision rules with existing interpretability methods for machine learning models to generate an intuitive feature ranking tailored to the end user. We show that established model-agnostic approaches produce poor results on tabular data in this setting, in particular giving the same importance to several features, whereas SMACE can rank them in a meaningful way.
Probabilistic Artificial Intelligence
Artificial intelligence commonly refers to the science and engineering of artificial systems that can carry out tasks generally associated with requiring aspects of human intelligence, such as playing games, translating languages, and driving cars. In recent years, there have been exciting advances in learning-based, data-driven approaches towards AI, and machine learning and deep learning have enabled computer systems to perceive the world in unprecedented ways. Reinforcement learning has enabled breakthroughs in complex games such as Go and challenging robotics tasks such as quadrupedal locomotion. A key aspect of intelligence is to not only make predictions, but reason about the uncertainty in these predictions, and to consider this uncertainty when making decisions. This is what this manuscript on "Probabilistic Artificial Intelligence" is about. The first part covers probabilistic approaches to machine learning. We discuss the differentiation between "epistemic" uncertainty due to lack of data and "aleatoric" uncertainty, which is irreducible and stems, e.g., from noisy observations and outcomes. We discuss concrete approaches towards probabilistic inference and modern approaches to efficient approximate inference. The second part of the manuscript is about taking uncertainty into account in sequential decision tasks. We consider active learning and Bayesian optimization -- approaches that collect data by proposing experiments that are informative for reducing the epistemic uncertainty. We then consider reinforcement learning and modern deep RL approaches that use neural network function approximation. We close by discussing modern approaches in model-based RL, which harness epistemic and aleatoric uncertainty to guide exploration, while also reasoning about safety.
A Novel Approach to Balance Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes and its Implementation in BEACON
"A common decision made by people, whether healthy or with health conditions, is choosing meals like breakfast, lunch, and dinner, comprising combinations of foods for appetizer, main course, side dishes, desserts, and beverages. Often, this decision involves tradeoffs between nutritious choices (e.g., salt and sugar levels, nutrition content) and convenience (e.g., cost and accessibility, cuisine type, food source type). We present a data-driven solution for meal recommendations that considers customizable meal configurations and time horizons. This solution balances user preferences while accounting for food constituents and cooking processes. Our contributions include introducing goodness measures, a recipe conversion method from text to the recently introduced multimodal rich recipe representation (R3) format, learning methods using contextual bandits that show promising preliminary results, and the prototype, usage-inspired, BEACON system."
Population-based Evaluation in Repeated Rock-Paper-Scissors as a Benchmark for Multiagent Reinforcement Learning
Progress in fields of machine learning and adversarial planning has benefited significantly from benchmark domains, from checkers and the classic UCI data sets to Go and Diplomacy. In sequential decision-making, agent evaluation has largely been restricted to few interactions against experts, with the aim to reach some desired level of performance (e.g. beating a human professional player). We propose a benchmark for multiagent learning based on repeated play of the simple game Rock, Paper, Scissors along with a population of forty-three tournament entries, some of which are intentionally sub-optimal. We describe metrics to measure the quality of agents based both on average returns and exploitability. We then show that several RL, online learning, and language model approaches can learn good counter-strategies and generalize well, but ultimately lose to the top-performing bots, creating an opportunity for research in multiagent learning.
Game-theoretic LLM: Agent Workflow for Negotiation Games
This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory. We evaluate several state-of-the-art LLMs across a spectrum of complete-information and incomplete-information games. Our findings reveal that LLMs frequently deviate from rational strategies, particularly as the complexity of the game increases with larger payoff matrices or deeper sequential trees. To address these limitations, we design multiple game-theoretic workflows that guide the reasoning and decision-making processes of LLMs. These workflows aim to enhance the models' ability to compute Nash Equilibria and make rational choices, even under conditions of uncertainty and incomplete information. Experimental results demonstrate that the adoption of these workflows significantly improves the rationality and robustness of LLMs in game-theoretic tasks. Specifically, with the workflow, LLMs exhibit marked improvements in identifying optimal strategies, achieving near-optimal allocations in negotiation scenarios, and reducing susceptibility to exploitation during negotiations. Furthermore, we explore the meta-strategic considerations of whether it is rational for agents to adopt such workflows, recognizing that the decision to use or forgo the workflow constitutes a game-theoretic issue in itself. Our research contributes to a deeper understanding of LLMs' decision-making capabilities in strategic contexts and provides insights into enhancing their rationality through structured workflows. The findings have implications for the development of more robust and strategically sound AI agents capable of navigating complex interactive environments. Code and data supporting this study are available at https://github.com/Wenyueh/game_theory.
Towards Rationality in Language and Multimodal Agents: A Survey
Rationality is the quality of being guided by reason, characterized by decision-making that aligns with evidence and logical principles. It plays a crucial role in reliable problem-solving by ensuring well-grounded and consistent solutions. While large language models (LLMs) have made significant progress in generating human-like text, they still exhibit limitations such as bounded knowledge space and inconsistent outputs. In response, recent efforts have shifted toward developing multimodal and multi-agent systems, as well as integrating modules like external tools, programming codes, symbolic reasoners, utility function, and conformal risk controls rather than relying solely on a single LLM for decision-making. This paper surveys the state-of-the-art advancements in language and multimodal agents, evaluates how they contribute to make intelligent agents more rational, and identifies open challenges and future research directions. We maintain an open repository at https://github.com/bowen-upenn/Agent_Rationality.
Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality
Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications, where decisions must optimize cumulative rewards while strictly adhering to complex nonlinear constraints. In domains such as power systems, finance, supply chains, and precision robotics, violating these constraints can result in significant financial or societal costs. Existing Reinforcement Learning (RL) methods often struggle with sample efficiency and effectiveness in finding feasible policies for highly and strictly constrained CMDPs, limiting their applicability in these environments. Stochastic dual dynamic programming is often used in practice on convex relaxations of the original problem, but they also encounter computational challenges and loss of optimality. This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS-DDR), to efficiently train parametric actor policies using Lagrangian Duality. TS-DDR is a self-supervised learning algorithm that trains general decision rules (parametric policies) using stochastic gradient descent (SGD); its forward passes solve {\em deterministic} optimization problems to find feasible policies, and its backward passes leverage duality theory to train the parametric policy with closed-form gradients. TS-DDR inherits the flexibility and computational performance of deep learning methodologies to solve CMDP problems. Applied to the Long-Term Hydrothermal Dispatch (LTHD) problem using actual power system data from Bolivia, TS-DDR is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods.
Automated Reinforcement Learning: An Overview
Reinforcement Learning and recently Deep Reinforcement Learning are popular methods for solving sequential decision making problems modeled as Markov Decision Processes. RL modeling of a problem and selecting algorithms and hyper-parameters require careful considerations as different configurations may entail completely different performances. These considerations are mainly the task of RL experts; however, RL is progressively becoming popular in other fields where the researchers and system designers are not RL experts. Besides, many modeling decisions, such as defining state and action space, size of batches and frequency of batch updating, and number of timesteps are typically made manually. For these reasons, automating different components of RL framework is of great importance and it has attracted much attention in recent years. Automated RL provides a framework in which different components of RL including MDP modeling, algorithm selection and hyper-parameter optimization are modeled and defined automatically. In this article, we explore the literature and present recent work that can be used in automated RL. Moreover, we discuss the challenges, open questions and research directions in AutoRL.
Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole. In such a paradigm, humans are found to rarely trigger analytical thinking and face difficulties in communicating the nuances of conflicting opinions to the AI when disagreements occur. To tackle this challenge, we propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making. Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates. To empower AI with deliberative capabilities, we designed Deliberative AI, which leverages large language models (LLMs) as a bridge between humans and domain-specific models to enable flexible conversational interactions and faithful information provision. An exploratory evaluation on a graduate admissions task shows that Deliberative AI outperforms conventional explainable AI (XAI) assistants in improving humans' appropriate reliance and task performance. Based on a mixed-methods analysis of participant behavior, perception, user experience, and open-ended feedback, we draw implications for future AI-assisted decision tool design.
Artificial intelligence in cyber physical systems
This article conducts a literature review of current and future challenges in the use of artificial intelligence (AI) in cyber physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI through automation supporting both, a technical and human level. The methodology applied resembled a literature review and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial Internet of Things, Cyber Physical Systems, Industry 4.0 etc.). We review academic and industry papers published between 2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodology is adapted and applied for transparency and justifications of concepts selection decisions through building summary maps that are applied for designing the hierarchical cascading conceptual framework.
Preference-based Online Learning with Dueling Bandits: A Survey
In machine learning, the notion of multi-armed bandits refers to a class of online learning problems, in which an agent is supposed to simultaneously explore and exploit a given set of choice alternatives in the course of a sequential decision process. In the standard setting, the agent learns from stochastic feedback in the form of real-valued rewards. In many applications, however, numerical reward signals are not readily available -- instead, only weaker information is provided, in particular relative preferences in the form of qualitative comparisons between pairs of alternatives. This observation has motivated the study of variants of the multi-armed bandit problem, in which more general representations are used both for the type of feedback to learn from and the target of prediction. The aim of this paper is to provide a survey of the state of the art in this field, referred to as preference-based multi-armed bandits or dueling bandits. To this end, we provide an overview of problems that have been considered in the literature as well as methods for tackling them. Our taxonomy is mainly based on the assumptions made by these methods about the data-generating process and, related to this, the properties of the preference-based feedback.
Modeling Boundedly Rational Agents with Latent Inference Budgets
We study the problem of modeling a population of agents pursuing unknown goals subject to unknown computational constraints. In standard models of bounded rationality, sub-optimal decision-making is simulated by adding homoscedastic noise to optimal decisions rather than explicitly simulating constrained inference. In this work, we introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly, via a latent variable (inferred jointly with a model of agents' goals) that controls the runtime of an iterative inference algorithm. L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors. In three modeling tasks -- inferring navigation goals from routes, inferring communicative intents from human utterances, and predicting next moves in human chess games -- we show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty. Inferred inference budgets are themselves meaningful, efficient to compute, and correlated with measures of player skill, partner skill and task difficulty.
Introduction to Multi-Armed Bandits
Multi-armed bandits a simple but very powerful framework for algorithms that make decisions over time under uncertainty. An enormous body of work has accumulated over the years, covered in several books and surveys. This book provides a more introductory, textbook-like treatment of the subject. Each chapter tackles a particular line of work, providing a self-contained, teachable technical introduction and a brief review of the further developments; many of the chapters conclude with exercises. The book is structured as follows. The first four chapters are on IID rewards, from the basic model to impossibility results to Bayesian priors to Lipschitz rewards. The next three chapters cover adversarial rewards, from the full-feedback version to adversarial bandits to extensions with linear rewards and combinatorially structured actions. Chapter 8 is on contextual bandits, a middle ground between IID and adversarial bandits in which the change in reward distributions is completely explained by observable contexts. The last three chapters cover connections to economics, from learning in repeated games to bandits with supply/budget constraints to exploration in the presence of incentives. The appendix provides sufficient background on concentration and KL-divergence. The chapters on "bandits with similarity information", "bandits with knapsacks" and "bandits and agents" can also be consumed as standalone surveys on the respective topics.
