Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeScaling Laws for Linear Complexity Language Models
The interest in linear complexity models for large language models is on the rise, although their scaling capacity remains uncertain. In this study, we present the scaling laws for linear complexity language models to establish a foundation for their scalability. Specifically, we examine the scaling behaviors of three efficient linear architectures. These include TNL, a linear attention model with data-independent decay; HGRN2, a linear RNN with data-dependent decay; and cosFormer2, a linear attention model without decay. We also include LLaMA as a baseline architecture for softmax attention for comparison. These models were trained with six variants, ranging from 70M to 7B parameters on a 300B-token corpus, and evaluated with a total of 1,376 intermediate checkpoints on various downstream tasks. These tasks include validation loss, commonsense reasoning, and information retrieval and generation. The study reveals that existing linear complexity language models exhibit similar scaling capabilities as conventional transformer-based models while also demonstrating superior linguistic proficiency and knowledge retention.
Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses
Rebuses are puzzles requiring constrained multi-step reasoning to identify a hidden phrase from a set of images and letters. In this work, we introduce a large collection of verbalized rebuses for the Italian language and use it to assess the rebus-solving capabilities of state-of-the-art large language models. While general-purpose systems such as LLaMA-3 and GPT-4o perform poorly on this task, ad-hoc fine-tuning seems to improve models' performance. However, we find that performance gains from training are largely motivated by memorization. Our results suggest that rebus solving remains a challenging test bed to evaluate large language models' linguistic proficiency and sequential instruction-following skills.
TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment
Training language models (LMs) and their application agents is increasingly costly due to large datasets and models, making test failures difficult to bear. Simplified language environments serve as primordial training and testing grounds, retaining essential commonsense and communication skills but in a more digestible form, potentially enhancing the learning efficiency of LMs, and thus reducing the required model size and data volume for effective training and evaluation. In these simplified language environments, workable strategies for small models, datasets, and agents may be adaptable to larger models, datasets, and agents in complex language environments. To create such environments, we focus on two aspects: i) minimizing language dataset noise and complexity, and ii) preserving the essential text distribution characteristics. Unlike previous methods, we propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns (e.g., for books, conversation, code, etc.). Implementing this pipeline with large LMs, we have created a leaner suite of LM training and evaluation datasets: 71M Leaner-Pretrain, 7M Leaner-Instruct, Leaner-Glue for assessing linguistic proficiency, and Leaner-Eval for testing instruction-following ability. Our experiments show that leaner pre-training boosts LM learning efficiency. Tiny LMs trained on these datasets outperform those trained on original datasets in instruction-following across different language granularity levels. Moreover, the Leaner-Pretrain dataset's alignment with conventional large LM training sets enables resource-optimized analysis of how learning objectives, model architectures, and training techniques impact performance on language modeling and downstream tasks. Our code and datasets are available at https://github.com/EmpathYang/TinyHelen.git.
Learning to Edit: Aligning LLMs with Knowledge Editing
Knowledge editing techniques, aiming to efficiently modify a minor proportion of knowledge in large language models (LLMs) without negatively impacting performance across other inputs, have garnered widespread attention. However, existing methods predominantly rely on memorizing the updated knowledge, impeding LLMs from effectively combining the new knowledge with their inherent knowledge when answering questions. To this end, we propose a Learning to Edit (LTE) framework, focusing on teaching LLMs to apply updated knowledge into input questions, inspired by the philosophy of "Teach a man to fish." LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits while preserving out-of-scope information and linguistic proficiency; and (ii) the Inference Phase, which employs a retrieval-based mechanism for real-time and mass knowledge editing. By comparing our approach with seven advanced baselines across four popular knowledge editing benchmarks and two LLM architectures, we demonstrate LTE's superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds. The data and code are available at https://github.com/YJiangcm/LTE.
Let's Reinforce Step by Step
While recent advances have boosted LM proficiency in linguistic benchmarks, LMs consistently struggle to reason correctly on complex tasks like mathematics. We turn to Reinforcement Learning from Human Feedback (RLHF) as a method with which to shape model reasoning processes. In particular, we explore two reward schemes, outcome-supervised reward models (ORMs) and process-supervised reward models (PRMs), to optimize for logical reasoning. Our results show that the fine-grained reward provided by PRM-based methods enhances accuracy on simple mathematical reasoning (GSM8K) while, unexpectedly, reducing performance in complex tasks (MATH). Furthermore, we show the critical role reward aggregation functions play in model performance. Providing promising avenues for future research, our study underscores the need for further exploration into fine-grained reward modeling for more reliable language models.
ViLMA: A Zero-Shot Benchmark for Linguistic and Temporal Grounding in Video-Language Models
With the ever-increasing popularity of pretrained Video-Language Models (VidLMs), there is a pressing need to develop robust evaluation methodologies that delve deeper into their visio-linguistic capabilities. To address this challenge, we present ViLMA (Video Language Model Assessment), a task-agnostic benchmark that places the assessment of fine-grained capabilities of these models on a firm footing. Task-based evaluations, while valuable, fail to capture the complexities and specific temporal aspects of moving images that VidLMs need to process. Through carefully curated counterfactuals, ViLMA offers a controlled evaluation suite that sheds light on the true potential of these models, as well as their performance gaps compared to human-level understanding. ViLMA also includes proficiency tests, which assess basic capabilities deemed essential to solving the main counterfactual tests. We show that current VidLMs' grounding abilities are no better than those of vision-language models which use static images. This is especially striking once the performance on proficiency tests is factored in. Our benchmark serves as a catalyst for future research on VidLMs, helping to highlight areas that still need to be explored.
UniversalCEFR: Enabling Open Multilingual Research on Language Proficiency Assessment
We introduce UniversalCEFR, a large-scale multilingual multidimensional dataset of texts annotated according to the CEFR (Common European Framework of Reference) scale in 13 languages. To enable open research in both automated readability and language proficiency assessment, UniversalCEFR comprises 505,807 CEFR-labeled texts curated from educational and learner-oriented resources, standardized into a unified data format to support consistent processing, analysis, and modeling across tasks and languages. To demonstrate its utility, we conduct benchmark experiments using three modelling paradigms: a) linguistic feature-based classification, b) fine-tuning pre-trained LLMs, and c) descriptor-based prompting of instruction-tuned LLMs. Our results further support using linguistic features and fine-tuning pretrained models in multilingual CEFR level assessment. Overall, UniversalCEFR aims to establish best practices in data distribution in language proficiency research by standardising dataset formats and promoting their accessibility to the global research community.
CLIcK: A Benchmark Dataset of Cultural and Linguistic Intelligence in Korean
Despite the rapid development of large language models (LLMs) for the Korean language, there remains an obvious lack of benchmark datasets that test the requisite Korean cultural and linguistic knowledge. Because many existing Korean benchmark datasets are derived from the English counterparts through translation, they often overlook the different cultural contexts. For the few benchmark datasets that are sourced from Korean data capturing cultural knowledge, only narrow tasks such as bias and hate speech detection are offered. To address this gap, we introduce a benchmark of Cultural and Linguistic Intelligence in Korean (CLIcK), a dataset comprising 1,995 QA pairs. CLIcK sources its data from official Korean exams and textbooks, partitioning the questions into eleven categories under the two main categories of language and culture. For each instance in CLIcK, we provide fine-grained annotation of which cultural and linguistic knowledge is required to answer the question correctly. Using CLIcK, we test 13 language models to assess their performance. Our evaluation uncovers insights into their performances across the categories, as well as the diverse factors affecting their comprehension. CLIcK offers the first large-scale comprehensive Korean-centric analysis of LLMs' proficiency in Korean culture and language.
Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to generate and manipulate human language, highlighting their potential across various applications. Evaluating LLMs in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts, thus broadening their usability and effectiveness. We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy. Our study makes three primary contributions: Firstly, we adapt the INVALSI benchmark for automated LLM evaluation, which involves rigorous adaptation of the test format to suit automated processing while retaining the essence of the original tests. Secondly, we provide a detailed assessment of current LLMs, offering a crucial reference point for the academic community. Finally, we visually compare the performance of these models against human results. Additionally, researchers are invited to submit their models for ongoing evaluation, ensuring the benchmark remains a current and valuable resource.
Visual AI and Linguistic Intelligence Through Steerability and Composability
This study explores the capabilities of multimodal large language models (LLMs) in handling challenging multistep tasks that integrate language and vision, focusing on model steerability, composability, and the application of long-term memory and context understanding. The problem addressed is the LLM's ability (Nov 2023 GPT-4 Vision Preview) to manage tasks that require synthesizing visual and textual information, especially where stepwise instructions and sequential logic are paramount. The research presents a series of 14 creatively and constructively diverse tasks, ranging from AI Lego Designing to AI Satellite Image Analysis, designed to test the limits of current LLMs in contexts that previously proved difficult without extensive memory and contextual understanding. Key findings from evaluating 800 guided dialogs include notable disparities in task completion difficulty. For instance, 'Image to Ingredient AI Bartender' (Low difficulty) contrasted sharply with 'AI Game Self-Player' (High difficulty), highlighting the LLM's varying proficiency in processing complex visual data and generating coherent instructions. Tasks such as 'AI Genetic Programmer' and 'AI Negotiator' showed high completion difficulty, emphasizing challenges in maintaining context over multiple steps. The results underscore the importance of developing LLMs that combine long-term memory and contextual awareness to mimic human-like thought processes in complex problem-solving scenarios.
JCoLA: Japanese Corpus of Linguistic Acceptability
Neural language models have exhibited outstanding performance in a range of downstream tasks. However, there is limited understanding regarding the extent to which these models internalize syntactic knowledge, so that various datasets have recently been constructed to facilitate syntactic evaluation of language models across languages. In this paper, we introduce JCoLA (Japanese Corpus of Linguistic Acceptability), which consists of 10,020 sentences annotated with binary acceptability judgments. Specifically, those sentences are manually extracted from linguistics textbooks, handbooks and journal articles, and split into in-domain data (86 %; relatively simple acceptability judgments extracted from textbooks and handbooks) and out-of-domain data (14 %; theoretically significant acceptability judgments extracted from journal articles), the latter of which is categorized by 12 linguistic phenomena. We then evaluate the syntactic knowledge of 9 different types of Japanese language models on JCoLA. The results demonstrated that several models could surpass human performance for the in-domain data, while no models were able to exceed human performance for the out-of-domain data. Error analyses by linguistic phenomena further revealed that although neural language models are adept at handling local syntactic dependencies like argument structure, their performance wanes when confronted with long-distance syntactic dependencies like verbal agreement and NPI licensing.