Learning When to Think: Shaping Adaptive Reasoning in R1-Style Models via Multi-Stage RL
Large reasoning models (LRMs) are proficient at generating explicit, step-by-step reasoning sequences before producing final answers. However, such detailed reasoning can introduce substantial computational overhead and latency, particularly for simple problems. To address this over-thinking problem, we explore how to equip LRMs with adaptive thinking capabilities: enabling them to dynamically decide whether or not to engage in explicit reasoning based on problem complexity. Building on R1-style distilled models, we observe that inserting a simple ellipsis ("...") into the prompt can stochastically trigger either a thinking or no-thinking mode, revealing a latent controllability in the reasoning behavior. Leveraging this property, we propose AutoThink, a multi-stage reinforcement learning (RL) framework that progressively optimizes reasoning policies via stage-wise reward shaping. AutoThink learns to invoke explicit reasoning only when necessary, while defaulting to succinct responses for simpler tasks. Experiments on five mainstream mathematical benchmarks demonstrate that AutoThink achieves favorable accuracy-efficiency trade-offs compared to recent prompting and RL-based pruning methods. It can be seamlessly integrated into any R1-style model, including both distilled and further fine-tuned variants. Notably, AutoThink improves relative accuracy by 6.4 percent while reducing token usage by 52 percent on DeepSeek-R1-Distill-Qwen-1.5B, establishing a scalable and adaptive reasoning paradigm for LRMs. Project Page: https://github.com/ScienceOne-AI/AutoThink.
SPIN-Bench: How Well Do LLMs Plan Strategically and Reason Socially?
Reasoning and strategic behavior in social interactions is a hallmark of intelligence. This form of reasoning is significantly more sophisticated than isolated planning or reasoning tasks in static settings (e.g., math problem solving). In this paper, we present Strategic Planning, Interaction, and Negotiation (SPIN-Bench), a new multi-domain evaluation designed to measure the intelligence of strategic planning and social reasoning. While many existing benchmarks focus on narrow planning or single-agent reasoning, SPIN-Bench combines classical PDDL tasks, competitive board games, cooperative card games, and multi-agent negotiation scenarios in one unified framework. The framework includes both a benchmark as well as an arena to simulate and evaluate the variety of social settings to test reasoning and strategic behavior of AI agents. We formulate the benchmark SPIN-Bench by systematically varying action spaces, state complexity, and the number of interacting agents to simulate a variety of social settings where success depends on not only methodical and step-wise decision making, but also conceptual inference of other (adversarial or cooperative) participants. Our experiments reveal that while contemporary LLMs handle basic fact retrieval and short-range planning reasonably well, they encounter significant performance bottlenecks in tasks requiring deep multi-hop reasoning over large state spaces and socially adept coordination under uncertainty. We envision SPIN-Bench as a catalyst for future research on robust multi-agent planning, social reasoning, and human--AI teaming.
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life
As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.
Evaluating Superhuman Models with Consistency Checks
If machine learning models were to achieve superhuman abilities at various reasoning or decision-making tasks, how would we go about evaluating such models, given that humans would necessarily be poor proxies for ground truth? In this paper, we propose a framework for evaluating superhuman models via consistency checks. Our premise is that while the correctness of superhuman decisions may be impossible to evaluate, we can still surface mistakes if the model's decisions fail to satisfy certain logical, human-interpretable rules. We instantiate our framework on three tasks where correctness of decisions is hard to evaluate due to either superhuman model abilities, or to otherwise missing ground truth: evaluating chess positions, forecasting future events, and making legal judgments. We show that regardless of a model's (possibly superhuman) performance on these tasks, we can discover logical inconsistencies in decision making. For example: a chess engine assigning opposing valuations to semantically identical boards; GPT-4 forecasting that sports records will evolve non-monotonically over time; or an AI judge assigning bail to a defendant only after we add a felony to their criminal record.
The Art of SOCRATIC QUESTIONING: Recursive Thinking with Large Language Models
Chain-of-Thought (CoT) prompting enables large language models to solve complex reasoning problems by generating intermediate steps. However, confined by its inherent single-pass and sequential generation process, CoT heavily relies on the initial decisions, causing errors in early steps to accumulate and impact the final answers. In contrast, humans adopt recursive thinking when tackling complex reasoning problems, i.e., iteratively breaking the original problem into approachable sub-problems and aggregating their answers to resolve the original one. Inspired by the human cognitive process, we propose SOCRATIC QUESTIONING, a divide-and-conquer style algorithm that mimics the recursive thinking process. Specifically, SOCRATIC QUESTIONING leverages large language models to raise and answer sub-questions until collecting enough information to tackle the original question. Unlike CoT, SOCRATIC QUESTIONING explicitly navigates the thinking space, stimulates effective recursive thinking, and is more robust towards errors in the thinking process. Extensive experiments on several complex reasoning tasks, including MMLU, MATH, LogiQA, and visual question-answering demonstrate significant performance improvements over the state-of-the-art prompting methods, such as CoT, and Tree-of-Thought. The qualitative analysis clearly shows that the intermediate reasoning steps elicited by SOCRATIC QUESTIONING are similar to humans' recursively thinking process of complex reasoning problems.
Bayesian Risk Markov Decision Processes
We consider finite-horizon Markov Decision Processes where parameters, such as transition probabilities, are unknown and estimated from data. The popular distributionally robust approach to addressing the parameter uncertainty can sometimes be overly conservative. In this paper, we propose a new formulation, Bayesian risk Markov Decision Process (BR-MDP), to address parameter uncertainty in MDPs, where a risk functional is applied in nested form to the expected total cost with respect to the Bayesian posterior distribution of the unknown parameters. The proposed formulation provides more flexible risk attitutes towards parameter uncertainty and takes into account the availability of data in future times stages. To solve the proposed formulation with the conditional value-at-risk (CVaR) risk functional, we propose an efficient approximation algorithm by deriving an analytical approximation of the value function and utilizing the convexity of CVaR. We demonstrate the empirical performance of the BR-MDP formulation and proposed algorithms on a gambler's betting problem and an inventory control problem.
Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM
Online Information Acquisition: Hiring Multiple Agents
We investigate the mechanism design problem faced by a principal who hires multiple agents to gather and report costly information. Then, the principal exploits the information to make an informed decision. We model this problem as a game, where the principal announces a mechanism consisting in action recommendations and a payment function, a.k.a. scoring rule. Then, each agent chooses an effort level and receives partial information about an underlying state of nature based on the effort. Finally, the agents report the information (possibly non-truthfully), the principal takes a decision based on this information, and the agents are paid according to the scoring rule. While previous work focuses on single-agent problems, we consider multi-agents settings. This poses the challenge of coordinating the agents' efforts and aggregating correlated information. Indeed, we show that optimal mechanisms must correlate agents' efforts, which introduces externalities among the agents, and hence complex incentive compatibility constraints and equilibrium selection problems. First, we design a polynomial-time algorithm to find an optimal incentive compatible mechanism. Then, we study an online problem, where the principal repeatedly interacts with a group of unknown agents. We design a no-regret algorithm that provides mathcal{O}(T^{2/3}) regret with respect to an optimal mechanism, matching the state-of-the-art bound for single-agent settings.
Unveiling and unraveling aggregation and dispersion fallacies in group MCDM
Priorities in multi-criteria decision-making (MCDM) convey the relevance preference of one criterion over another, which is usually reflected by imposing the non-negativity and unit-sum constraints. The processing of such priorities is different than other unconstrained data, but this point is often neglected by researchers, which results in fallacious statistical analysis. This article studies three prevalent fallacies in group MCDM along with solutions based on compositional data analysis to avoid misusing statistical operations. First, we use a compositional approach to aggregate the priorities of a group of DMs and show that the outcome of the compositional analysis is identical to the normalized geometric mean, meaning that the arithmetic mean should be avoided. Furthermore, a new aggregation method is developed, which is a robust surrogate for the geometric mean. We also discuss the errors in computing measures of dispersion, including standard deviation and distance functions. Discussing the fallacies in computing the standard deviation, we provide a probabilistic criteria ranking by developing proper Bayesian tests, where we calculate the extent to which a criterion is more important than another. Finally, we explain the errors in computing the distance between priorities, and a clustering algorithm is specially tailored based on proper distance metrics.
Resolving the measurement uncertainty paradox in ecological management
Ecological management and decision-making typically focus on uncertainty about the future, but surprisingly little is known about how to account for uncertainty of the present: that is, the realities of having only partial or imperfect measurements. Our primary paradigms for handling decisions under uncertainty -- the precautionary principle and optimal control -- have so far given contradictory results. This paradox is best illustrated in the example of fisheries management, where many ideas that guide thinking about ecological decision making were first developed. We find that simplistic optimal control approaches have repeatedly concluded that a manager should increase catch quotas when faced with greater uncertainty about the fish biomass. Current best practices take a more precautionary approach, decreasing catch quotas by a fixed amount to account for uncertainty. Using comparisons to both simulated and historical catch data, we find that neither approach is sufficient to avoid stock collapses under moderate observational uncertainty. Using partially observed Markov decision process (POMDP) methods, we demonstrate how this paradox arises from flaws in the standard theory, which contributes to over-exploitation of fisheries and increased probability of economic and ecological collapse. In contrast, we find POMDP-based management avoids such over-exploitation while also generating higher economic value. These results have significant implications for how we handle uncertainty in both fisheries and ecological management more generally.
"I Want It That Way": Enabling Interactive Decision Support Using Large Language Models and Constraint Programming
A critical factor in the success of decision support systems is the accurate modeling of user preferences. Psychology research has demonstrated that users often develop their preferences during the elicitation process, highlighting the pivotal role of system-user interaction in developing personalized systems. This paper introduces a novel approach, combining Large Language Models (LLMs) with Constraint Programming to facilitate interactive decision support. We study this hybrid framework through the lens of meeting scheduling, a time-consuming daily activity faced by a multitude of information workers. We conduct three studies to evaluate the novel framework, including a diary study (n=64) to characterize contextual scheduling preferences, a quantitative evaluation of the system's performance, and a user study (n=10) with a prototype system. Our work highlights the potential for a hybrid LLM and optimization approach for iterative preference elicitation and design considerations for building systems that support human-system collaborative decision-making processes.
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
In this paper, we develop an approximation scheme for solving bilevel programs with equilibrium constraints, which are generally difficult to solve. Among other things, calculating the first-order derivative in such a problem requires differentiation across the hierarchy, which is computationally intensive, if not prohibitive. To bypass the hierarchy, we propose to bound such bilevel programs, equivalent to multiple-followers Stackelberg games, with two new hierarchy-free problems: a T-step Cournot game and a T-step monopoly model. Since they are standard equilibrium or optimization problems, both can be efficiently solved via first-order methods. Importantly, we show that the bounds provided by these problems -- the upper bound by the T-step Cournot game and the lower bound by the T-step monopoly model -- can be made arbitrarily tight by increasing the step parameter T for a wide range of problems. We prove that a small T usually suffices under appropriate conditions to reach an approximation acceptable for most practical purposes. Eventually, the analytical insights are highlighted through numerical examples.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
Self-Interpretability: LLMs Can Describe Complex Internal Processes that Drive Their Decisions, and Improve with Training
We have only limited understanding of how and why large language models (LLMs) respond in the ways that they do. Their neural networks have proven challenging to interpret, and we are only beginning to tease out the function of individual neurons and circuits within them. However, another path to understanding these systems is to investigate and develop their capacity to introspect and explain their own functioning. Here, we show that i) contemporary LLMs are capable of providing accurate, quantitative descriptions of their own internal processes during certain kinds of decision-making, ii) that it is possible to improve these capabilities through training, and iii) that this training generalizes to at least some degree. To do so, we fine-tuned GPT-4o and GPT-4o-mini to make decisions in a wide variety of complex contexts (e.g., choosing between condos, loans, vacations, etc.) according to randomly-generated, quantitative preferences about how to weigh different attributes during decision-making (e.g., the relative importance of natural light versus quiet surroundings for condos). We demonstrate that the LLMs can accurately report these preferences (i.e., the weights that they learned to give to different attributes during decision-making). Next, we demonstrate that these LLMs can be fine-tuned to explain their decision-making even more accurately. Finally, we demonstrate that this training generalizes: It improves the ability of the models to accurately explain what they are doing as they make other complex decisions, not just decisions they have learned to make via fine-tuning. This work is a step towards training LLMs to accurately and broadly report on their own internal processes -- a possibility that would yield substantial benefits for interpretability, control, and safety.
ToolComp: A Multi-Tool Reasoning & Process Supervision Benchmark
Despite recent advances in AI, the development of systems capable of executing complex, multi-step reasoning tasks involving multiple tools remains a significant challenge. Current benchmarks fall short in capturing the real-world complexity of tool-use reasoning, where verifying the correctness of not only the final answer but also the intermediate steps is important for evaluation, development, and identifying failures during inference time. To bridge this gap, we introduce ToolComp, a comprehensive benchmark designed to evaluate multi-step tool-use reasoning. ToolComp is developed through a collaboration between models and human annotators, featuring human-edited/verified prompts, final answers, and process supervision labels, allowing for the evaluation of both final outcomes and intermediate reasoning. Evaluation across six different model families demonstrates the challenging nature of our dataset, with the majority of models achieving less than 50% accuracy. Additionally, we generate synthetic training data to compare the performance of outcome-supervised reward models (ORMs) with process-supervised reward models (PRMs) to assess their ability to improve complex tool-use reasoning as evaluated by ToolComp. Our results show that PRMs generalize significantly better than ORMs, achieving a 19% and 11% improvement in rank@1 accuracy for ranking base and fine-tuned model trajectories, respectively. These findings highlight the critical role of process supervision in both the evaluation and training of AI models, paving the way for more robust and capable systems in complex, multi-step tool-use tasks.
Learning Robust State Abstractions for Hidden-Parameter Block MDPs
Many control tasks exhibit similar dynamics that can be modeled as having common latent structure. Hidden-Parameter Markov Decision Processes (HiP-MDPs) explicitly model this structure to improve sample efficiency in multi-task settings. However, this setting makes strong assumptions on the observability of the state that limit its application in real-world scenarios with rich observation spaces. In this work, we leverage ideas of common structure from the HiP-MDP setting, and extend it to enable robust state abstractions inspired by Block MDPs. We derive instantiations of this new framework for both multi-task reinforcement learning (MTRL) and meta-reinforcement learning (Meta-RL) settings. Further, we provide transfer and generalization bounds based on task and state similarity, along with sample complexity bounds that depend on the aggregate number of samples across tasks, rather than the number of tasks, a significant improvement over prior work that use the same environment assumptions. To further demonstrate the efficacy of the proposed method, we empirically compare and show improvement over multi-task and meta-reinforcement learning baselines.
On Realization of Intelligent Decision-Making in the Real World: A Foundation Decision Model Perspective
The pervasive uncertainty and dynamic nature of real-world environments present significant challenges for the widespread implementation of machine-driven Intelligent Decision-Making (IDM) systems. Consequently, IDM should possess the ability to continuously acquire new skills and effectively generalize across a broad range of applications. The advancement of Artificial General Intelligence (AGI) that transcends task and application boundaries is critical for enhancing IDM. Recent studies have extensively investigated the Transformer neural architecture as a foundational model for various tasks, including computer vision, natural language processing, and reinforcement learning. We propose that a Foundation Decision Model (FDM) can be developed by formulating diverse decision-making tasks as sequence decoding tasks using the Transformer architecture, offering a promising solution for expanding IDM applications in complex real-world situations. In this paper, we discuss the efficiency and generalization improvements offered by a foundation decision model for IDM and explore its potential applications in multi-agent game AI, production scheduling, and robotics tasks. Lastly, we present a case study demonstrating our FDM implementation, DigitalBrain (DB1) with 1.3 billion parameters, achieving human-level performance in 870 tasks, such as text generation, image captioning, video game playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 represents an initial step toward more autonomous and efficient real-world IDM applications.
Habitizing Diffusion Planning for Efficient and Effective Decision Making
Diffusion models have shown great promise in decision-making, also known as diffusion planning. However, the slow inference speeds limit their potential for broader real-world applications. Here, we introduce Habi, a general framework that transforms powerful but slow diffusion planning models into fast decision-making models, which mimics the cognitive process in the brain that costly goal-directed behavior gradually transitions to efficient habitual behavior with repetitive practice. Even using a laptop CPU, the habitized model can achieve an average 800+ Hz decision-making frequency (faster than previous diffusion planners by orders of magnitude) on standard offline reinforcement learning benchmarks D4RL, while maintaining comparable or even higher performance compared to its corresponding diffusion planner. Our work proposes a fresh perspective of leveraging powerful diffusion models for real-world decision-making tasks. We also provide robust evaluations and analysis, offering insights from both biological and engineering perspectives for efficient and effective decision-making.
C-MORL: Multi-Objective Reinforcement Learning through Efficient Discovery of Pareto Front
Multi-objective reinforcement learning (MORL) excels at handling rapidly changing preferences in tasks that involve multiple criteria, even for unseen preferences. However, previous dominating MORL methods typically generate a fixed policy set or preference-conditioned policy through multiple training iterations exclusively for sampled preference vectors, and cannot ensure the efficient discovery of the Pareto front. Furthermore, integrating preferences into the input of policy or value functions presents scalability challenges, in particular as the dimension of the state and preference space grow, which can complicate the learning process and hinder the algorithm's performance on more complex tasks. To address these issues, we propose a two-stage Pareto front discovery algorithm called Constrained MORL (C-MORL), which serves as a seamless bridge between constrained policy optimization and MORL. Concretely, a set of policies is trained in parallel in the initialization stage, with each optimized towards its individual preference over the multiple objectives. Then, to fill the remaining vacancies in the Pareto front, the constrained optimization steps are employed to maximize one objective while constraining the other objectives to exceed a predefined threshold. Empirically, compared to recent advancements in MORL methods, our algorithm achieves more consistent and superior performances in terms of hypervolume, expected utility, and sparsity on both discrete and continuous control tasks, especially with numerous objectives (up to nine objectives in our experiments).
Multimodal Learning with Uncertainty Quantification based on Discounted Belief Fusion
Multimodal AI models are increasingly used in fields like healthcare, finance, and autonomous driving, where information is drawn from multiple sources or modalities such as images, texts, audios, videos. However, effectively managing uncertainty - arising from noise, insufficient evidence, or conflicts between modalities - is crucial for reliable decision-making. Current uncertainty-aware machine learning methods leveraging, for example, evidence averaging, or evidence accumulation underestimate uncertainties in high-conflict scenarios. Moreover, the state-of-the-art evidence averaging strategy is not order invariant and fails to scale to multiple modalities. To address these challenges, we propose a novel multimodal learning method with order-invariant evidence fusion and introduce a conflict-based discounting mechanism that reallocates uncertain mass when unreliable modalities are detected. We provide both theoretical analysis and experimental validation, demonstrating that unlike the previous work, the proposed approach effectively distinguishes between conflicting and non-conflicting samples based on the provided uncertainty estimates, and outperforms the previous models in uncertainty-based conflict detection.
Towards Developing Ethical Reasoners: Integrating Probabilistic Reasoning and Decision-Making for Complex AI Systems
A computational ethics framework is essential for AI and autonomous systems operating in complex, real-world environments. Existing approaches often lack the adaptability needed to integrate ethical principles into dynamic and ambiguous contexts, limiting their effectiveness across diverse scenarios. To address these challenges, we outline the necessary ingredients for building a holistic, meta-level framework that combines intermediate representations, probabilistic reasoning, and knowledge representation. The specifications therein emphasize scalability, supporting ethical reasoning at both individual decision-making levels and within the collective dynamics of multi-agent systems. By integrating theoretical principles with contextual factors, it facilitates structured and context-aware decision-making, ensuring alignment with overarching ethical standards. We further explore proposed theorems outlining how ethical reasoners should operate, offering a foundation for practical implementation. These constructs aim to support the development of robust and ethically reliable AI systems capable of navigating the complexities of real-world moral decision-making scenarios.
Abstracting Imperfect Information Away from Two-Player Zero-Sum Games
In their seminal work, Nayyar et al. (2013) showed that imperfect information can be abstracted away from common-payoff games by having players publicly announce their policies as they play. This insight underpins sound solvers and decision-time planning algorithms for common-payoff games. Unfortunately, a naive application of the same insight to two-player zero-sum games fails because Nash equilibria of the game with public policy announcements may not correspond to Nash equilibria of the original game. As a consequence, existing sound decision-time planning algorithms require complicated additional mechanisms that have unappealing properties. The main contribution of this work is showing that certain regularized equilibria do not possess the aforementioned non-correspondence problem -- thus, computing them can be treated as perfect-information problems. Because these regularized equilibria can be made arbitrarily close to Nash equilibria, our result opens the door to a new perspective to solving two-player zero-sum games and yields a simplified framework for decision-time planning in two-player zero-sum games, void of the unappealing properties that plague existing decision-time planning approaches.
Learning to Incentivize Information Acquisition: Proper Scoring Rules Meet Principal-Agent Model
We study the incentivized information acquisition problem, where a principal hires an agent to gather information on her behalf. Such a problem is modeled as a Stackelberg game between the principal and the agent, where the principal announces a scoring rule that specifies the payment, and then the agent then chooses an effort level that maximizes her own profit and reports the information. We study the online setting of such a problem from the principal's perspective, i.e., designing the optimal scoring rule by repeatedly interacting with the strategic agent. We design a provably sample efficient algorithm that tailors the UCB algorithm (Auer et al., 2002) to our model, which achieves a sublinear T^{2/3}-regret after T iterations. Our algorithm features a delicate estimation procedure for the optimal profit of the principal, and a conservative correction scheme that ensures the desired agent's actions are incentivized. Furthermore, a key feature of our regret bound is that it is independent of the number of states of the environment.