DaLAJ - a dataset for linguistic acceptability judgments for Swedish: Format, baseline, sharing
We present DaLAJ 1.0, a Dataset for Linguistic Acceptability Judgments for Swedish, comprising 9 596 sentences in its first version; and the initial experiment using it for the binary classification task. DaLAJ is based on the SweLL second language learner data, consisting of essays at different levels of proficiency. To make sure the dataset can be freely available despite the GDPR regulations, we have sentence-scrambled learner essays and removed part of the metadata about learners, keeping for each sentence only information about the mother tongue and the level of the course where the essay has been written. We use the normalized version of learner language as the basis for the DaLAJ sentences, and keep only one error per sentence. We repeat the same sentence for each individual correction tag used in the sentence. For DaLAJ 1.0 we have used four error categories (out of 35 available in SweLL), all connected to lexical or word-building choices. Our baseline results for the binary classification show an accuracy of 58% for DaLAJ 1.0 using BERT embeddings. The dataset is included in the SwedishGlue (Swe. SuperLim) benchmark. Below, we describe the format of the dataset, first experiments, our insights and the motivation for the chosen approach to data sharing.
Project MOSLA: Recording Every Moment of Second Language Acquisition
Second language acquisition (SLA) is a complex and dynamic process. Many SLA studies that have attempted to record and analyze this process have typically focused on a single modality (e.g., textual output of learners), covered only a short period of time, and/or lacked control (e.g., failed to capture every aspect of the learning process). In Project MOSLA (Moments of Second Language Acquisition), we have created a longitudinal, multimodal, multilingual, and controlled dataset by inviting participants to learn one of three target languages (Arabic, Spanish, and Chinese) from scratch over a span of two years, exclusively through online instruction, and recording every lesson using Zoom. The dataset is semi-automatically annotated with speaker/language IDs and transcripts by both human annotators and fine-tuned state-of-the-art speech models. Our experiments reveal linguistic insights into learners' proficiency development over time, as well as the potential for automatically detecting the areas of focus on the screen purely from the unannotated multimodal data. Our dataset is freely available for research purposes and can serve as a valuable resource for a wide range of applications, including but not limited to SLA, proficiency assessment, language and speech processing, pedagogy, and multimodal learning analytics.
PersianMind: A Cross-Lingual Persian-English Large Language Model
Large language models demonstrate remarkable proficiency in various linguistic tasks and have extensive knowledge across various domains. Although they perform best in English, their ability in other languages is notable too. In contrast, open-source models, such as LLaMa, are primarily trained on English datasets, resulting in poor performance in non-English languages. In this paper, we introduce PersianMind, an open-source bilingual large language model which demonstrates comparable performance to closed-source GPT-3.5-turbo in the Persian language. By expanding LLaMa2's vocabulary with 10,000 Persian tokens and training it on a dataset comprising nearly 2 billion Persian tokens, we show that our approach preserves the model's English knowledge and employs transfer learning to excel at transferring task knowledge from one language to another.
VLUE: A New Benchmark and Multi-task Knowledge Transfer Learning for Vietnamese Natural Language Understanding
The success of Natural Language Understanding (NLU) benchmarks in various languages, such as GLUE for English, CLUE for Chinese, KLUE for Korean, and IndoNLU for Indonesian, has facilitated the evaluation of new NLU models across a wide range of tasks. To establish a standardized set of benchmarks for Vietnamese NLU, we introduce the first Vietnamese Language Understanding Evaluation (VLUE) benchmark. The VLUE benchmark encompasses five datasets covering different NLU tasks, including text classification, span extraction, and natural language understanding. To provide an insightful overview of the current state of Vietnamese NLU, we then evaluate seven state-of-the-art pre-trained models, including both multilingual and Vietnamese monolingual models, on our proposed VLUE benchmark. Furthermore, we present CafeBERT, a new state-of-the-art pre-trained model that achieves superior results across all tasks in the VLUE benchmark. Our model combines the proficiency of a multilingual pre-trained model with Vietnamese linguistic knowledge. CafeBERT is developed based on the XLM-RoBERTa model, with an additional pretraining step utilizing a significant amount of Vietnamese textual data to enhance its adaptation to the Vietnamese language. For the purpose of future research, CafeBERT is made publicly available for research purposes.
Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency
Recent advancements in Large Vision-Language Models (LVLMs) have significantly enhanced their ability to integrate visual and linguistic information, achieving near-human proficiency in tasks like object recognition, captioning, and visual question answering. However, current benchmarks typically focus on knowledge-centric evaluations that assess domain-specific expertise, often neglecting the core ability to reason about fundamental mathematical elements and visual concepts. We identify a gap in evaluating elementary-level math problems, which rely on explicit visual dependencies-requiring models to discern, integrate, and reason across multiple images while incorporating commonsense knowledge, all of which are crucial for advancing toward broader AGI capabilities. To address this gap, we introduce VCBENCH, a comprehensive benchmark for multimodal mathematical reasoning with explicit visual dependencies. VCBENCH includes 1,720 problems across six cognitive domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing substantial performance disparities, with even the top models unable to exceed 50% accuracy. Our findings highlight the ongoing challenges in visual-mathematical integration and suggest avenues for future LVLM advancements.
TransBench: Benchmarking Machine Translation for Industrial-Scale Applications
Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs.
MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models
IQ testing has served as a foundational methodology for evaluating human cognitive capabilities, deliberately decoupling assessment from linguistic background, language proficiency, or domain-specific knowledge to isolate core competencies in abstraction and reasoning. Yet, artificial intelligence research currently lacks systematic benchmarks to quantify these critical cognitive dimensions in multimodal systems. To address this critical gap, we propose MM-IQ, a comprehensive evaluation framework comprising 2,710 meticulously curated test items spanning 8 distinct reasoning paradigms. Through systematic evaluation of leading open-source and proprietary multimodal models, our benchmark reveals striking limitations: even state-of-the-art architectures achieve only marginally superior performance to random chance (27.49% vs. 25% baseline accuracy). This substantial performance chasm highlights the inadequacy of current multimodal systems in approximating fundamental human reasoning capacities, underscoring the need for paradigm-shifting advancements to bridge this cognitive divide.
Linguini: A benchmark for language-agnostic linguistic reasoning
We propose a new benchmark to measure a language model's linguistic reasoning skills without relying on pre-existing language-specific knowledge. The test covers 894 questions grouped in 160 problems across 75 (mostly) extremely low-resource languages, extracted from the International Linguistic Olympiad corpus. To attain high accuracy on this benchmark, models don't need previous knowledge of the tested language, as all the information needed to solve the linguistic puzzle is presented in the context. We find that, while all analyzed models rank below 25% accuracy, there is a significant gap between open and closed models, with the best-performing proprietary model at 24.05% and the best-performing open model at 8.84%.
Holmes: Benchmark the Linguistic Competence of Language Models
We introduce Holmes, a benchmark to assess the linguistic competence of language models (LMs) - their ability to grasp linguistic phenomena. Unlike prior prompting-based evaluations, Holmes assesses the linguistic competence of LMs via their internal representations using classifier-based probing. In doing so, we disentangle specific phenomena (e.g., part-of-speech of words) from other cognitive abilities, like following textual instructions, and meet recent calls to assess LMs' linguistic competence in isolation. Composing Holmes, we review over 250 probing studies and feature more than 200 datasets to assess syntax, morphology, semantics, reasoning, and discourse phenomena. Analyzing over 50 LMs reveals that, aligned with known trends, their linguistic competence correlates with model size. However, surprisingly, model architecture and instruction tuning also significantly influence performance, particularly in morphology and syntax. Finally, we propose FlashHolmes, a streamlined version of Holmes designed to lower the high computation load while maintaining high-ranking precision.
Counting the Bugs in ChatGPT's Wugs: A Multilingual Investigation into the Morphological Capabilities of a Large Language Model
Large language models (LLMs) have recently reached an impressive level of linguistic capability, prompting comparisons with human language skills. However, there have been relatively few systematic inquiries into the linguistic capabilities of the latest generation of LLMs, and those studies that do exist (i) ignore the remarkable ability of humans to generalize, (ii) focus only on English, and (iii) investigate syntax or semantics and overlook other capabilities that lie at the heart of human language, like morphology. Here, we close these gaps by conducting the first rigorous analysis of the morphological capabilities of ChatGPT in four typologically varied languages (specifically, English, German, Tamil, and Turkish). We apply a version of Berko's (1958) wug test to ChatGPT, using novel, uncontaminated datasets for the four examined languages. We find that ChatGPT massively underperforms purpose-built systems, particularly in English. Overall, our results -- through the lens of morphology -- cast a new light on the linguistic capabilities of ChatGPT, suggesting that claims of human-like language skills are premature and misleading.
Polishing Every Facet of the GEM: Testing Linguistic Competence of LLMs and Humans in Korean
We introduce the Korean Grammar Evaluation BenchMark (KoGEM), designed to assess the linguistic competence of LLMs and humans in Korean. KoGEM consists of 1.5k multiple-choice QA pairs covering five main categories and 16 subcategories. The zero-shot evaluation of 27 LLMs of various sizes and types reveals that while LLMs perform remarkably well on straightforward tasks requiring primarily definitional knowledge, they struggle with tasks that demand the integration of real-world experiential knowledge, such as phonological rules and pronunciation. Furthermore, our in-depth analysis suggests that incorporating such experiential knowledge could enhance the linguistic competence of LLMs. With KoGEM, we not only highlight the limitations of current LLMs in linguistic competence but also uncover hidden facets of LLMs in linguistic competence, paving the way for enhancing comprehensive language understanding. Our code and dataset are available at: https://github.com/SungHo3268/KoGEM.
Llamas Know What GPTs Don't Show: Surrogate Models for Confidence Estimation
To maintain user trust, large language models (LLMs) should signal low confidence on examples where they are incorrect, instead of misleading the user. The standard approach of estimating confidence is to use the softmax probabilities of these models, but as of November 2023, state-of-the-art LLMs such as GPT-4 and Claude-v1.3 do not provide access to these probabilities. We first study eliciting confidence linguistically -- asking an LLM for its confidence in its answer -- which performs reasonably (80.5% AUC on GPT-4 averaged across 12 question-answering datasets -- 7% above a random baseline) but leaves room for improvement. We then explore using a surrogate confidence model -- using a model where we do have probabilities to evaluate the original model's confidence in a given question. Surprisingly, even though these probabilities come from a different and often weaker model, this method leads to higher AUC than linguistic confidences on 9 out of 12 datasets. Our best method composing linguistic confidences and surrogate model probabilities gives state-of-the-art confidence estimates on all 12 datasets (84.6% average AUC on GPT-4).