Show Me More Details: Discovering Hierarchies of Procedures from Semi-structured Web Data
Procedures are inherently hierarchical. To "make videos", one may need to "purchase a camera", which in turn may require one to "set a budget". While such hierarchical knowledge is critical for reasoning about complex procedures, most existing work has treated procedures as shallow structures without modeling the parent-child relation. In this work, we attempt to construct an open-domain hierarchical knowledge-base (KB) of procedures based on wikiHow, a website containing more than 110k instructional articles, each documenting the steps to carry out a complex procedure. To this end, we develop a simple and efficient method that links steps (e.g., "purchase a camera") in an article to other articles with similar goals (e.g., "how to choose a camera"), recursively constructing the KB. Our method significantly outperforms several strong baselines according to automatic evaluation, human judgment, and application to downstream tasks such as instructional video retrieval. A demo with partial data can be found at https://wikihow-hierarchy.github.io. The code and the data are at https://github.com/shuyanzhou/wikihow_hierarchy.
Reward Design for Justifiable Sequential Decision-Making
Equipping agents with the capacity to justify made decisions using supporting evidence represents a cornerstone of accountable decision-making. Furthermore, ensuring that justifications are in line with human expectations and societal norms is vital, especially in high-stakes situations such as healthcare. In this work, we propose the use of a debate-based reward model for reinforcement learning agents, where the outcome of a zero-sum debate game quantifies the justifiability of a decision in a particular state. This reward model is then used to train a justifiable policy, whose decisions can be more easily corroborated with supporting evidence. In the debate game, two argumentative agents take turns providing supporting evidence for two competing decisions. Given the proposed evidence, a proxy of a human judge evaluates which decision is better justified. We demonstrate the potential of our approach in learning policies for prescribing and justifying treatment decisions of septic patients. We show that augmenting the reward with the feedback signal generated by the debate-based reward model yields policies highly favored by the judge when compared to the policy obtained solely from the environment rewards, while hardly sacrificing any performance. Moreover, in terms of the overall performance and justifiability of trained policies, the debate-based feedback is comparable to the feedback obtained from an ideal judge proxy that evaluates decisions using the full information encoded in the state. This suggests that the debate game outputs key information contained in states that is most relevant for evaluating decisions, which in turn substantiates the practicality of combining our approach with human-in-the-loop evaluations. Lastly, we showcase that agents trained via multi-agent debate learn to propose evidence that is resilient to refutations and closely aligns with human preferences.
Fairness in Matching under Uncertainty
The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques.
CaT-BENCH: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans
Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps needs to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs' ability to detect dependence between steps has significant room for improvement.
Full-Step-DPO: Self-Supervised Preference Optimization with Step-wise Rewards for Mathematical Reasoning
Direct Preference Optimization (DPO) often struggles with long-chain mathematical reasoning. Existing approaches, such as Step-DPO, typically improve this by focusing on the first erroneous step in the reasoning chain. However, they overlook all other steps and rely heavily on humans or GPT-4 to identify erroneous steps. To address these issues, we propose Full-Step-DPO, a novel DPO framework tailored for mathematical reasoning. Instead of optimizing only the first erroneous step, it leverages step-wise rewards from the entire reasoning chain. This is achieved by training a self-supervised process reward model, which automatically scores each step, providing rewards while avoiding reliance on external signals. Furthermore, we introduce a novel step-wise DPO loss, which dynamically updates gradients based on these step-wise rewards. This endows stronger reasoning capabilities to language models. Extensive evaluations on both in-domain and out-of-domain mathematical reasoning benchmarks across various base language models, demonstrate that Full-Step-DPO achieves superior performance compared to state-of-the-art baselines.
LLM-PySC2: Starcraft II learning environment for Large Language Models
This paper introduces a new environment LLM-PySC2 (the Large Language Model StarCraft II Learning Environment), a platform derived from DeepMind's StarCraft II Learning Environment that serves to develop Large Language Models (LLMs) based decision-making methodologies. This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database, which are seamlessly connected with various LLMs to facilitate the research of LLMs-based decision-making. To further support multi-agent research, we developed an LLM collaborative framework that supports multi-agent concurrent queries and multi-agent communication. In our experiments, the LLM-PySC2 environment is adapted to be compatible with the StarCraft Multi-Agent Challenge (SMAC) task group and provided eight new scenarios focused on macro-decision abilities. We evaluated nine mainstream LLMs in the experiments, and results show that sufficient parameters are necessary for LLMs to make decisions, but improving reasoning ability does not directly lead to better decision-making outcomes. Our findings further indicate the importance of enabling large models to learn autonomously in the deployment environment through parameter training or train-free learning techniques. Ultimately, we expect that the LLM-PySC2 environment can promote research on learning methods for LLMs, helping LLM-based methods better adapt to task scenarios.
Tab-CoT: Zero-shot Tabular Chain of Thought
The chain-of-though (CoT) prompting methods were successful in various natural language processing (NLP) tasks thanks to their ability to unveil the underlying complex reasoning processes. Such reasoning processes typically exhibit implicitly structured steps. Recent efforts also started investigating methods to encourage more explicitly structured reasoning procedures to be captured. In this work, we propose Tab-CoT, a novel tabular-format CoT prompting method, which allows the complex reasoning process to be explicitly modelled in a highly structured manner. Despite its simplicity, we show that our approach is capable of performing reasoning across multiple dimensions (i.e., both rows and columns). We demonstrate our approach's strong zero-shot and few-shot capabilities through extensive experiments on a range of reasoning tasks.
A General Framework for Estimating Preferences Using Response Time Data
We propose a general methodology for recovering preference parameters from data on choices and response times. Our methods yield estimates with fast (1/n for n data points) convergence rates when specialized to the popular Drift Diffusion Model (DDM), but are broadly applicable to generalizations of the DDM as well as to alternative models of decision making that make use of response time data. The paper develops an empirical application to an experiment on intertemporal choice, showing that the use of response times delivers predictive accuracy and matters for the estimation of economically relevant parameters.
Automatic Chain of Thought Prompting in Large Language Models
Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps. Providing these steps for prompting demonstrations is called chain-of-thought (CoT) prompting. CoT prompting has two major paradigms. One leverages a simple prompt like "Let's think step by step" to facilitate step-by-step thinking before answering a question. The other uses a few manual demonstrations one by one, each composed of a question and a reasoning chain that leads to an answer. The superior performance of the second paradigm hinges on the hand-crafting of task-specific demonstrations one by one. We show that such manual efforts may be eliminated by leveraging LLMs with the "Let's think step by step" prompt to generate reasoning chains for demonstrations one by one, i.e., let's think not just step by step, but also one by one. However, these generated chains often come with mistakes. To mitigate the effect of such mistakes, we find that diversity matters for automatically constructing demonstrations. We propose an automatic CoT prompting method: Auto-CoT. It samples questions with diversity and generates reasoning chains to construct demonstrations. On ten public benchmark reasoning tasks with GPT-3, Auto-CoT consistently matches or exceeds the performance of the CoT paradigm that requires manual designs of demonstrations. Code is available at https://github.com/amazon-research/auto-cot
Scalable AI Safety via Doubly-Efficient Debate
The emergence of pre-trained AI systems with powerful capabilities across a diverse and ever-increasing set of complex domains has raised a critical challenge for AI safety as tasks can become too complicated for humans to judge directly. Irving et al. [2018] proposed a debate method in this direction with the goal of pitting the power of such AI models against each other until the problem of identifying (mis)-alignment is broken down into a manageable subtask. While the promise of this approach is clear, the original framework was based on the assumption that the honest strategy is able to simulate deterministic AI systems for an exponential number of steps, limiting its applicability. In this paper, we show how to address these challenges by designing a new set of debate protocols where the honest strategy can always succeed using a simulation of a polynomial number of steps, whilst being able to verify the alignment of stochastic AI systems, even when the dishonest strategy is allowed to use exponentially many simulation steps.
A Survey Of Methods For Explaining Black Box Models
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
Promoting Efficient Reasoning with Verifiable Stepwise Reward
Large reasoning models (LRMs) have recently achieved significant progress in complex reasoning tasks, aided by reinforcement learning with verifiable rewards. However, LRMs often suffer from overthinking, expending excessive computation on simple problems and reducing efficiency. Existing efficient reasoning methods typically require accurate task assessment to preset token budgets or select reasoning modes, which limits their flexibility and reliability. In this work, we revisit the essence of overthinking and identify that encouraging effective steps while penalizing ineffective ones is key to its solution. To this end, we propose a novel rule-based verifiable stepwise reward mechanism (VSRM), which assigns rewards based on the performance of intermediate states in the reasoning trajectory. This approach is intuitive and naturally fits the step-by-step nature of reasoning tasks. We conduct extensive experiments on standard mathematical reasoning benchmarks, including AIME24 and AIME25, by integrating VSRM with PPO and Reinforce++. Results show that our method achieves substantial output length reduction while maintaining original reasoning performance, striking an optimal balance between efficiency and accuracy. Further analysis of overthinking frequency and pass@k score before and after training demonstrates that our approach in deed effectively suppresses ineffective steps and encourages effective reasoning, fundamentally alleviating the overthinking problem. All code will be released upon acceptance.
Beyond Stationarity: Convergence Analysis of Stochastic Softmax Policy Gradient Methods
Markov Decision Processes (MDPs) are a formal framework for modeling and solving sequential decision-making problems. In finite-time horizons such problems are relevant for instance for optimal stopping or specific supply chain problems, but also in the training of large language models. In contrast to infinite horizon MDPs optimal policies are not stationary, policies must be learned for every single epoch. In practice all parameters are often trained simultaneously, ignoring the inherent structure suggested by dynamic programming. This paper introduces a combination of dynamic programming and policy gradient called dynamic policy gradient, where the parameters are trained backwards in time. For the tabular softmax parametrisation we carry out the convergence analysis for simultaneous and dynamic policy gradient towards global optima, both in the exact and sampled gradient settings without regularisation. It turns out that the use of dynamic policy gradient training much better exploits the structure of finite-time problems which is reflected in improved convergence bounds.
Foundation Models for Decision Making: Problems, Methods, and Opportunities
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.
Decoupling Strategy and Generation in Negotiation Dialogues
We consider negotiation settings in which two agents use natural language to bargain on goods. Agents need to decide on both high-level strategy (e.g., proposing \50) and the execution of that strategy (e.g., generating "The bike is brand new. Selling for just 50."). Recent work on negotiation trains neural models, but their end-to-end nature makes it hard to control their strategy, and reinforcement learning tends to lead to degenerate solutions. In this paper, we propose a modular approach based on coarse di- alogue acts (e.g., propose(price=50)) that decouples strategy and generation. We show that we can flexibly set the strategy using supervised learning, reinforcement learning, or domain-specific knowledge without degeneracy, while our retrieval-based generation can maintain context-awareness and produce diverse utterances. We test our approach on the recently proposed DEALORNODEAL game, and we also collect a richer dataset based on real items on Craigslist. Human evaluation shows that our systems achieve higher task success rate and more human-like negotiation behavior than previous approaches.
Spacecraft Autonomous Decision-Planning for Collision Avoidance: a Reinforcement Learning Approach
The space environment around the Earth is becoming increasingly populated by both active spacecraft and space debris. To avoid potential collision events, significant improvements in Space Situational Awareness (SSA) activities and Collision Avoidance (CA) technologies are allowing the tracking and maneuvering of spacecraft with increasing accuracy and reliability. However, these procedures still largely involve a high level of human intervention to make the necessary decisions. For an increasingly complex space environment, this decision-making strategy is not likely to be sustainable. Therefore, it is important to successfully introduce higher levels of automation for key Space Traffic Management (STM) processes to ensure the level of reliability needed for navigating a large number of spacecraft. These processes range from collision risk detection to the identification of the appropriate action to take and the execution of avoidance maneuvers. This work proposes an implementation of autonomous CA decision-making capabilities on spacecraft based on Reinforcement Learning (RL) techniques. A novel methodology based on a Partially Observable Markov Decision Process (POMDP) framework is developed to train the Artificial Intelligence (AI) system on board the spacecraft, considering epistemic and aleatory uncertainties. The proposed framework considers imperfect monitoring information about the status of the debris in orbit and allows the AI system to effectively learn stochastic policies to perform accurate Collision Avoidance Maneuvers (CAMs). The objective is to successfully delegate the decision-making process for autonomously implementing a CAM to the spacecraft without human intervention. This approach would allow for a faster response in the decision-making process and for highly decentralized operations.
Learning in POMDPs is Sample-Efficient with Hindsight Observability
POMDPs capture a broad class of decision making problems, but hardness results suggest that learning is intractable even in simple settings due to the inherent partial observability. However, in many realistic problems, more information is either revealed or can be computed during some point of the learning process. Motivated by diverse applications ranging from robotics to data center scheduling, we formulate a Hindsight Observable Markov Decision Process (HOMDP) as a POMDP where the latent states are revealed to the learner in hindsight and only during training. We introduce new algorithms for the tabular and function approximation settings that are provably sample-efficient with hindsight observability, even in POMDPs that would otherwise be statistically intractable. We give a lower bound showing that the tabular algorithm is optimal in its dependence on latent state and observation cardinalities.
Metrics for Markov Decision Processes with Infinite State Spaces
We present metrics for measuring state similarity in Markov decision processes (MDPs) with infinitely many states, including MDPs with continuous state spaces. Such metrics provide a stable quantitative analogue of the notion of bisimulation for MDPs, and are suitable for use in MDP approximation. We show that the optimal value function associated with a discounted infinite horizon planning task varies continuously with respect to our metric distances.
Medical Dead-ends and Learning to Identify High-risk States and Treatments
Machine learning has successfully framed many sequential decision making problems as either supervised prediction, or optimal decision-making policy identification via reinforcement learning. In data-constrained offline settings, both approaches may fail as they assume fully optimal behavior or rely on exploring alternatives that may not exist. We introduce an inherently different approach that identifies possible "dead-ends" of a state space. We focus on the condition of patients in the intensive care unit, where a "medical dead-end" indicates that a patient will expire, regardless of all potential future treatment sequences. We postulate "treatment security" as avoiding treatments with probability proportional to their chance of leading to dead-ends, present a formal proof, and frame discovery as an RL problem. We then train three independent deep neural models for automated state construction, dead-end discovery and confirmation. Our empirical results discover that dead-ends exist in real clinical data among septic patients, and further reveal gaps between secure treatments and those that were administered.
Hyperbolic Deep Reinforcement Learning
We propose a new class of deep reinforcement learning (RL) algorithms that model latent representations in hyperbolic space. Sequential decision-making requires reasoning about the possible future consequences of current behavior. Consequently, capturing the relationship between key evolving features for a given task is conducive to recovering effective policies. To this end, hyperbolic geometry provides deep RL models with a natural basis to precisely encode this inherently hierarchical information. However, applying existing methodologies from the hyperbolic deep learning literature leads to fatal optimization instabilities due to the non-stationarity and variance characterizing RL gradient estimators. Hence, we design a new general method that counteracts such optimization challenges and enables stable end-to-end learning with deep hyperbolic representations. We empirically validate our framework by applying it to popular on-policy and off-policy RL algorithms on the Procgen and Atari 100K benchmarks, attaining near universal performance and generalization benefits. Given its natural fit, we hope future RL research will consider hyperbolic representations as a standard tool.
Measuring the Faithfulness of Thinking Drafts in Large Reasoning Models
Large Reasoning Models (LRMs) have significantly enhanced their capabilities in complex problem-solving by introducing a thinking draft that enables multi-path Chain-of-Thought explorations before producing final answers. Ensuring the faithfulness of these intermediate reasoning processes is crucial for reliable monitoring, interpretation, and effective control. In this paper, we propose a systematic counterfactual intervention framework to rigorously evaluate thinking draft faithfulness. Our approach focuses on two complementary dimensions: (1) Intra-Draft Faithfulness, which assesses whether individual reasoning steps causally influence subsequent steps and the final draft conclusion through counterfactual step insertions; and (2) Draft-to-Answer Faithfulness, which evaluates whether final answers are logically consistent with and dependent on the thinking draft, by perturbing the draft's concluding logic. We conduct extensive experiments across six state-of-the-art LRMs. Our findings show that current LRMs demonstrate selective faithfulness to intermediate reasoning steps and frequently fail to faithfully align with the draft conclusions. These results underscore the need for more faithful and interpretable reasoning in advanced LRMs.
Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. We show that certain cognitive biases when properly balanced, can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
When Does Confidence-Based Cascade Deferral Suffice?
Cascades are a classical strategy to enable inference cost to vary adaptively across samples, wherein a sequence of classifiers are invoked in turn. A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction. One simple deferral rule employs the confidence of the current classifier, e.g., based on the maximum predicted softmax probability. Despite being oblivious to the structure of the cascade -- e.g., not modelling the errors of downstream models -- such confidence-based deferral often works remarkably well in practice. In this paper, we seek to better understand the conditions under which confidence-based deferral may fail, and when alternate deferral strategies can perform better. We first present a theoretical characterisation of the optimal deferral rule, which precisely characterises settings under which confidence-based deferral may suffer. We then study post-hoc deferral mechanisms, and demonstrate they can significantly improve upon confidence-based deferral in settings where (i) downstream models are specialists that only work well on a subset of inputs, (ii) samples are subject to label noise, and (iii) there is distribution shift between the train and test set.
MixReasoning: Switching Modes to Think
Reasoning models enhance performance by tackling problems in a step-by-step manner, decomposing them into sub-problems and exploring long chains of thought before producing an answer. However, applying extended reasoning to every step introduces substantial redundancy, as sub-problems vary widely in difficulty and complexity: a small number of pivotal steps are genuinely challenging and decisive for the final answer, while many others only involve straightforward revisions or simple computations. Therefore, a natural idea is to endow reasoning models with the ability to adaptively respond to this variation, rather than treating all steps with the same level of elaboration. To this end, we propose MixReasoning, a framework that dynamically adjusts the depth of reasoning within a single response. The resulting chain of thought then becomes a mixture of detailed reasoning on difficult steps and concise inference on simpler ones. Experiments on GSM8K, MATH-500, and AIME show that MixReasoning shortens reasoning length and substantially improves efficiency without compromising accuracy.
Fair Classifiers that Abstain without Harm
In critical applications, it is vital for classifiers to defer decision-making to humans. We propose a post-hoc method that makes existing classifiers selectively abstain from predicting certain samples. Our abstaining classifier is incentivized to maintain the original accuracy for each sub-population (i.e. no harm) while achieving a set of group fairness definitions to a user specified degree. To this end, we design an Integer Programming (IP) procedure that assigns abstention decisions for each training sample to satisfy a set of constraints. To generalize the abstaining decisions to test samples, we then train a surrogate model to learn the abstaining decisions based on the IP solutions in an end-to-end manner. We analyze the feasibility of the IP procedure to determine the possible abstention rate for different levels of unfairness tolerance and accuracy constraint for achieving no harm. To the best of our knowledge, this work is the first to identify the theoretical relationships between the constraint parameters and the required abstention rate. Our theoretical results are important since a high abstention rate is often infeasible in practice due to a lack of human resources. Our framework outperforms existing methods in terms of fairness disparity without sacrificing accuracy at similar abstention rates.
LLMs Do Not Think Step-by-step In Implicit Reasoning
It has been well-known that Chain-of-Thought can remarkably enhance LLMs' performance on complex tasks. However, because it also introduces slower inference speeds and higher computational costs, many researches have attempted to use implicit CoT, which does not need LLMs to explicitly generate the intermediate steps. But there is still gap between their efficacy and typical explicit CoT methods. This leaves us a doubt that, does implicit CoT really equal to explicit CoT? Therefore, in this study, we address this question through experiments. We probe the information of intermediate steps from the model's hidden states when it is performing implicit CoT. The results surprisingly indicate that LLMs hardly think about intermediate steps, suggesting they may just rely on experience rather than strict step-by-step reasoning. Moreover, we find LLMs' implicit reasoning capabilities are susceptible and unstable, reaffirming the necessity of explicit CoT to effectively support complex tasks.
A Decision-Language Model (DLM) for Dynamic Restless Multi-Armed Bandit Tasks in Public Health
Restless multi-armed bandits (RMAB) have demonstrated success in optimizing resource allocation for large beneficiary populations in public health settings. Unfortunately, RMAB models lack flexibility to adapt to evolving public health policy priorities. Concurrently, Large Language Models (LLMs) have emerged as adept automated planners across domains of robotic control and navigation. In this paper, we propose a Decision Language Model (DLM) for RMABs, enabling dynamic fine-tuning of RMAB policies in public health settings using human-language commands. We propose using LLMs as automated planners to (1) interpret human policy preference prompts, (2) propose reward functions as code for a multi-agent RMAB environment, and (3) iterate on the generated reward functions using feedback from grounded RMAB simulations. We illustrate the application of DLM in collaboration with ARMMAN, an India-based non-profit promoting preventative care for pregnant mothers, that currently relies on RMAB policies to optimally allocate health worker calls to low-resource populations. We conduct a technology demonstration in simulation using the Gemini Pro model, showing DLM can dynamically shape policy outcomes using only human prompts as input.
Benchmarking Waitlist Mortality Prediction in Heart Transplantation Through Time-to-Event Modeling using New Longitudinal UNOS Dataset
Decisions about managing patients on the heart transplant waitlist are currently made by committees of doctors who consider multiple factors, but the process remains largely ad-hoc. With the growing volume of longitudinal patient, donor, and organ data collected by the United Network for Organ Sharing (UNOS) since 2018, there is increasing interest in analytical approaches to support clinical decision-making at the time of organ availability. In this study, we benchmark machine learning models that leverage longitudinal waitlist history data for time-dependent, time-to-event modeling of waitlist mortality. We train on 23,807 patient records with 77 variables and evaluate both survival prediction and discrimination at a 1-year horizon. Our best model achieves a C-Index of 0.94 and AUROC of 0.89, significantly outperforming previous models. Key predictors align with known risk factors while also revealing novel associations. Our findings can support urgency assessment and policy refinement in heart transplant decision making.