Dissociating language and thought in large language models: a cognitive perspective
Today's large language models (LLMs) routinely generate coherent, grammatical and seemingly meaningful paragraphs of text. This achievement has led to speculation that these networks are -- or will soon become -- "thinking machines", capable of performing tasks that require abstract knowledge and reasoning. Here, we review the capabilities of LLMs by considering their performance on two different aspects of language use: 'formal linguistic competence', which includes knowledge of rules and patterns of a given language, and 'functional linguistic competence', a host of cognitive abilities required for language understanding and use in the real world. Drawing on evidence from cognitive neuroscience, we show that formal competence in humans relies on specialized language processing mechanisms, whereas functional competence recruits multiple extralinguistic capacities that comprise human thought, such as formal reasoning, world knowledge, situation modeling, and social cognition. In line with this distinction, LLMs show impressive (although imperfect) performance on tasks requiring formal linguistic competence, but fail on many tests requiring functional competence. Based on this evidence, we argue that (1) contemporary LLMs should be taken seriously as models of formal linguistic skills; (2) models that master real-life language use would need to incorporate or develop not only a core language module, but also multiple non-language-specific cognitive capacities required for modeling thought. Overall, a distinction between formal and functional linguistic competence helps clarify the discourse surrounding LLMs' potential and provides a path toward building models that understand and use language in human-like ways.
Large Language Models Only Pass Primary School Exams in Indonesia: A Comprehensive Test on IndoMMLU
Large language models have made significant advancements in natural language processing (NLP), exhibiting human performance across various classic NLP tasks. These tasks, however, focus on structure and semantics, and few are designed to assess reasoning abilities and real-world knowledge, which are increasingly vital given that these models are trained on extensive textual data and information. While prior research primarily focuses on English, in this work, we gather a collection of exam problems from primary school to university entrance tests in Indonesia, and evaluate whether large language models can pass the exams. We obtain 14,906 questions across 63 tasks and levels, with 46\% of the questions focusing on assessing proficiency in the Indonesian language and knowledge of nine local languages and cultures in Indonesia. Our empirical evaluations show that GPT-3.5 only manages to pass the Indonesian primary school level, with limited knowledge of the Indonesian local languages and cultures. Other smaller models such as BLOOMZ and Falcon fail the exams.
Mixtures of Deep Neural Experts for Automated Speech Scoring
The paper copes with the task of automatic assessment of second language proficiency from the language learners' spoken responses to test prompts. The task has significant relevance to the field of computer assisted language learning. The approach presented in the paper relies on two separate modules: (1) an automatic speech recognition system that yields text transcripts of the spoken interactions involved, and (2) a multiple classifier system based on deep learners that ranks the transcripts into proficiency classes. Different deep neural network architectures (both feed-forward and recurrent) are specialized over diverse representations of the texts in terms of: a reference grammar, the outcome of probabilistic language models, several word embeddings, and two bag-of-word models. Combination of the individual classifiers is realized either via a probabilistic pseudo-joint model, or via a neural mixture of experts. Using the data of the third Spoken CALL Shared Task challenge, the highest values to date were obtained in terms of three popular evaluation metrics.
Evaluating Large Language Models with Tests of Spanish as a Foreign Language: Pass or Fail?
Large Language Models (LLMs) have been profusely evaluated on their ability to answer questions on many topics and their performance on different natural language understanding tasks. Those tests are usually conducted in English, but most LLM users are not native English speakers. Therefore, it is of interest to analyze how LLMs understand other languages at different levels: from paragraphs to morphems. In this paper, we evaluate the performance of state-of-the-art LLMs in TELEIA, a recently released benchmark with similar questions to those of Spanish exams for foreign students, covering topics such as reading comprehension, word formation, meaning and compositional semantics, and grammar. The results show that LLMs perform well at understanding Spanish but are still far from achieving the level of a native speaker in terms of grammatical competence.
Probing Across Time: What Does RoBERTa Know and When?
Models of language trained on very large corpora have been demonstrated useful for NLP. As fixed artifacts, they have become the object of intense study, with many researchers "probing" the extent to which linguistic abstractions, factual and commonsense knowledge, and reasoning abilities they acquire and readily demonstrate. Building on this line of work, we consider a new question: for types of knowledge a language model learns, when during (pre)training are they acquired? We plot probing performance across iterations, using RoBERTa as a case study. Among our findings: linguistic knowledge is acquired fast, stably, and robustly across domains. Facts and commonsense are slower and more domain-sensitive. Reasoning abilities are, in general, not stably acquired. As new datasets, pretraining protocols, and probes emerge, we believe that probing-across-time analyses can help researchers understand the complex, intermingled learning that these models undergo and guide us toward more efficient approaches that accomplish necessary learning faster.
Evaluating Dialect Robustness of Language Models via Conversation Understanding
With an evergrowing number of LLMs reporting superlative performance for English, their ability to perform equitably for different dialects of English (i.e., dialect robustness) needs to be ascertained. Specifically, we use English language (US English or Indian English) conversations between humans who play the word-guessing game of `taboo'. We formulate two evaluative tasks: target word prediction (TWP) (i.e.predict the masked target word in a conversation) and target word selection (TWS) (i.e., select the most likely masked target word in a conversation, from among a set of candidate words). Extending MD3, an existing dialectic dataset of taboo-playing conversations, we introduce M-MD3, a target-word-masked version of MD3 with the USEng and IndEng subsets. We add two subsets: AITrans (where dialectic information is removed from IndEng) and AIGen (where LLMs are prompted to generate conversations). Our evaluation uses pre-trained and fine-tuned versions of two closed-source (GPT-4/3.5) and two open-source LLMs (Mistral and Gemma). LLMs perform significantly better for US English than Indian English for both TWP and TWS, for all settings. While GPT-based models perform the best, the comparatively smaller models work more equitably for short conversations (<8 turns). Our results on AIGen and AITrans (the best and worst-performing subset) respectively show that LLMs may learn a dialect of their own based on the composition of the training data, and that dialect robustness is indeed a challenging task. Our evaluation methodology exhibits a novel way to examine attributes of language models using pre-existing dialogue datasets.
On the application of Large Language Models for language teaching and assessment technology
The recent release of very large language models such as PaLM and GPT-4 has made an unprecedented impact in the popular media and public consciousness, giving rise to a mixture of excitement and fear as to their capabilities and potential uses, and shining a light on natural language processing research which had not previously received so much attention. The developments offer great promise for education technology, and in this paper we look specifically at the potential for incorporating large language models in AI-driven language teaching and assessment systems. We consider several research areas and also discuss the risks and ethical considerations surrounding generative AI in education technology for language learners. Overall we find that larger language models offer improvements over previous models in text generation, opening up routes toward content generation which had not previously been plausible. For text generation they must be prompted carefully and their outputs may need to be reshaped before they are ready for use. For automated grading and grammatical error correction, tasks whose progress is checked on well-known benchmarks, early investigations indicate that large language models on their own do not improve on state-of-the-art results according to standard evaluation metrics. For grading it appears that linguistic features established in the literature should still be used for best performance, and for error correction it may be that the models can offer alternative feedback styles which are not measured sensitively with existing methods. In all cases, there is work to be done to experiment with the inclusion of large language models in education technology for language learners, in order to properly understand and report on their capacities and limitations, and to ensure that foreseeable risks such as misinformation and harmful bias are mitigated.
Confidence in the Reasoning of Large Language Models
There is a growing literature on reasoning by large language models (LLMs), but the discussion on the uncertainty in their responses is still lacking. Our aim is to assess the extent of confidence that LLMs have in their answers and how it correlates with accuracy. Confidence is measured (i) qualitatively in terms of persistence in keeping their answer when prompted to reconsider, and (ii) quantitatively in terms of self-reported confidence score. We investigate the performance of three LLMs -- GPT4o, GPT4-turbo and Mistral -- on two benchmark sets of questions on causal judgement and formal fallacies and a set of probability and statistical puzzles and paradoxes. Although the LLMs show significantly better performance than random guessing, there is a wide variability in their tendency to change their initial answers. There is a positive correlation between qualitative confidence and accuracy, but the overall accuracy for the second answer is often worse than for the first answer. There is a strong tendency to overstate the self-reported confidence score. Confidence is only partially explained by the underlying token-level probability. The material effects of prompting on qualitative confidence and the strong tendency for overconfidence indicate that current LLMs do not have any internally coherent sense of confidence.
Language Versatilists vs. Specialists: An Empirical Revisiting on Multilingual Transfer Ability
Multilingual transfer ability, which reflects how well the models fine-tuned on one source language can be applied to other languages, has been well studied in multilingual pre-trained models (e.g., BLOOM). However, such ability has not been investigated for English-centric models (e.g., LLaMA). To fill this gap, we study the following research questions. First, does multilingual transfer ability exist in English-centric models and how does it compare with multilingual pretrained models? Second, does it only appears when English is the source language for the English-centric model? Third, how does it vary in different tasks? We take multilingual reasoning ability as our focus and conduct extensive experiments across four types of reasoning tasks. We find that the multilingual pretrained model does not always outperform an English-centric model. Furthermore, English appears to be a less suitable source language, and the choice of source language becomes less important when the English-centric model scales up. In addition, different types of tasks exhibit different multilingual transfer abilities. These findings demonstrate that English-centric models not only possess multilingual transfer ability but may even surpass the transferability of multilingual pretrained models if well-trained. By showing the strength and weaknesses, the experiments also provide valuable insights into enhancing multilingual reasoning abilities for the English-centric models.
M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models
Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at https://github.com/DAMO-NLP-SG/M3Exam.
Can Language Models Evaluate Human Written Text? Case Study on Korean Student Writing for Education
Large language model (LLM)-based evaluation pipelines have demonstrated their capability to robustly evaluate machine-generated text. Extending this methodology to assess human-written text could significantly benefit educational settings by providing direct feedback to enhance writing skills, although this application is not straightforward. In this paper, we investigate whether LLMs can effectively assess human-written text for educational purposes. We collected 100 texts from 32 Korean students across 15 types of writing and employed GPT-4-Turbo to evaluate them using grammaticality, fluency, coherence, consistency, and relevance as criteria. Our analyses indicate that LLM evaluators can reliably assess grammaticality and fluency, as well as more objective types of writing, though they struggle with other criteria and types of writing. We publicly release our dataset and feedback.
LLM Cognitive Judgements Differ From Human
Large Language Models (LLMs) have lately been on the spotlight of researchers, businesses, and consumers alike. While the linguistic capabilities of such models have been studied extensively, there is growing interest in investigating them as cognitive subjects. In the present work I examine GPT-3 and ChatGPT capabilities on an limited-data inductive reasoning task from the cognitive science literature. The results suggest that these models' cognitive judgements are not human-like.
Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book?
Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description.
Are BabyLMs Second Language Learners?
This paper describes a linguistically-motivated approach to the 2024 edition of the BabyLM Challenge (Warstadt et al. 2023). Rather than pursuing a first language learning (L1) paradigm, we approach the challenge from a second language (L2) learning perspective. In L2 learning, there is a stronger focus on learning explicit linguistic information, such as grammatical notions, definitions of words or different ways of expressing a meaning. This makes L2 learning potentially more efficient and concise. We approximate this using data from Wiktionary, grammar examples either generated by an LLM or sourced from grammar books, and paraphrase data. We find that explicit information about word meaning (in our case, Wiktionary) does not boost model performance, while grammatical information can give a small improvement. The most impactful data ingredient is sentence paraphrases, with our two best models being trained on 1) a mix of paraphrase data and data from the BabyLM pretraining dataset, and 2) exclusively paraphrase data.