RL-STaR: Theoretical Analysis of Reinforcement Learning Frameworks for Self-Taught Reasoner
The reasoning abilities of large language models (LLMs) have improved with chain-of-thought (CoT) prompting, allowing models to solve complex tasks in a stepwise manner. However, training CoT capabilities requires detailed reasoning data, which is often scarce. The self-taught reasoner (STaR) framework addresses this by using reinforcement learning to automatically generate reasoning steps, reducing reliance on human-labeled data. Although STaR and its variants have demonstrated empirical success, a theoretical foundation explaining these improvements is lacking. This work provides a theoretical framework for understanding the effectiveness of reinforcement learning on CoT reasoning and STaR. Our contributions are: (1) an analysis of policy improvement, showing why LLM reasoning improves iteratively with STaR; (2) conditions for convergence to an optimal reasoning policy; (3) an examination of STaR's robustness, explaining how it can improve reasoning even when incorporating occasional incorrect steps; and (4) criteria for the quality of pre-trained models necessary to initiate effective reasoning improvement. This framework aims to bridge empirical findings with theoretical insights, advancing reinforcement learning approaches for reasoning in LLMs.
Hyperparameter Optimization for Multi-Objective Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful approach for tackling complex problems. The recent introduction of multi-objective reinforcement learning (MORL) has further expanded the scope of RL by enabling agents to make trade-offs among multiple objectives. This advancement not only has broadened the range of problems that can be tackled but also created numerous opportunities for exploration and advancement. Yet, the effectiveness of RL agents heavily relies on appropriately setting their hyperparameters. In practice, this task often proves to be challenging, leading to unsuccessful deployments of these techniques in various instances. Hence, prior research has explored hyperparameter optimization in RL to address this concern. This paper presents an initial investigation into the challenge of hyperparameter optimization specifically for MORL. We formalize the problem, highlight its distinctive challenges, and propose a systematic methodology to address it. The proposed methodology is applied to a well-known environment using a state-of-the-art MORL algorithm, and preliminary results are reported. Our findings indicate that the proposed methodology can effectively provide hyperparameter configurations that significantly enhance the performance of MORL agents. Furthermore, this study identifies various future research opportunities to further advance the field of hyperparameter optimization for MORL.
Self-Resource Allocation in Multi-Agent LLM Systems
With the development of LLMs as agents, there is a growing interest in connecting multiple agents into multi-agent systems to solve tasks concurrently, focusing on their role in task assignment and coordination. This paper explores how LLMs can effectively allocate computational tasks among multiple agents, considering factors such as cost, efficiency, and performance. In this work, we address key questions, including the effectiveness of LLMs as orchestrators and planners, comparing their effectiveness in task assignment and coordination. Our experiments demonstrate that LLMs can achieve high validity and accuracy in resource allocation tasks. We find that the planner method outperforms the orchestrator method in handling concurrent actions, resulting in improved efficiency and better utilization of agents. Additionally, we show that providing explicit information about worker capabilities enhances the allocation strategies of planners, particularly when dealing with suboptimal workers.
Improving Interpersonal Communication by Simulating Audiences with Language Models
How do we communicate with others to achieve our goals? We use our prior experience or advice from others, or construct a candidate utterance by predicting how it will be received. However, our experiences are limited and biased, and reasoning about potential outcomes can be difficult and cognitively challenging. In this paper, we explore how we can leverage Large Language Model (LLM) simulations to help us communicate better. We propose the Explore-Generate-Simulate (EGS) framework, which takes as input any scenario where an individual is communicating to an audience with a goal they want to achieve. EGS (1) explores the solution space by producing a diverse set of advice relevant to the scenario, (2) generates communication candidates conditioned on subsets of the advice, and (3) simulates the reactions from various audiences to determine both the best candidate and advice to use. We evaluate the framework on eight scenarios spanning the ten fundamental processes of interpersonal communication. For each scenario, we collect a dataset of human evaluations across candidates and baselines, and showcase that our framework's chosen candidate is preferred over popular generation mechanisms including Chain-of-Thought. We also find that audience simulations achieve reasonably high agreement with human raters across 5 of the 8 scenarios. Finally, we demonstrate the generality of our framework by applying it to real-world scenarios described by users on web forums. Through evaluations and demonstrations, we show that EGS enhances the effectiveness and outcomes of goal-oriented communication across a variety of situations, thus opening up new possibilities for the application of large language models in revolutionizing communication and decision-making processes.
Evidence to Generate (E2G): A Single-agent Two-step Prompting for Context Grounded and Retrieval Augmented Reasoning
While chain-of-thought (CoT) prompting has revolutionized how LLMs perform reasoning tasks, its current methods and variations (e.g, Self-consistency, ReACT, Reflexion, Tree-of-Thoughts (ToT), Cumulative Reasoning (CR)) suffer from limitations like slowness, limited context grounding, hallucination and inconsistent outputs. To overcome these challenges, we introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework. Instead of unverified reasoning claims, this innovative approach leverages the power of "evidence for decision making" by first focusing exclusively on the thought sequences (the series of intermediate steps) explicitly mentioned in the context which then serve as extracted evidence, guiding the LLM's output generation process with greater precision and efficiency. This simple yet powerful approach unlocks the true potential of chain-of-thought like prompting, paving the way for faster, more reliable, and more contextually aware reasoning in LLMs. \tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks, surpassing baseline approaches with state-of-the-art LLMs. For example, (i) on LogiQA benchmark using GPT-4 as backbone model, \tool achieves a new state-of-the Accuracy of 53.8% exceeding CoT by 18%, ToT by 11%, CR by 9% (ii) a variant of E2G with PaLM2 outperforms the variable-shot performance of Gemini Ultra by 0.9 F1 points, reaching an F1 score of 83.3 on a subset of DROP.
Adaptive Rollout Length for Model-Based RL Using Model-Free Deep RL
Model-based reinforcement learning promises to learn an optimal policy from fewer interactions with the environment compared to model-free reinforcement learning by learning an intermediate model of the environment in order to predict future interactions. When predicting a sequence of interactions, the rollout length, which limits the prediction horizon, is a critical hyperparameter as accuracy of the predictions diminishes in the regions that are further away from real experience. As a result, with a longer rollout length, an overall worse policy is learned in the long run. Thus, the hyperparameter provides a trade-off between quality and efficiency. In this work, we frame the problem of tuning the rollout length as a meta-level sequential decision-making problem that optimizes the final policy learned by model-based reinforcement learning given a fixed budget of environment interactions by adapting the hyperparameter dynamically based on feedback from the learning process, such as accuracy of the model and the remaining budget of interactions. We use model-free deep reinforcement learning to solve the meta-level decision problem and demonstrate that our approach outperforms common heuristic baselines on two well-known reinforcement learning environments.
LISTEN to Your Preferences: An LLM Framework for Multi-Objective Selection
Human experts often struggle to select the best option from a large set of items with multiple competing objectives, a process bottlenecked by the difficulty of formalizing complex, implicit preferences. To address this, we introduce LISTEN, a framework that leverages a Large Language Model (LLM) as a zero-shot preference oracle, guided only by an expert's high-level priorities in natural language. To operate within LLM constraints like context windows and inference costs, we propose two iterative algorithms: LISTEN-U, which uses the LLM to refine a parametric utility function, and LISTEN-T, a non-parametric method that performs tournament-style selections over small batches of solutions. Evaluated on diverse tasks including flight booking, shopping, and exam scheduling, our results show LISTEN-U excels when preferences are parametrically aligned (a property we measure with a novel concordance metric), while LISTEN-T offers more robust performance. This work explores a promising direction for steering complex multi-objective decisions directly with natural language, reducing the cognitive burden of traditional preference elicitation.
Large Language Models are Better Reasoners with Self-Verification
Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By taking turns masking the original conditions and predicting their results, we calculate an explainable answer verification score based on whether the re-predicted conditions are correct. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.
Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions
We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.
Empowering Multi-step Reasoning across Languages via Tree-of-Thoughts
Chain-of-Thought (CoT) prompting empowers the reasoning abilities of Large Language Models (LLMs), eliciting them to solve complex reasoning tasks step-by-step. However, with the success of CoT methods, the ability to deliver multi-step reasoning remains limited to English due to the imbalance in the distribution of the pre-training data, making the other languages a barrier. In this work, we propose a Cross-lingual multi-step reasoning approach, aiming to align reasoning processes across different languages. In particular, our method, through a Self-consistent Cross-lingual prompting mechanism inspired by the Tree-of-Thoughts approach, delivers multi-step reasoning paths in different languages that, during the steps, lead to the final solution. Our experimental evaluations show that our method significantly outperforms existing prompting methods, reducing the number of interactions and achieving state-of-the-art performance.
Factorized Mutual Information Maximization
We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
Iterative Tool Usage Exploration for Multimodal Agents via Step-wise Preference Tuning
Multimodal agents, which integrate a controller e.g., a vision language model) with external tools, have demonstrated remarkable capabilities in tackling complex multimodal tasks. Existing approaches for training these agents, both supervised fine-tuning and reinforcement learning, depend on extensive human-annotated task-answer pairs and tool trajectories. However, for complex multimodal tasks, such annotations are prohibitively expensive or impractical to obtain. In this paper, we propose an iterative tool usage exploration method for multimodal agents without any pre-collected data, namely SPORT, via step-wise preference optimization to refine the trajectories of tool usage. Our method enables multimodal agents to autonomously discover effective tool usage strategies through self-exploration and optimization, eliminating the bottleneck of human annotation. SPORT has four iterative components: task synthesis, step sampling, step verification, and preference tuning. We first synthesize multimodal tasks using language models. Then, we introduce a novel trajectory exploration scheme, where step sampling and step verification are executed alternately to solve synthesized tasks. In step sampling, the agent tries different tools and obtains corresponding results. In step verification, we employ a verifier to provide AI feedback to construct step-wise preference data. The data is subsequently used to update the controller for tool usage through preference tuning, producing a SPORT agent. By interacting with real environments, the SPORT agent gradually evolves into a more refined and capable system. Evaluation in the GTA and GAIA benchmarks shows that the SPORT agent achieves 6.41% and 3.64% improvements, underscoring the generalization and effectiveness introduced by our method. The project page is https://SPORT-Agents.github.io.
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure -- average-reward generalized eluder coefficient (AGEC) -- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear mathcal{O}(poly(d, sp(V^*)) Tbeta ) regret, where d and beta correspond to AGEC and log-covering number of the hypothesis class respectively, sp(V^*) is the span of the optimal state bias function, T denotes the number of steps, and mathcal{O} (cdot) omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.
On the Computational Complexity of Ethics: Moral Tractability for Minds and Machines
Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we analyze normative ethics through the lens of computational complexity. First, we introduce computational complexity for the uninitiated reader and discuss how the complexity of ethical problems can be framed within Marr's three levels of analysis. We then study a range of ethical problems based on consequentialism, deontology, and virtue ethics, with the aim of elucidating the complexity associated with the problems themselves (e.g., due to combinatorics, uncertainty, strategic dynamics), the computational methods employed (e.g., probability, logic, learning), and the available resources (e.g., time, knowledge, learning). The results indicate that most problems the normative frameworks pose lead to tractability issues in every category analyzed. Our investigation also provides several insights about the computational nature of normative ethics, including the differences between rule- and outcome-based moral strategies, and the implementation-variance with regard to moral resources. We then discuss the consequences complexity results have for the prospect of moral machines in virtue of the trade-off between optimality and efficiency. Finally, we elucidate how computational complexity can be used to inform both philosophical and cognitive-psychological research on human morality by advancing the Moral Tractability Thesis (MTT).
Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework
Multi-objective reinforcement learning (MORL) extends traditional RL by seeking policies making different compromises among conflicting objectives. The recent surge of interest in MORL has led to diverse studies and solving methods, often drawing from existing knowledge in multi-objective optimization based on decomposition (MOO/D). Yet, a clear categorization based on both RL and MOO/D is lacking in the existing literature. Consequently, MORL researchers face difficulties when trying to classify contributions within a broader context due to the absence of a standardized taxonomy. To tackle such an issue, this paper introduces multi-objective reinforcement learning based on decomposition (MORL/D), a novel methodology bridging the literature of RL and MOO. A comprehensive taxonomy for MORL/D is presented, providing a structured foundation for categorizing existing and potential MORL works. The introduced taxonomy is then used to scrutinize MORL research, enhancing clarity and conciseness through well-defined categorization. Moreover, a flexible framework derived from the taxonomy is introduced. This framework accommodates diverse instantiations using tools from both RL and MOO/D. Its versatility is demonstrated by implementing it in different configurations and assessing it on contrasting benchmark problems. Results indicate MORL/D instantiations achieve comparable performance to current state-of-the-art approaches on the studied problems. By presenting the taxonomy and framework, this paper offers a comprehensive perspective and a unified vocabulary for MORL. This not only facilitates the identification of algorithmic contributions but also lays the groundwork for novel research avenues in MORL.
Multi-Scenario Combination Based on Multi-Agent Reinforcement Learning to Optimize the Advertising Recommendation System
This paper explores multi-scenario optimization on large platforms using multi-agent reinforcement learning (MARL). We address this by treating scenarios like search, recommendation, and advertising as a cooperative, partially observable multi-agent decision problem. We introduce the Multi-Agent Recurrent Deterministic Policy Gradient (MARDPG) algorithm, which aligns different scenarios under a shared objective and allows for strategy communication to boost overall performance. Our results show marked improvements in metrics such as click-through rate (CTR), conversion rate, and total sales, confirming our method's efficacy in practical settings.
Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games
LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are inherently asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns; therefore, the decision of when to speak forms a crucial part of the participant's decision making. In this work, we develop an adaptive asynchronous LLM-agent which, in addition to determining what to say, also decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, including both human participants, as well as our asynchronous agent. Overall, our agent performs on par with human players, both in game performance, as well as in its ability to blend in with the other human players. Our analysis shows that the agent's behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We release all our data and code to support and encourage further research for more realistic asynchronous communication between LLM agents. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated.
Restarted Bayesian Online Change-point Detection for Non-Stationary Markov Decision Processes
We consider the problem of learning in a non-stationary reinforcement learning (RL) environment, where the setting can be fully described by a piecewise stationary discrete-time Markov decision process (MDP). We introduce a variant of the Restarted Bayesian Online Change-Point Detection algorithm (R-BOCPD) that operates on input streams originating from the more general multinomial distribution and provides near-optimal theoretical guarantees in terms of false-alarm rate and detection delay. Based on this, we propose an improved version of the UCRL2 algorithm for MDPs with state transition kernel sampled from a multinomial distribution, which we call R-BOCPD-UCRL2. We perform a finite-time performance analysis and show that R-BOCPD-UCRL2 enjoys a favorable regret bound of Oleft(D O A T K_T logleft (frac{T{delta} right) + K_T log frac{K_T{delta}}{minlimits_ell : KLleft( {theta^{(ell+1)}}midmathbf{theta^{(ell)}}right)}}right), where D is the largest MDP diameter from the set of MDPs defining the piecewise stationary MDP setting, O is the finite number of states (constant over all changes), A is the finite number of actions (constant over all changes), K_T is the number of change points up to horizon T, and theta^{(ell)} is the transition kernel during the interval [c_ell, c_{ell+1}), which we assume to be multinomially distributed over the set of states O. Interestingly, the performance bound does not directly scale with the variation in MDP state transition distributions and rewards, ie. can also model abrupt changes. In practice, R-BOCPD-UCRL2 outperforms the state-of-the-art in a variety of scenarios in synthetic environments. We provide a detailed experimental setup along with a code repository (upon publication) that can be used to easily reproduce our experiments.
ChessGPT: Bridging Policy Learning and Language Modeling
When solving decision-making tasks, humans typically depend on information from two key sources: (1) Historical policy data, which provides interaction replay from the environment, and (2) Analytical insights in natural language form, exposing the invaluable thought process or strategic considerations. Despite this, the majority of preceding research focuses on only one source: they either use historical replay exclusively to directly learn policy or value functions, or engaged in language model training utilizing mere language corpus. In this paper, we argue that a powerful autonomous agent should cover both sources. Thus, we propose ChessGPT, a GPT model bridging policy learning and language modeling by integrating data from these two sources in Chess games. Specifically, we build a large-scale game and language dataset related to chess. Leveraging the dataset, we showcase two model examples ChessCLIP and ChessGPT, integrating policy learning and language modeling. Finally, we propose a full evaluation framework for evaluating language model's chess ability. Experimental results validate our model and dataset's effectiveness. We open source our code, model, and dataset at https://github.com/waterhorse1/ChessGPT.
A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark
Artificial intelligence (AI) has made remarkable progress across various domains, with large language models like ChatGPT gaining substantial attention for their human-like text-generation capabilities. Despite these achievements, spatial reasoning remains a significant challenge for these models. Benchmarks like StepGame evaluate AI spatial reasoning, where ChatGPT has shown unsatisfactory performance. However, the presence of template errors in the benchmark has an impact on the evaluation results. Thus there is potential for ChatGPT to perform better if these template errors are addressed, leading to more accurate assessments of its spatial reasoning capabilities. In this study, we refine the StepGame benchmark, providing a more accurate dataset for model evaluation. We analyze GPT's spatial reasoning performance on the rectified benchmark, identifying proficiency in mapping natural language text to spatial relations but limitations in multi-hop reasoning. We provide a flawless solution to the benchmark by combining template-to-relation mapping with logic-based reasoning. This combination demonstrates proficiency in performing qualitative reasoning on StepGame without encountering any errors. We then address the limitations of GPT models in spatial reasoning. We deploy Chain-of-thought and Tree-of-thoughts prompting strategies, offering insights into GPT's ``cognitive process", and achieving remarkable improvements in accuracy. Our investigation not only sheds light on model deficiencies but also proposes enhancements, contributing to the advancement of AI with more robust spatial reasoning capabilities.
Hierarchical Expert Prompt for Large-Language-Model: An Approach Defeat Elite AI in TextStarCraft II for the First Time
Since the emergence of the Large Language Model (LLM), LLM has been widely used in fields such as writing, translating, and searching. However, there is still great potential for LLM-based methods in handling complex tasks such as decision-making in the StarCraft II environment. To address problems such as lack of relevant knowledge and poor control over subtasks of varying importance, we propose a Hierarchical Expert Prompt (HEP) for LLM. Our method improves the understanding of game situations through expert-level tactical knowledge, improving the processing quality of tasks of varying importance through a hierarchical framework. Our approach defeated the highest level (Elite) standard built-in agent in TextStarCraft II for the first time and consistently outperformed the baseline method in other difficulties. Our experiments suggest that the proposed method is a practical solution for tackling complex decision-making challenges. The replay video can be viewed on https://www.bilibili.com/video/BV1uz42187EF and https://youtu.be/dO3PshWLV5M, and our codes have been open-sourced on https://github.com/luchang1113/HEP-LLM-play-StarCraftII.
Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual effort, Zero-shot-CoT concatenates the target problem statement with "Let's think step by step" as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning
Evaluations of Deep Reinforcement Learning (DRL) methods are an integral part of scientific progress of the field. Beyond designing DRL methods for general intelligence, designing task-specific methods is becoming increasingly prominent for real-world applications. In these settings, the standard evaluation practice involves using a few instances of Markov Decision Processes (MDPs) to represent the task. However, many tasks induce a large family of MDPs owing to variations in the underlying environment, particularly in real-world contexts. For example, in traffic signal control, variations may stem from intersection geometries and traffic flow levels. The select MDP instances may thus inadvertently cause overfitting, lacking the statistical power to draw conclusions about the method's true performance across the family. In this article, we augment DRL evaluations to consider parameterized families of MDPs. We show that in comparison to evaluating DRL methods on select MDP instances, evaluating the MDP family often yields a substantially different relative ranking of methods, casting doubt on what methods should be considered state-of-the-art. We validate this phenomenon in standard control benchmarks and the real-world application of traffic signal control. At the same time, we show that accurately evaluating on an MDP family is nontrivial. Overall, this work identifies new challenges for empirical rigor in reinforcement learning, especially as the outcomes of DRL trickle into downstream decision-making.
Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
Ethical Reasoning over Moral Alignment: A Case and Framework for In-Context Ethical Policies in LLMs
In this position paper, we argue that instead of morally aligning LLMs to specific set of ethical principles, we should infuse generic ethical reasoning capabilities into them so that they can handle value pluralism at a global scale. When provided with an ethical policy, an LLM should be capable of making decisions that are ethically consistent to the policy. We develop a framework that integrates moral dilemmas with moral principles pertaining to different foramlisms of normative ethics, and at different levels of abstractions. Initial experiments with GPT-x models shows that while GPT-4 is a nearly perfect ethical reasoner, the models still have bias towards the moral values of Western and English speaking societies.
A Reinforcement Learning Method for Environments with Stochastic Variables: Post-Decision Proximal Policy Optimization with Dual Critic Networks
This paper presents Post-Decision Proximal Policy Optimization (PDPPO), a novel variation of the leading deep reinforcement learning method, Proximal Policy Optimization (PPO). The PDPPO state transition process is divided into two steps: a deterministic step resulting in the post-decision state and a stochastic step leading to the next state. Our approach incorporates post-decision states and dual critics to reduce the problem's dimensionality and enhance the accuracy of value function estimation. Lot-sizing is a mixed integer programming problem for which we exemplify such dynamics. The objective of lot-sizing is to optimize production, delivery fulfillment, and inventory levels in uncertain demand and cost parameters. This paper evaluates the performance of PDPPO across various environments and configurations. Notably, PDPPO with a dual critic architecture achieves nearly double the maximum reward of vanilla PPO in specific scenarios, requiring fewer episode iterations and demonstrating faster and more consistent learning across different initializations. On average, PDPPO outperforms PPO in environments with a stochastic component in the state transition. These results support the benefits of using a post-decision state. Integrating this post-decision state in the value function approximation leads to more informed and efficient learning in high-dimensional and stochastic environments.
Robo-taxi Fleet Coordination at Scale via Reinforcement Learning
Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD
Can Language Models Learn to Skip Steps?
Trained on vast corpora of human language, language models demonstrate emergent human-like reasoning abilities. Yet they are still far from true intelligence, which opens up intriguing opportunities to explore the parallels of humans and model behaviors. In this work, we study the ability to skip steps in reasoning - a hallmark of human expertise developed through practice. Unlike humans, who may skip steps to enhance efficiency or to reduce cognitive load, models do not inherently possess such motivations to minimize reasoning steps. To address this, we introduce a controlled framework that stimulates step-skipping behavior by iteratively refining models to generate shorter and accurate reasoning paths. Empirical results indicate that models can develop the step skipping ability under our guidance. Moreover, after fine-tuning on expanded datasets that include both complete and skipped reasoning sequences, the models can not only resolve tasks with increased efficiency without sacrificing accuracy, but also exhibit comparable and even enhanced generalization capabilities in out-of-domain scenarios. Our work presents the first exploration into human-like step-skipping ability and provides fresh perspectives on how such cognitive abilities can benefit AI models.
FinChain: A Symbolic Benchmark for Verifiable Chain-of-Thought Financial Reasoning
Multi-step symbolic reasoning is critical for advancing downstream performance on financial tasks. Yet, benchmarks for systematically evaluating this capability are lacking. Existing datasets like FinQA and ConvFinQA supervise only final numerical answers, without assessing intermediate reasoning steps. To address this, we introduce FinChain, the first symbolic benchmark designed for verifiable Chain-of- Thought (CoT) financial reasoning. Spanning 54 topics across 12 financial domains, Fin- Chain offers five parameterized templates per topic, each varying in reasoning complexity and domain expertise required. Each dataset instance includes an executable Python trace, enabling automatic generation of extensive training data and easy adaptation to other domains. We also introduce ChainEval, a new metric for automatic evaluation of both final answers and intermediate reasoning. Benchmarking 30 LLMs on our dataset, we find that even state-of-the-art models have considerable room for improvement in multi-step financial reasoning. All templates and evaluation metrics for FinChain are available at https: //github.com/mbzuai-nlp/finchain.
Bias Detection Via Signaling
We introduce and study the problem of detecting whether an agent is updating their prior beliefs given new evidence in an optimal way that is Bayesian, or whether they are biased towards their own prior. In our model, biased agents form posterior beliefs that are a convex combination of their prior and the Bayesian posterior, where the more biased an agent is, the closer their posterior is to the prior. Since we often cannot observe the agent's beliefs directly, we take an approach inspired by information design. Specifically, we measure an agent's bias by designing a signaling scheme and observing the actions they take in response to different signals, assuming that they are maximizing their own expected utility; our goal is to detect bias with a minimum number of signals. Our main results include a characterization of scenarios where a single signal suffices and a computationally efficient algorithm to compute optimal signaling schemes.
Position: Foundation Agents as the Paradigm Shift for Decision Making
Decision making demands intricate interplay between perception, memory, and reasoning to discern optimal policies. Conventional approaches to decision making face challenges related to low sample efficiency and poor generalization. In contrast, foundation models in language and vision have showcased rapid adaptation to diverse new tasks. Therefore, we advocate for the construction of foundation agents as a transformative shift in the learning paradigm of agents. This proposal is underpinned by the formulation of foundation agents with their fundamental characteristics and challenges motivated by the success of large language models (LLMs). Moreover, we specify the roadmap of foundation agents from large interactive data collection or generation, to self-supervised pretraining and adaptation, and knowledge and value alignment with LLMs. Lastly, we pinpoint critical research questions derived from the formulation and delineate trends for foundation agents supported by real-world use cases, addressing both technical and theoretical aspects to propel the field towards a more comprehensive and impactful future.
An Instrumental Variable Approach to Confounded Off-Policy Evaluation
Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
Copula Conformal Prediction for Multi-step Time Series Forecasting
Accurate uncertainty measurement is a key step to building robust and reliable machine learning systems. Conformal prediction is a distribution-free uncertainty quantification algorithm popular for its ease of implementation, statistical coverage guarantees, and versatility for underlying forecasters. However, existing conformal prediction algorithms for time series are limited to single-step prediction without considering the temporal dependency. In this paper, we propose a Copula Conformal Prediction algorithm for multivariate, multi-step Time Series forecasting, CopulaCPTS. We prove that CopulaCPTS has finite sample validity guarantee. On several synthetic and real-world multivariate time series datasets, we show that CopulaCPTS produces more calibrated and sharp confidence intervals for multi-step prediction tasks than existing techniques.
Discovering and Exploiting Sparse Rewards in a Learned Behavior Space
Learning optimal policies in sparse rewards settings is difficult as the learning agent has little to no feedback on the quality of its actions. In these situations, a good strategy is to focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A learning algorithm capable of dealing with this kind of settings has to be able to (1) explore possible agent behaviors and (2) exploit any possible discovered reward. Efficient exploration algorithms have been proposed that require to define a behavior space, that associates to an agent its resulting behavior in a space that is known to be worth exploring. The need to define this space is a limitation of these algorithms. In this work, we introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it while efficiently optimizing any reward discovered. It does so by separating the exploration and learning of the behavior space from the exploitation of the reward through an alternating two-steps process. In the first step, STAX builds a repertoire of diverse policies while learning a low-dimensional representation of the high-dimensional observations generated during the policies evaluation. In the exploitation step, emitters are used to optimize the performance of the discovered rewarding solutions. Experiments conducted on three different sparse reward environments show that STAX performs comparably to existing baselines while requiring much less prior information about the task as it autonomously builds the behavior space.
Tracing LLM Reasoning Processes with Strategic Games: A Framework for Planning, Revision, and Resource-Constrained Decision Making
Large language models (LLMs) are increasingly used for tasks that require complex reasoning. Most benchmarks focus on final outcomes but overlook the intermediate reasoning steps - such as planning, revision, and decision making under resource constraints. We argue that measuring these internal processes is essential for understanding model behavior and improving reliability. We propose using strategic games as a natural evaluation environment: closed, rule-based systems with clear states, limited resources, and automatic feedback. We introduce a framework that evaluates LLMs along three core dimensions: planning, revision, and resource-constrained decision making. To operationalize this, we define metrics beyond win rate, including overcorrection risk rate, correction success rate, improvement slope, and over-budget ratio. In 4320 adversarial rounds across 12 leading models, ChatGPT-o3-mini achieves the top composite score, with a win rate of 74.7 percent, a correction success rate of 78.6 percent, and an improvement slope of 0.041. By contrast, Qwen-Plus, despite an overcorrection risk rate of 81.6 percent, wins only 25.6 percent of its matches - primarily due to excessive resource use. We also observe a negative correlation between overcorrection risk rate and correction success rate (Pearson r = -0.51, p = 0.093), suggesting that more frequent edits do not always improve outcomes. Our findings highlight the value of assessing not only what LLMs decide but how they arrive at those decisions
Look Before You Leap: A GUI-Critic-R1 Model for Pre-Operative Error Diagnosis in GUI Automation
In recent years, Multimodal Large Language Models (MLLMs) have been extensively utilized for multimodal reasoning tasks, including Graphical User Interface (GUI) automation. Unlike general offline multimodal tasks, GUI automation is executed in online interactive environments, necessitating step-by-step decision-making based on real-time status of the environment. This task has a lower tolerance for decision-making errors at each step, as any mistakes may cumulatively disrupt the process and potentially lead to irreversible outcomes like deletions or payments. To address these issues, we introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution, by reasoning about the potential outcome and correctness of actions. Specifically, we propose a Suggestion-aware Gradient Relative Policy Optimization (S-GRPO) strategy to construct our pre-operative critic model GUI-Critic-R1, incorporating a novel suggestion reward to enhance the reliability of the model's feedback. Furthermore, we develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data. Static experiments on the GUI-Critic-Test across both mobile and web domains reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy compared to current MLLMs. Dynamic evaluation on GUI automation benchmark further highlights the effectiveness and superiority of our model, as evidenced by improved success rates and operational efficiency.
Do Large Language Models Learn Human-Like Strategic Preferences?
In this paper, we evaluate whether LLMs learn to make human-like preference judgements in strategic scenarios as compared with known empirical results. Solar and Mistral are shown to exhibit stable value-based preference consistent with humans and exhibit human-like preference for cooperation in the prisoner's dilemma (including stake-size effect) and traveler's dilemma (including penalty-size effect). We establish a relationship between model size, value-based preference, and superficiality. Finally, results here show that models tending to be less brittle have relied on sliding window attention suggesting a potential link. Additionally, we contribute a novel method for constructing preference relations from arbitrary LLMs and support for a hypothesis regarding human behavior in the traveler's dilemma.
MUA-RL: Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use
With the recent rapid advancement of Agentic Intelligence, agentic tool use in LLMs has become increasingly important. During multi-turn interactions between agents and users, the dynamic, uncertain, and stochastic nature of user demands poses significant challenges to the agent's tool invocation capabilities. Agents are no longer expected to simply call tools to deliver a result; rather, they must iteratively refine their understanding of user needs through communication while simultaneously invoking tools to resolve user queries. Existing reinforcement learning (RL) approaches for tool use lack the integration of genuinely dynamic users during the RL training process. To bridge this gap, we introduce MUA-RL (Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use), a novel reinforcement learning framework that, for the first time in the field of agentic tool use, integrates LLM-simulated users into the reinforcement learning loop. MUA-RL aims to enable autonomous learning of models to communicate with users efficiently and use various tools to solve practical problems in dynamic multi-turn interactions. Evaluations are done on several multi-turn tool-using benchmarks (see Figure 1). Specifically, MUA-RL-32B achieves 67.3 on TAU2 Retail, 45.4 on TAU2 Airline, 28.3 on TAU2 Telecom, 28.4 on BFCL-V3 Multi Turn, and 82.5 on ACEBench Agent -- outperforming or matching the performance of larger open-source models such as DeepSeek-V3-0324 and Qwen3-235B-A22B in non-thinking settings.
Mind Your Step (by Step): Chain-of-Thought can Reduce Performance on Tasks where Thinking Makes Humans Worse
Chain-of-thought (CoT) prompting has become a widely used strategy for working with large language and multimodal models. While CoT has been shown to improve performance across many tasks, determining the settings in which it is effective remains an ongoing effort. In particular, it is still an open question in what settings CoT systematically reduces model performance. In this paper, we seek to identify the characteristics of tasks where CoT reduces performance by drawing inspiration from cognitive psychology, looking at cases where (i) verbal thinking or deliberation hurts performance in humans, and (ii) the constraints governing human performance generalize to language models. Three such cases are implicit statistical learning, visual recognition, and classifying with patterns containing exceptions. In extensive experiments across all three settings, we find that a diverse collection of state-of-the-art models exhibit significant drop-offs in performance (e.g., up to 36.3% absolute accuracy for OpenAI o1-preview compared to GPT-4o) when using inference-time reasoning compared to zero-shot counterparts. We also identify three tasks that satisfy condition (i) but not (ii), and find that while verbal thinking reduces human performance in these tasks, CoT retains or increases model performance. Overall, our results show that while there is not an exact parallel between the cognitive processes of models and those of humans, considering cases where thinking has negative consequences for human performance can help us identify settings where it negatively impacts models. By connecting the literature on human deliberation with evaluations of CoT, we offer a new tool that can be used in understanding the impact of prompt choices and inference-time reasoning.