It's the same but not the same: Do LLMs distinguish Spanish varieties?
In recent years, large language models (LLMs) have demonstrated a high capacity for understanding and generating text in Spanish. However, with five hundred million native speakers, Spanish is not a homogeneous language but rather one rich in diatopic variations spanning both sides of the Atlantic. For this reason, in this study, we evaluate the ability of nine language models to identify and distinguish the morphosyntactic and lexical peculiarities of seven varieties of Spanish (Andean, Antillean, Continental Caribbean, Chilean, Peninsular, Mexican and Central American and Rioplatense) through a multiple-choice test. The results indicate that the Peninsular Spanish variety is the best identified by all models and that, among them, GPT-4o is the only model capable of recognizing the variability of the Spanish language. -- En los \'ultimos a\~nos, los grandes modelos de lenguaje (LLMs, por sus siglas en ingl\'es) han demostrado una alta capacidad para comprender y generar texto en espa\~nol. Sin embargo, con quinientos millones de hablantes nativos, la espa\~nola no es una lengua homog\'enea, sino rica en variedades diat\'opicas que se extienden a ambos lados del Atl\'antico. Por todo ello, evaluamos en este trabajo la capacidad de nueve modelos de lenguaje de identificar y discernir las peculiaridades morfosint\'acticas y l\'exicas de siete variedades de espa\~nol (andino, antillano, caribe\~no continental, chileno, espa\~nol peninsular, mexicano y centroamericano y rioplatense) mediante un test de respuesta m\'ultiple. Los resultados obtenidos indican que la variedad de espa\~nol peninsular es la mejor identificada por todos los modelos y que, de entre todos, GPT-4o es el \'unico modelo capaz de identificar la variabilidad de la lengua espa\~nola.
BLEnD: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages
Large language models (LLMs) often lack culture-specific knowledge of daily life, especially across diverse regions and non-English languages. Existing benchmarks for evaluating LLMs' cultural sensitivities are limited to a single language or collected from online sources such as Wikipedia, which do not reflect the mundane everyday lifestyles of diverse regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play, or the sports they practice in school is common cultural knowledge but uncommon in easily collected online sources, especially for underrepresented cultures. To address this issue, we introduce BLEnD, a hand-crafted benchmark designed to evaluate LLMs' everyday knowledge across diverse cultures and languages. BLEnD comprises 52.6k question-answer pairs from 16 countries/regions, in 13 different languages, including low-resource ones such as Amharic, Assamese, Azerbaijani, Hausa, and Sundanese. We construct the benchmark to include two formats of questions: short-answer and multiple-choice. We show that LLMs perform better for cultures that are highly represented online, with a maximum 57.34% difference in GPT-4, the best-performing model, in the short-answer format. For cultures represented by mid-to-high-resource languages, LLMs perform better in their local languages, but for cultures represented by low-resource languages, LLMs perform better in English than the local languages. We make our dataset publicly available at: https://github.com/nlee0212/BLEnD.
Native vs Non-Native Language Prompting: A Comparative Analysis
Large language models (LLMs) have shown remarkable abilities in different fields, including standard Natural Language Processing (NLP) tasks. To elicit knowledge from LLMs, prompts play a key role, consisting of natural language instructions. Most open and closed source LLMs are trained on available labeled and unlabeled resources--digital content such as text, images, audio, and videos. Hence, these models have better knowledge for high-resourced languages but struggle with low-resourced languages. Since prompts play a crucial role in understanding their capabilities, the language used for prompts remains an important research question. Although there has been significant research in this area, it is still limited, and less has been explored for medium to low-resourced languages. In this study, we investigate different prompting strategies (native vs. non-native) on 11 different NLP tasks associated with 12 different Arabic datasets (9.7K data points). In total, we conducted 197 experiments involving 3 LLMs, 12 datasets, and 3 prompting strategies. Our findings suggest that, on average, the non-native prompt performs the best, followed by mixed and native prompts.
Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance
The integration of pretrained language models (PLMs) like BERT and GPT has revolutionized NLP, particularly for English, but it has also created linguistic imbalances. This paper strategically identifies the need for linguistic equity by examining several knowledge editing techniques in multilingual contexts. We evaluate the performance of models such as Mistral, TowerInstruct, OpenHathi, Tamil-Llama, and Kan-Llama across languages including English, German, French, Italian, Spanish, Hindi, Tamil, and Kannada. Our research identifies significant discrepancies in normal and merged models concerning cross-lingual consistency. We employ strategies like 'each language for itself' (ELFI) and 'each language for others' (ELFO) to stress-test these models. Our findings demonstrate the potential for LLMs to overcome linguistic barriers, laying the groundwork for future research in achieving linguistic inclusivity in AI technologies.
The language of prompting: What linguistic properties make a prompt successful?
The latest generation of LLMs can be prompted to achieve impressive zero-shot or few-shot performance in many NLP tasks. However, since performance is highly sensitive to the choice of prompts, considerable effort has been devoted to crowd-sourcing prompts or designing methods for prompt optimisation. Yet, we still lack a systematic understanding of how linguistic properties of prompts correlate with task performance. In this work, we investigate how LLMs of different sizes, pre-trained and instruction-tuned, perform on prompts that are semantically equivalent, but vary in linguistic structure. We investigate both grammatical properties such as mood, tense, aspect and modality, as well as lexico-semantic variation through the use of synonyms. Our findings contradict the common assumption that LLMs achieve optimal performance on lower perplexity prompts that reflect language use in pretraining or instruction-tuning data. Prompts transfer poorly between datasets or models, and performance cannot generally be explained by perplexity, word frequency, ambiguity or prompt length. Based on our results, we put forward a proposal for a more robust and comprehensive evaluation standard for prompting research.
CLSE: Corpus of Linguistically Significant Entities
One of the biggest challenges of natural language generation (NLG) is the proper handling of named entities. Named entities are a common source of grammar mistakes such as wrong prepositions, wrong article handling, or incorrect entity inflection. Without factoring linguistic representation, such errors are often underrepresented when evaluating on a small set of arbitrarily picked argument values, or when translating a dataset from a linguistically simpler language, like English, to a linguistically complex language, like Russian. However, for some applications, broadly precise grammatical correctness is critical -- native speakers may find entity-related grammar errors silly, jarring, or even offensive. To enable the creation of more linguistically diverse NLG datasets, we release a Corpus of Linguistically Significant Entities (CLSE) annotated by linguist experts. The corpus includes 34 languages and covers 74 different semantic types to support various applications from airline ticketing to video games. To demonstrate one possible use of CLSE, we produce an augmented version of the Schema-Guided Dialog Dataset, SGD-CLSE. Using the CLSE's entities and a small number of human translations, we create a linguistically representative NLG evaluation benchmark in three languages: French (high-resource), Marathi (low-resource), and Russian (highly inflected language). We establish quality baselines for neural, template-based, and hybrid NLG systems and discuss the strengths and weaknesses of each approach.
LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation
Effective evaluation of the reasoning capabilities of large language models (LLMs) are susceptible to overestimation due to data exposure of evaluation benchmarks. We introduce a framework for producing linguistic reasoning problems that reduces the effect of memorisation in model performance estimates and apply this framework to develop LINGOLY-TOO, a challenging evaluation benchmark for linguistic reasoning. By developing orthographic templates, we dynamically obfuscate the writing systems of real languages to generate numerous question variations. These variations preserve the reasoning steps required for each solution while reducing the likelihood of specific problem instances appearing in model training data. Our experiments demonstrate that frontier models, including OpenAI o1-preview and DeepSeem R1, struggle with advanced reasoning. Our analysis also shows that LLMs exhibit noticeable variance in accuracy across permutations of the same problem, and on average perform better on questions appearing in their original orthography. Our findings highlight the opaque nature of response generation in LLMs and provide evidence that prior data exposure contributes to overestimating the reasoning capabilities of frontier models.
Investigating Hallucination in Conversations for Low Resource Languages
Large Language Models (LLMs) have demonstrated remarkable proficiency in generating text that closely resemble human writing. However, they often generate factually incorrect statements, a problem typically referred to as 'hallucination'. Addressing hallucination is crucial for enhancing the reliability and effectiveness of LLMs. While much research has focused on hallucinations in English, our study extends this investigation to conversational data in three languages: Hindi, Farsi, and Mandarin. We offer a comprehensive analysis of a dataset to examine both factual and linguistic errors in these languages for GPT-3.5, GPT-4o, Llama-3.1, Gemma-2.0, DeepSeek-R1 and Qwen-3. We found that LLMs produce very few hallucinated responses in Mandarin but generate a significantly higher number of hallucinations in Hindi and Farsi.
On Robustness and Reliability of Benchmark-Based Evaluation of LLMs
Large Language Models (LLMs) effectiveness is usually evaluated by means of benchmarks such as MMLU, ARC-C, or HellaSwag, where questions are presented in their original wording, thus in a fixed, standardized format. However, real-world applications involve linguistic variability, requiring models to maintain their effectiveness across diverse rewordings of the same question or query. In this study, we systematically assess the robustness of LLMs to paraphrased benchmark questions and investigate whether benchmark-based evaluations provide a reliable measure of model capabilities. We systematically generate various paraphrases of all the questions across six different common benchmarks, and measure the resulting variations in effectiveness of 34 state-of-the-art LLMs, of different size and effectiveness. Our findings reveal that while LLM rankings remain relatively stable across paraphrased inputs, absolute effectiveness scores change, and decline significantly. This suggests that LLMs struggle with linguistic variability, raising concerns about their generalization abilities and evaluation methodologies. Furthermore, the observed performance drop challenges the reliability of benchmark-based evaluations, indicating that high benchmark scores may not fully capture a model's robustness to real-world input variations. We discuss the implications of these findings for LLM evaluation methodologies, emphasizing the need for robustness-aware benchmarks that better reflect practical deployment scenarios.
MELLA: Bridging Linguistic Capability and Cultural Groundedness for Low-Resource Language MLLMs
Multimodal Large Language Models (MLLMs) have shown remarkable performance in high-resource languages. However, their effectiveness diminishes significantly in the contexts of low-resource languages. Current multilingual enhancement methods are often limited to text modality or rely solely on machine translation. While such approaches help models acquire basic linguistic capabilities and produce "thin descriptions", they neglect the importance of multimodal informativeness and cultural groundedness, both of which are crucial for serving low-resource language users effectively. To bridge this gap, in this study, we identify two significant objectives for a truly effective MLLM in low-resource language settings, namely 1) linguistic capability and 2) cultural groundedness, placing special emphasis on cultural awareness. To achieve these dual objectives, we propose a dual-source strategy that guides the collection of data tailored to each goal, sourcing native web alt-text for culture and MLLM-generated captions for linguistics. As a concrete implementation, we introduce MELLA, a multimodal, multilingual dataset. Experiment results show that after fine-tuning on MELLA, there is a general performance improvement for the eight languages on various MLLM backbones, with models producing "thick descriptions". We verify that the performance gains are from both cultural knowledge enhancement and linguistic capability enhancement. Our dataset can be found at https://opendatalab.com/applyMultilingualCorpus.
A Comparative Study of Code Generation using ChatGPT 3.5 across 10 Programming Languages
Large Language Models (LLMs) are advanced Artificial Intelligence (AI) systems that have undergone extensive training using large datasets in order to understand and produce language that closely resembles that of humans. These models have reached a level of proficiency where they are capable of successfully completing university exams across several disciplines and generating functional code to handle novel problems. This research investigates the coding proficiency of ChatGPT 3.5, a LLM released by OpenAI in November 2022, which has gained significant recognition for its impressive text generating and code creation capabilities. The skill of the model in creating code snippets is evaluated across 10 various programming languages and 4 different software domains. Based on the findings derived from this research, major unexpected behaviors and limitations of the model have been identified. This study aims to identify potential areas for development and examine the ramifications of automated code generation on the evolution of programming languages and on the tech industry.
The Confidence-Competence Gap in Large Language Models: A Cognitive Study
Large Language Models (LLMs) have acquired ubiquitous attention for their performances across diverse domains. Our study here searches through LLMs' cognitive abilities and confidence dynamics. We dive deep into understanding the alignment between their self-assessed confidence and actual performance. We exploit these models with diverse sets of questionnaires and real-world scenarios and extract how LLMs exhibit confidence in their responses. Our findings reveal intriguing instances where models demonstrate high confidence even when they answer incorrectly. This is reminiscent of the Dunning-Kruger effect observed in human psychology. In contrast, there are cases where models exhibit low confidence with correct answers revealing potential underestimation biases. Our results underscore the need for a deeper understanding of their cognitive processes. By examining the nuances of LLMs' self-assessment mechanism, this investigation provides noteworthy revelations that serve to advance the functionalities and broaden the potential applications of these formidable language models.
Do Construction Distributions Shape Formal Language Learning In German BabyLMs?
We analyze the influence of utterance-level construction distributions in German child-directed speech on the resulting formal linguistic competence and the underlying learning trajectories for small language models trained on a novel collection of developmentally plausible language data for German. We find that trajectories are surprisingly robust for markedly different distributions of constructions in the training data, which have little effect on final accuracies and almost no effect on global learning trajectories. While syntax learning benefits from more complex utterances, lexical learning culminates in better scores with more fragmentary data. We argue that LMs trained on developmentally plausible data can contribute to debates on how rich or impoverished linguistic stimuli actually are.
BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models
The rapid development of Large Language Models (LLMs) and the emergence of novel abilities with scale have necessitated the construction of holistic, diverse and challenging benchmarks such as HELM and BIG-bench. However, at the moment, most of these benchmarks focus only on performance in English and evaluations that include Southeast Asian (SEA) languages are few in number. We therefore propose BHASA, a holistic linguistic and cultural evaluation suite for LLMs in SEA languages. It comprises three components: (1) a NLP benchmark covering eight tasks across Natural Language Understanding (NLU), Generation (NLG) and Reasoning (NLR) tasks, (2) LINDSEA, a linguistic diagnostic toolkit that spans the gamut of linguistic phenomena including syntax, semantics and pragmatics, and (3) a cultural diagnostics dataset that probes for both cultural representation and sensitivity. For this preliminary effort, we implement the NLP benchmark only for Indonesian, Vietnamese, Thai and Tamil, and we only include Indonesian and Tamil for LINDSEA and the cultural diagnostics dataset. As GPT-4 is purportedly one of the best-performing multilingual LLMs at the moment, we use it as a yardstick to gauge the capabilities of LLMs in the context of SEA languages. Our initial experiments on GPT-4 with BHASA find it lacking in various aspects of linguistic capabilities, cultural representation and sensitivity in the targeted SEA languages. BHASA is a work in progress and will continue to be improved and expanded in the future. The repository for this paper can be found at: https://github.com/aisingapore/BHASA
M3GIA: A Cognition Inspired Multilingual and Multimodal General Intelligence Ability Benchmark
As recent multi-modality large language models (MLLMs) have shown formidable proficiency on various complex tasks, there has been increasing attention on debating whether these models could eventually mirror human intelligence. However, existing benchmarks mainly focus on evaluating solely on task performance, such as the accuracy of identifying the attribute of an object. Combining well-developed cognitive science to understand the intelligence of MLLMs beyond superficial achievements remains largely unexplored. To this end, we introduce the first cognitive-driven multi-lingual and multi-modal benchmark to evaluate the general intelligence ability of MLLMs, dubbed M3GIA. Specifically, we identify five key cognitive factors based on the well-recognized Cattell-Horn-Carrol (CHC) model of intelligence and propose a novel evaluation metric. In addition, since most MLLMs are trained to perform in different languages, a natural question arises: is language a key factor influencing the cognitive ability of MLLMs? As such, we go beyond English to encompass other languages based on their popularity, including Chinese, French, Spanish, Portuguese and Korean, to construct our M3GIA. We make sure all the data relevant to the cultural backgrounds are collected from their native context to avoid English-centric bias. We collected a significant corpus of data from human participants, revealing that the most advanced MLLM reaches the lower boundary of human intelligence in English. Yet, there remains a pronounced disparity in the other five languages assessed. We also reveals an interesting winner takes all phenomenon that are aligned with the discovery in cognitive studies. Our benchmark will be open-sourced, with the aspiration of facilitating the enhancement of cognitive capabilities in MLLMs.
Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic
While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark.
The Curious Decline of Linguistic Diversity: Training Language Models on Synthetic Text
This study investigates the consequences of training large language models (LLMs) on synthetic data generated by their predecessors, an increasingly prevalent practice aimed at addressing the limited supply of human-generated training data. Diverging from the usual emphasis on performance metrics, we focus on the impact of this training methodology on linguistic diversity, especially when conducted recursively over time. To assess this, we developed a set of novel metrics targeting lexical, syntactic, and semantic diversity, applying them in recursive fine-tuning experiments across various natural language generation tasks. Our findings reveal a marked decrease in the diversity of the models' outputs through successive iterations. This trend underscores the potential risks of training LLMs on predecessor-generated text, particularly concerning the preservation of linguistic richness. Our study highlights the need for careful consideration of the long-term effects of such training approaches on the linguistic capabilities of LLMs.
Language Matters: How Do Multilingual Input and Reasoning Paths Affect Large Reasoning Models?
Large reasoning models (LRMs) have demonstrated impressive performance across a range of reasoning tasks, yet little is known about their internal reasoning processes in multilingual settings. We begin with a critical question: {\it In which language do these models reason when solving problems presented in different languages?} Our findings reveal that, despite multilingual training, LRMs tend to default to reasoning in high-resource languages (e.g., English) at test time, regardless of the input language. When constrained to reason in the same language as the input, model performance declines, especially for low-resource languages. In contrast, reasoning in high-resource languages generally preserves performance. We conduct extensive evaluations across reasoning-intensive tasks (MMMLU, MATH-500) and non-reasoning benchmarks (CulturalBench, LMSYS-toxic), showing that the effect of language choice varies by task type: input-language reasoning degrades performance on reasoning tasks but benefits cultural tasks, while safety evaluations exhibit language-specific behavior. By exposing these linguistic biases in LRMs, our work highlights a critical step toward developing more equitable models that serve users across diverse linguistic backgrounds.
KoBALT: Korean Benchmark For Advanced Linguistic Tasks
We introduce KoBALT (Korean Benchmark for Advanced Linguistic Tasks), a comprehensive linguistically-motivated benchmark comprising 700 multiple-choice questions spanning 24 phenomena across five linguistic domains: syntax, semantics, pragmatics, phonetics/phonology, and morphology. KoBALT is designed to advance the evaluation of large language models (LLMs) in Korean, a morphologically rich language, by addressing the limitations of conventional benchmarks that often lack linguistic depth and typological grounding. It introduces a suite of expert-curated, linguistically motivated questions with minimal n-gram overlap with standard Korean corpora, substantially mitigating the risk of data contamination and allowing a more robust assessment of true language understanding. Our evaluation of 20 contemporary LLMs reveals significant performance disparities, with the highest-performing model achieving 61\% general accuracy but showing substantial variation across linguistic domains - from stronger performance in semantics (66\%) to considerable weaknesses in phonology (31\%) and morphology (36\%). Through human preference evaluation with 95 annotators, we demonstrate a strong correlation between KoBALT scores and human judgments, validating our benchmark's effectiveness as a discriminative measure of Korean language understanding. KoBALT addresses critical gaps in linguistic evaluation for typologically diverse languages and provides a robust framework for assessing genuine linguistic competence in Korean language models.
Do LLMs write like humans? Variation in grammatical and rhetorical styles
Large language models (LLMs) are capable of writing grammatical text that follows instructions, answers questions, and solves problems. As they have advanced, it has become difficult to distinguish their output from human-written text. While past research has found some differences in surface features such as word choice and punctuation, and developed classifiers to detect LLM output, none has studied the rhetorical styles of LLMs. Using several variants of Llama 3 and GPT-4o, we construct two parallel corpora of human- and LLM-written texts from common prompts. Using Douglas Biber's set of lexical, grammatical, and rhetorical features, we identify systematic differences between LLMs and humans and between different LLMs. These differences persist when moving from smaller models to larger ones, and are larger for instruction-tuned models than base models. This demonstrates that despite their advanced abilities, LLMs struggle to match human styles, and hence more advanced linguistic features can detect patterns in their behavior not previously recognized.
Identifying the Correlation Between Language Distance and Cross-Lingual Transfer in a Multilingual Representation Space
Prior research has investigated the impact of various linguistic features on cross-lingual transfer performance. In this study, we investigate the manner in which this effect can be mapped onto the representation space. While past studies have focused on the impact on cross-lingual alignment in multilingual language models during fine-tuning, this study examines the absolute evolution of the respective language representation spaces produced by MLLMs. We place a specific emphasis on the role of linguistic characteristics and investigate their inter-correlation with the impact on representation spaces and cross-lingual transfer performance. Additionally, this paper provides preliminary evidence of how these findings can be leveraged to enhance transfer to linguistically distant languages.
Trans-EnV: A Framework for Evaluating the Linguistic Robustness of LLMs Against English Varieties
Large Language Models (LLMs) are predominantly evaluated on Standard American English (SAE), often overlooking the diversity of global English varieties. This narrow focus may raise fairness concerns as degraded performance on non-standard varieties can lead to unequal benefits for users worldwide. Therefore, it is critical to extensively evaluate the linguistic robustness of LLMs on multiple non-standard English varieties. We introduce Trans-EnV, a framework that automatically transforms SAE datasets into multiple English varieties to evaluate the linguistic robustness. Our framework combines (1) linguistics expert knowledge to curate variety-specific features and transformation guidelines from linguistic literature and corpora, and (2) LLM-based transformations to ensure both linguistic validity and scalability. Using Trans-EnV, we transform six benchmark datasets into 38 English varieties and evaluate seven state-of-the-art LLMs. Our results reveal significant performance disparities, with accuracy decreasing by up to 46.3% on non-standard varieties. These findings highlight the importance of comprehensive linguistic robustness evaluation across diverse English varieties. Each construction of Trans-EnV was validated through rigorous statistical testing and consultation with a researcher in the field of second language acquisition, ensuring its linguistic validity. Our code and datasets are publicly available at https://github.com/jiyounglee-0523/TransEnV and https://huggingface.co/collections/jiyounglee0523/transenv-681eadb3c0c8cf363b363fb1.
Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings
Large language models (LLMs) have garnered significant interest in natural language processing (NLP), particularly their remarkable performance in various downstream tasks in resource-rich languages. Recent studies have highlighted the limitations of LLMs in low-resource languages, primarily focusing on binary classification tasks and giving minimal attention to South Asian languages. These limitations are primarily attributed to constraints such as dataset scarcity, computational costs, and research gaps specific to low-resource languages. To address this gap, we present datasets for sentiment and hate speech tasks by translating from English to Bangla, Hindi, and Urdu, facilitating research in low-resource language processing. Further, we comprehensively examine zero-shot learning using multiple LLMs in English and widely spoken South Asian languages. Our findings indicate that GPT-4 consistently outperforms Llama 2 and Gemini, with English consistently demonstrating superior performance across diverse tasks compared to low-resource languages. Furthermore, our analysis reveals that natural language inference (NLI) exhibits the highest performance among the evaluated tasks, with GPT-4 demonstrating superior capabilities.
Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean
Large language models (LLMs) use pretraining to predict the subsequent word; however, their expansion requires significant computing resources. Numerous big tech companies and research institutes have developed multilingual LLMs (MLLMs) to meet current demands, overlooking less-resourced languages (LRLs). This study proposed three strategies to enhance the performance of LRLs based on the publicly available MLLMs. First, the MLLM vocabularies of LRLs were expanded to enhance expressiveness. Second, bilingual data were used for pretraining to align the high- and less-resourced languages. Third, a high-quality small-scale instruction dataset was constructed and instruction-tuning was performed to augment the LRL. The experiments employed the Llama2 model and Korean was used as the LRL, which was quantitatively evaluated against other developed LLMs across eight tasks. Furthermore, a qualitative assessment was performed based on human evaluation and GPT4. Experimental results showed that our proposed Bllossom model exhibited superior performance in qualitative analyses compared to previously proposed Korean monolingual models.
OpenLLM-Ro -- Technical Report on Open-source Romanian LLMs trained starting from Llama 2
In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English. Hence, their performance in English greatly exceeds their performance in other languages. This document presents our approach to training and evaluating the first foundational and chat LLM specialized for Romanian.
Linguistic Profiling of a Neural Language Model
In this paper we investigate the linguistic knowledge learned by a Neural Language Model (NLM) before and after a fine-tuning process and how this knowledge affects its predictions during several classification problems. We use a wide set of probing tasks, each of which corresponds to a distinct sentence-level feature extracted from different levels of linguistic annotation. We show that BERT is able to encode a wide range of linguistic characteristics, but it tends to lose this information when trained on specific downstream tasks. We also find that BERT's capacity to encode different kind of linguistic properties has a positive influence on its predictions: the more it stores readable linguistic information of a sentence, the higher will be its capacity of predicting the expected label assigned to that sentence.
ProverbEval: Exploring LLM Evaluation Challenges for Low-resource Language Understanding
With the rapid development of evaluation datasets to assess LLMs understanding across a wide range of subjects and domains, identifying a suitable language understanding benchmark has become increasingly challenging. In this work, we explore LLM evaluation challenges for low-resource language understanding and introduce ProverbEval, LLM evaluation benchmark for low-resource languages based on proverbs to focus on low-resource language understanding in culture-specific scenarios. We benchmark various LLMs and explore factors that create variability in the benchmarking process. We observed performance variances of up to 50%, depending on the order in which answer choices were presented in multiple-choice tasks. Native language proverb descriptions significantly improve tasks such as proverb generation, contributing to improved outcomes. Additionally, monolingual evaluations consistently outperformed their cross-lingual counterparts. We argue special attention must be given to the order of choices, choice of prompt language, task variability, and generation tasks when creating LLM evaluation benchmarks.
Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It)
In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability.
JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction
We present a new parallel corpus, JHU FLuency-Extended GUG corpus (JFLEG) for developing and evaluating grammatical error correction (GEC). Unlike other corpora, it represents a broad range of language proficiency levels and uses holistic fluency edits to not only correct grammatical errors but also make the original text more native sounding. We describe the types of corrections made and benchmark four leading GEC systems on this corpus, identifying specific areas in which they do well and how they can improve. JFLEG fulfills the need for a new gold standard to properly assess the current state of GEC.
Lost in Variation? Evaluating NLI Performance in Basque and Spanish Geographical Variants
In this paper, we evaluate the capacity of current language technologies to understand Basque and Spanish language varieties. We use Natural Language Inference (NLI) as a pivot task and introduce a novel, manually-curated parallel dataset in Basque and Spanish, along with their respective variants. Our empirical analysis of crosslingual and in-context learning experiments using encoder-only and decoder-based Large Language Models (LLMs) shows a performance drop when handling linguistic variation, especially in Basque. Error analysis suggests that this decline is not due to lexical overlap, but rather to the linguistic variation itself. Further ablation experiments indicate that encoder-only models particularly struggle with Western Basque, which aligns with linguistic theory that identifies peripheral dialects (e.g., Western) as more distant from the standard. All data and code are publicly available.
Multi-lingual and Multi-cultural Figurative Language Understanding
Figurative language permeates human communication, but at the same time is relatively understudied in NLP. Datasets have been created in English to accelerate progress towards measuring and improving figurative language processing in language models (LMs). However, the use of figurative language is an expression of our cultural and societal experiences, making it difficult for these phrases to be universally applicable. In this work, we create a figurative language inference dataset, \datasetname, for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba. Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region. We assess multilingual LMs' abilities to interpret figurative language in zero-shot and few-shot settings. All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data, emphasizing the need for LMs to be exposed to a broader range of linguistic and cultural variation during training.
Which Programming Language and What Features at Pre-training Stage Affect Downstream Logical Inference Performance?
Recent large language models (LLMs) have demonstrated remarkable generalization abilities in mathematics and logical reasoning tasks. Prior research indicates that LLMs pre-trained with programming language data exhibit high mathematical and reasoning abilities; however, this causal relationship has not been rigorously tested. Our research aims to verify which programming languages and features during pre-training affect logical inference performance. Specifically, we pre-trained decoder-based language models from scratch using datasets from ten programming languages (e.g., Python, C, Java) and three natural language datasets (Wikipedia, Fineweb, C4) under identical conditions. Thereafter, we evaluated the trained models in a few-shot in-context learning setting on logical reasoning tasks: FLD and bAbi, which do not require commonsense or world knowledge. The results demonstrate that nearly all models trained with programming languages consistently outperform those trained with natural languages, indicating that programming languages contain factors that elicit logic inference performance. In addition, we found that models trained with programming languages exhibit a better ability to follow instructions compared to those trained with natural languages. Further analysis reveals that the depth of Abstract Syntax Trees representing parsed results of programs also affects logical reasoning performance. These findings will offer insights into the essential elements of pre-training for acquiring the foundational abilities of LLMs.
Self-Guided Curriculum Learning for Neural Machine Translation
In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a self-guided curriculum strategy to encourage the learning of neural machine translation (NMT) models to follow the above recovery criterion, where we cast the recovery degree of each training example as its learning difficulty. Specifically, we adopt the sentence level BLEU score as the proxy of recovery degree. Different from existing curricula relying on linguistic prior knowledge or third-party language models, our chosen learning difficulty is more suitable to measure the degree of knowledge mastery of the NMT models. Experiments on translation benchmarks, including WMT14 EnglishRightarrowGerman and WMT17 ChineseRightarrowEnglish, demonstrate that our approach can consistently improve translation performance against strong baseline Transformer.
LLM-as-a-Judge & Reward Model: What They Can and Cannot Do
LLM-as-a-Judge and reward models are widely used alternatives of multiple-choice questions or human annotators for large language model (LLM) evaluation. Their efficacy shines in evaluating long-form responses, serving a critical role as evaluators of leaderboards and as proxies to align LLMs via reinforcement learning. However, despite their popularity, their effectiveness outside of English remains largely unexplored. In this paper, we conduct a comprehensive analysis on automated evaluators, reporting key findings on their behavior in a non-English environment. First, we discover that English evaluation capabilities significantly influence language-specific capabilities, often more than the language proficiency itself, enabling evaluators trained in English to easily transfer their skills to other languages. Second, we identify critical shortcomings, where LLMs fail to detect and penalize errors, such as factual inaccuracies, cultural misrepresentations, and the presence of unwanted language. Finally, we release Kudge, the first non-English meta-evaluation dataset containing 5,012 human annotations in Korean.
Development of Cognitive Intelligence in Pre-trained Language Models
Recent studies show evidence for emergent cognitive abilities in Large Pre-trained Language Models (PLMs). The increasing cognitive alignment of these models has made them candidates for cognitive science theories. Prior research into the emergent cognitive abilities of PLMs has largely been path-independent to model training, i.e., has focused on the final model weights and not the intermediate steps. However, building plausible models of human cognition using PLMs would benefit from considering the developmental alignment of their performance during training to the trajectories of children's thinking. Guided by psychometric tests of human intelligence, we choose four sets of tasks to investigate the alignment of ten popular families of PLMs and evaluate their available intermediate and final training steps. These tasks are Numerical ability, Linguistic abilities, Conceptual understanding, and Fluid reasoning. We find a striking regularity: regardless of model size, the developmental trajectories of PLMs consistently exhibit a window of maximal alignment to human cognitive development. Before that window, training appears to endow "blank slate" models with the requisite structure to be poised to rapidly learn from experience. After that window, training appears to serve the engineering goal of reducing loss but not the scientific goal of increasing alignment with human cognition.
LLMs for Extremely Low-Resource Finno-Ugric Languages
The advancement of large language models (LLMs) has predominantly focused on high-resource languages, leaving low-resource languages, such as those in the Finno-Ugric family, significantly underrepresented. This paper addresses this gap by focusing on V\~oro, Livonian, and Komi. We cover almost the entire cycle of LLM creation, from data collection to instruction tuning and evaluation. Our contributions include developing multilingual base and instruction-tuned models; creating evaluation benchmarks, including the smugri-MT-bench multi-turn conversational benchmark; and conducting human evaluation. We intend for this work to promote linguistic diversity, ensuring that lesser-resourced languages can benefit from advancements in NLP.
Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models
Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.
LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low-Resource and Extinct Languages
In this paper, we present the LingOly benchmark, a novel benchmark for advanced reasoning abilities in large language models. Using challenging Linguistic Olympiad puzzles, we evaluate (i) capabilities for in-context identification and generalisation of linguistic patterns in very low-resource or extinct languages, and (ii) abilities to follow complex task instructions. The LingOly benchmark covers more than 90 mostly low-resource languages, minimising issues of data contamination, and contains 1,133 problems across 6 formats and 5 levels of human difficulty. We assess performance with both direct accuracy and comparison to a no-context baseline to penalise memorisation. Scores from 11 state-of-the-art LLMs demonstrate the benchmark to be challenging, and models perform poorly on the higher difficulty problems. On harder problems, even the top model only achieved 35.3% accuracy, 21.7% improvement over the no-context baseline. Large closed models typically outperform open models, and in general, the higher resource the language, the better the scores. These results indicate, in absence of memorisation, true multi-step out-of-domain reasoning remains a challenge for current language models.
IOLBENCH: Benchmarking LLMs on Linguistic Reasoning
Despite the remarkable advancements and widespread applications of deep neural networks, their ability to perform reasoning tasks remains limited, particularly in domains requiring structured, abstract thought. In this paper, we investigate the linguistic reasoning capabilities of state-of-the-art large language models (LLMs) by introducing IOLBENCH, a novel benchmark derived from International Linguistics Olympiad (IOL) problems. This dataset encompasses diverse problems testing syntax, morphology, phonology, and semantics, all carefully designed to be self-contained and independent of external knowledge. These tasks challenge models to engage in metacognitive linguistic reasoning, requiring the deduction of linguistic rules and patterns from minimal examples. Through extensive benchmarking of leading LLMs, we find that even the most advanced models struggle to handle the intricacies of linguistic complexity, particularly in areas demanding compositional generalization and rule abstraction. Our analysis highlights both the strengths and persistent limitations of current models in linguistic problem-solving, offering valuable insights into their reasoning capabilities. By introducing IOLBENCH, we aim to foster further research into developing models capable of human-like reasoning, with broader implications for the fields of computational linguistics and artificial intelligence.
Can Models Learn Skill Composition from Examples?
As large language models (LLMs) become increasingly advanced, their ability to exhibit compositional generalization -- the capacity to combine learned skills in novel ways not encountered during training -- has garnered significant attention. This type of generalization, particularly in scenarios beyond training data, is also of great interest in the study of AI safety and alignment. A recent study introduced the SKILL-MIX evaluation, where models are tasked with composing a short paragraph demonstrating the use of a specified k-tuple of language skills. While small models struggled with composing even with k=3, larger models like GPT-4 performed reasonably well with k=5 and 6. In this paper, we employ a setup akin to SKILL-MIX to evaluate the capacity of smaller models to learn compositional generalization from examples. Utilizing a diverse set of language skills -- including rhetorical, literary, reasoning, theory of mind, and common sense -- GPT-4 was used to generate text samples that exhibit random subsets of k skills. Subsequent fine-tuning of 7B and 13B parameter models on these combined skill texts, for increasing values of k, revealed the following findings: (1) Training on combinations of k=2 and 3 skills results in noticeable improvements in the ability to compose texts with k=4 and 5 skills, despite models never having seen such examples during training. (2) When skill categories are split into training and held-out groups, models significantly improve at composing texts with held-out skills during testing despite having only seen training skills during fine-tuning, illustrating the efficacy of the training approach even with previously unseen skills. This study also suggests that incorporating skill-rich (potentially synthetic) text into training can substantially enhance the compositional capabilities of models.
Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter
Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families and/or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we analyze cross-lingual transfer for 266 languages from a wide variety of language families. Moreover, we include three popular NLP tasks: POS tagging, dependency parsing, and topic classification. Our findings indicate that the effect of linguistic similarity on transfer performance depends on a range of factors: the NLP task, the (mono- or multilingual) input representations, and the definition of linguistic similarity.
MELABenchv1: Benchmarking Large Language Models against Smaller Fine-Tuned Models for Low-Resource Maltese NLP
Large Language Models (LLMs) have demonstrated remarkable performance across various Natural Language Processing (NLP) tasks, largely due to their generalisability and ability to perform tasks without additional training. However, their effectiveness for low-resource languages remains limited. In this study, we evaluate the performance of 55 publicly available LLMs on Maltese, a low-resource language, using a newly introduced benchmark covering 11 discriminative and generative tasks. Our experiments highlight that many models perform poorly, particularly on generative tasks, and that smaller fine-tuned models often perform better across all tasks. From our multidimensional analysis, we investigate various factors impacting performance. We conclude that prior exposure to Maltese during pre-training and instruction-tuning emerges as the most important factor. We also examine the trade-offs between fine-tuning and prompting, highlighting that while fine-tuning requires a higher initial cost, it yields better performance and lower inference costs. Through this work, we aim to highlight the need for more inclusive language technologies and recommend that researchers working with low-resource languages consider more "traditional" language modelling approaches.
AraTrust: An Evaluation of Trustworthiness for LLMs in Arabic
The swift progress and widespread acceptance of artificial intelligence (AI) systems highlight a pressing requirement to comprehend both the capabilities and potential risks associated with AI. Given the linguistic complexity, cultural richness, and underrepresented status of Arabic in AI research, there is a pressing need to focus on Large Language Models (LLMs) performance and safety for Arabic-related tasks. Despite some progress in their development, there is a lack of comprehensive trustworthiness evaluation benchmarks, which presents a major challenge in accurately assessing and improving the safety of LLMs when prompted in Arabic. In this paper, we introduce AraTrust, the first comprehensive trustworthiness benchmark for LLMs in Arabic. AraTrust comprises 522 human-written multiple-choice questions addressing diverse dimensions related to truthfulness, ethics, safety, physical health, mental health, unfairness, illegal activities, privacy, and offensive language. We evaluated a set of LLMs against our benchmark to assess their trustworthiness. GPT-4 was the most trustworthy LLM, while open-source models, particularly AceGPT 7B and Jais 13B, struggled to achieve a score of 60% in our benchmark.
LERT: A Linguistically-motivated Pre-trained Language Model
Pre-trained Language Model (PLM) has become a representative foundation model in the natural language processing field. Most PLMs are trained with linguistic-agnostic pre-training tasks on the surface form of the text, such as the masked language model (MLM). To further empower the PLMs with richer linguistic features, in this paper, we aim to propose a simple but effective way to learn linguistic features for pre-trained language models. We propose LERT, a pre-trained language model that is trained on three types of linguistic features along with the original MLM pre-training task, using a linguistically-informed pre-training (LIP) strategy. We carried out extensive experiments on ten Chinese NLU tasks, and the experimental results show that LERT could bring significant improvements over various comparable baselines. Furthermore, we also conduct analytical experiments in various linguistic aspects, and the results prove that the design of LERT is valid and effective. Resources are available at https://github.com/ymcui/LERT
Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data
Large Language Models (LLMs) like ChatGPT demonstrate significant potential in the medical field, often evaluated using multiple-choice questions (MCQs) similar to those found on the USMLE. Despite their prevalence in medical education, MCQs have limitations that might be exacerbated when assessing LLMs. To evaluate the effectiveness of MCQs in assessing the performance of LLMs, we developed a fictional medical benchmark focused on a non-existent gland, the Glianorex. This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities. We used GPT-4 to generate a comprehensive textbook on the Glianorex in both English and French and developed corresponding multiple-choice questions in both languages. We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting. The models achieved average scores around 67%, with minor performance differences between larger and smaller models. Performance was slightly higher in English than in French. Fine-tuned medical models showed some improvement over their base versions in English but not in French. The uniformly high performance across models suggests that traditional MCQ-based benchmarks may not accurately measure LLMs' clinical knowledge and reasoning abilities, instead highlighting their pattern recognition skills. This study underscores the need for more robust evaluation methods to better assess the true capabilities of LLMs in medical contexts.
Evaluating the Quality of Benchmark Datasets for Low-Resource Languages: A Case Study on Turkish
The reliance on translated or adapted datasets from English or multilingual resources introduces challenges regarding linguistic and cultural suitability. This study addresses the need for robust and culturally appropriate benchmarks by evaluating the quality of 17 commonly used Turkish benchmark datasets. Using a comprehensive framework that assesses six criteria, both human and LLM-judge annotators provide detailed evaluations to identify dataset strengths and shortcomings. Our results reveal that 70% of the benchmark datasets fail to meet our heuristic quality standards. The correctness of the usage of technical terms is the strongest criterion, but 85% of the criteria are not satisfied in the examined datasets. Although LLM judges demonstrate potential, they are less effective than human annotators, particularly in understanding cultural common sense knowledge and interpreting fluent, unambiguous text. GPT-4o has stronger labeling capabilities for grammatical and technical tasks, while Llama3.3-70B excels at correctness and cultural knowledge evaluation. Our findings emphasize the urgent need for more rigorous quality control in creating and adapting datasets for low-resource languages.
Linguistic Calibration of Language Models
Language models (LMs) may lead their users to make suboptimal downstream decisions when they confidently hallucinate. This issue can be mitigated by having the LM verbally convey the probability that its claims are correct, but existing models cannot produce text with calibrated confidence statements. Through the lens of decision-making, we formalize linguistic calibration for long-form generations: an LM is linguistically calibrated if its generations enable its users to make calibrated probabilistic predictions. This definition enables a training framework where a supervised finetuning step bootstraps an LM to emit long-form generations with confidence statements such as "I estimate a 30% chance of..." or "I am certain that...", followed by a reinforcement learning step which rewards generations that enable a user to provide calibrated answers to related questions. We linguistically calibrate Llama 2 7B and find in automated and human evaluations of long-form generations that it is significantly more calibrated than strong finetuned factuality baselines with comparable accuracy. These findings generalize under distribution shift on question-answering and under a significant task shift to person biography generation. Our results demonstrate that long-form generations may be calibrated end-to-end by constructing an objective in the space of the predictions that users make in downstream decision-making.
Open Generative Large Language Models for Galician
Large language models (LLMs) have transformed natural language processing. Yet, their predominantly English-centric training has led to biases and performance disparities across languages. This imbalance marginalizes minoritized languages, making equitable access to NLP technologies more difficult for languages with lower resources, such as Galician. We present the first two generative LLMs focused on Galician to bridge this gap. These models, freely available as open-source resources, were trained using a GPT architecture with 1.3B parameters on a corpus of 2.1B words. Leveraging continual pretraining, we adapt to Galician two existing LLMs trained on larger corpora, thus mitigating the data constraints that would arise if the training were performed from scratch. The models were evaluated using human judgments and task-based datasets from standardized benchmarks. These evaluations reveal a promising performance, underscoring the importance of linguistic diversity in generative models.
The Challenge of Achieving Attributability in Multilingual Table-to-Text Generation with Question-Answer Blueprints
Multilingual Natural Language Generation (NLG) is challenging due to the lack of training data for low-resource languages. However, some low-resource languages have up to tens of millions of speakers globally, making it important to improve NLG tools for them. Table-to-Text NLG is an excellent measure of models' reasoning abilities but is very challenging in the multilingual setting. System outputs are often not attributable, or faithful, to the data in the source table. Intermediate planning techniques like Question-Answer (QA) blueprints have been shown to improve attributability on summarisation tasks. This work explores whether QA blueprints make multilingual Table-to-Text outputs more attributable to the input tables. This paper extends the challenging multilingual Table-to-Text dataset, TaTA, which includes African languages, with QA blueprints. Sequence-to-sequence language models are then finetuned on this dataset, with and without blueprints. Results show that QA blueprints improve performance for models finetuned and evaluated only on English examples, but do not demonstrate gains in the multilingual setting. This is due to inaccuracies in machine translating the blueprints from English into target languages when generating the training data, and models failing to rely closely on the blueprints they generate. An in-depth analysis is conducted on why this is challenging.
How Far Can Cantonese NLP Go? Benchmarking Cantonese Capabilities of Large Language Models
The rapid evolution of large language models (LLMs) has transformed the competitive landscape in natural language processing (NLP), particularly for English and other data-rich languages. However, underrepresented languages like Cantonese, spoken by over 85 million people, face significant development gaps, which is particularly concerning given the economic significance of the Guangdong-Hong Kong-Macau Greater Bay Area, and in substantial Cantonese-speaking populations in places like Singapore and North America. Despite its wide use, Cantonese has scant representation in NLP research, especially compared to other languages from similarly developed regions. To bridge these gaps, we outline current Cantonese NLP methods and introduce new benchmarks designed to evaluate LLM performance in factual generation, mathematical logic, complex reasoning, and general knowledge in Cantonese, which aim to advance open-source Cantonese LLM technology. We also propose future research directions and recommended models to enhance Cantonese LLM development.
MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks
Recently, there has been a rapid advancement in research on Large Language Models (LLMs), resulting in significant progress in several Natural Language Processing (NLP) tasks. Consequently, there has been a surge in LLM evaluation research to comprehend the models' capabilities and limitations. However, much of this research has been confined to the English language, leaving LLM building and evaluation for non-English languages relatively unexplored. There has been an introduction of several new LLMs, necessitating their evaluation on non-English languages. This study aims to expand our MEGA benchmarking suite by including six new datasets to form the MEGAVERSE benchmark. The benchmark comprises 22 datasets covering 81 languages, including low-resource African languages. We evaluate several state-of-the-art LLMs like GPT-3.5-Turbo, GPT4, PaLM2, and Llama2 on the MEGAVERSE datasets. Additionally, we include two multimodal datasets in the benchmark and assess the performance of the LLaVa-v1.5 model. Our experiments suggest that GPT4 and PaLM2 outperform the Llama models on various tasks, notably on low-resource languages, with GPT4 outperforming PaLM2 on more datasets than vice versa. However, issues such as data contamination must be addressed to obtain an accurate assessment of LLM performance on non-English languages.
Towards Open Foundation Language Model and Corpus for Macedonian: A Low-Resource Language
The increase in technological adoption worldwide comes with demands for novel tools to be used by the general population. Large Language Models (LLMs) provide a great opportunity in this respect, but their capabilities remain limited for low-resource languages, restricting applications in countries where such languages are spoken. We create several resources to facilitate the adoption of LLMs and to support research advancements for Macedonian. We collect the largest Macedonian corpus to date, consisting of 40GB of textual data and totaling 3.5B words. To support conversational applications, we collect a 106k-instance instruction dataset, carefully built to be culturally grounded. For evaluation, we construct a Macedonian evaluation suite covering seven benchmarks. Finally, we train domestic-yak, a state-of-the-art 8B-parameter model, on our curated datasets and evaluate it against eight baseline models using the newly constructed benchmark suite. Our model outperforms all existing models in the 8B parameter range across all benchmarks, and achieves performance comparable to models up to 10x larger. Furthermore, a qualitative analysis with native speakers reveals that our model is preferred over larger counterparts, receiving higher ratings for grammatical correctness and cultural appropriateness. All datasets, code, and model weights are openly released, setting a foundation for advancing LLMs in similarly underrepresented languages. These resources are publicly available at github.com/LVSTCK for source code, and at huggingface.co/LVSTCK for pretrained model weights and data.
BLUEX: A benchmark based on Brazilian Leading Universities Entrance eXams
One common trend in recent studies of language models (LMs) is the use of standardized tests for evaluation. However, despite being the fifth most spoken language worldwide, few such evaluations have been conducted in Portuguese. This is mainly due to the lack of high-quality datasets available to the community for carrying out evaluations in Portuguese. To address this gap, we introduce the Brazilian Leading Universities Entrance eXams (BLUEX), a dataset of entrance exams from the two leading universities in Brazil: UNICAMP and USP. The dataset includes annotated metadata for evaluating the performance of NLP models on a variety of subjects. Furthermore, BLUEX includes a collection of recently administered exams that are unlikely to be included in the training data of many popular LMs as of 2023. The dataset is also annotated to indicate the position of images in each question, providing a valuable resource for advancing the state-of-the-art in multimodal language understanding and reasoning. We describe the creation and characteristics of BLUEX and establish a benchmark through experiments with state-of-the-art LMs, demonstrating its potential for advancing the state-of-the-art in natural language understanding and reasoning in Portuguese. The data and relevant code can be found at https://github.com/Portuguese-Benchmark-Datasets/BLUEX
CLR-Bench: Evaluating Large Language Models in College-level Reasoning
Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. QrightarrowA is utilized to measure the performance of direct answer prediction, and QrightarrowAR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% QrightarrowA to 39.00% QrightarrowAR, indicating an unsatisfactory reasoning ability.
LLaMA Beyond English: An Empirical Study on Language Capability Transfer
In recent times, substantial advancements have been witnessed in large language models (LLMs), exemplified by ChatGPT, showcasing remarkable proficiency across a range of complex tasks. However, many mainstream LLMs (e.g. LLaMA) are pretrained on English-dominant corpus, which limits their performance in other non-English languages. In this paper, we focus on how to effectively transfer the capabilities of language generation and following instructions to a non-English language. To answer this question, we conduct an extensive empirical investigation based on LLaMA, accumulating over 1440 GPU hours. We analyze the impact of key factors such as vocabulary extension, further pretraining, and instruction tuning on transfer. To accurately assess the model's level of knowledge, we employ four widely used standardized testing benchmarks: C-Eval, MMLU, AGI-Eval, and GAOKAO-Bench. Furthermore, a comprehensive evaluation of the model's response quality is conducted, considering aspects such as accuracy, fluency, informativeness, logical coherence, and harmlessness, based on LLM-Eval, a benchmarks consisting instruction tasks from 17 diverse categories. Our evaluation results demonstrate that comparable performance to state-of-the-art transfer models can be achieved with less than 1% of the pretraining data, both in terms of knowledge alignment and response quality. Furthermore, the experimental outcomes across the thirteen low-resource languages also exhibit similar trends. We anticipate that the conclusions revealed by the experiments will aid the community in developing non-English LLMs.
Large Language Models in Student Assessment: Comparing ChatGPT and Human Graders
This study investigates the efficacy of large language models (LLMs) as tools for grading master-level student essays. Utilizing a sample of 60 essays in political science, the study compares the accuracy of grades suggested by the GPT-4 model with those awarded by university teachers. Results indicate that while GPT-4 aligns with human grading standards on mean scores, it exhibits a risk-averse grading pattern and its interrater reliability with human raters is low. Furthermore, modifications in the grading instructions (prompt engineering) do not significantly alter AI performance, suggesting that GPT-4 primarily assesses generic essay characteristics such as language quality rather than adapting to nuanced grading criteria. These findings contribute to the understanding of AI's potential and limitations in higher education, highlighting the need for further development to enhance its adaptability and sensitivity to specific educational assessment requirements.
INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge
The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.
CLIMB: Curriculum Learning for Infant-inspired Model Building
We describe our team's contribution to the STRICT-SMALL track of the BabyLM Challenge. The challenge requires training a language model from scratch using only a relatively small training dataset of ten million words. We experiment with three variants of cognitively-motivated curriculum learning and analyze their effect on the performance of the model on linguistic evaluation tasks. In the vocabulary curriculum, we analyze methods for constraining the vocabulary in the early stages of training to simulate cognitively more plausible learning curves. In the data curriculum experiments, we vary the order of the training instances based on i) infant-inspired expectations and ii) the learning behavior of the model. In the objective curriculum, we explore different variations of combining the conventional masked language modeling task with a more coarse-grained word class prediction task to reinforce linguistic generalization capabilities. Our results did not yield consistent improvements over our own non-curriculum learning baseline across a range of linguistic benchmarks; however, we do find marginal gains on select tasks. Our analysis highlights key takeaways for specific combinations of tasks and settings which benefit from our proposed curricula. We moreover determine that careful selection of model architecture, and training hyper-parameters yield substantial improvements over the default baselines provided by the BabyLM challenge.
Could Thinking Multilingually Empower LLM Reasoning?
Previous work indicates that large language models exhibit a significant "English bias", i.e. they often perform better when tasks are presented in English. Interestingly, we have observed that using certain other languages in reasoning tasks can yield better performance than English. However, this phenomenon remains under-explored. In this paper, we explore the upper bound of harnessing multilingualism in reasoning tasks, suggesting that multilingual reasoning promises significantly (by nearly 10 Acc@k points) and robustly (tolerance for variations in translation quality and language choice) higher upper bounds than English-only reasoning. Besides analyzing the reason behind the upper bound and challenges in reaching it, we also find that common answer selection methods cannot achieve this upper bound, due to their limitations and biases. These insights could pave the way for future research aimed at fully harnessing the potential of multilingual reasoning in LLMs.
Understanding and Tackling Label Errors in Individual-Level Nature Language Understanding
Natural language understanding (NLU) is a task that enables machines to understand human language. Some tasks, such as stance detection and sentiment analysis, are closely related to individual subjective perspectives, thus termed individual-level NLU. Previously, these tasks are often simplified to text-level NLU tasks, ignoring individual factors. This not only makes inference difficult and unexplainable but often results in a large number of label errors when creating datasets. To address the above limitations, we propose a new NLU annotation guideline based on individual-level factors. Specifically, we incorporate other posts by the same individual and then annotate individual subjective perspectives after considering all individual posts. We use this guideline to expand and re-annotate the stance detection and topic-based sentiment analysis datasets. We find that error rates in the samples were as high as 31.7\% and 23.3\%. We further use large language models to conduct experiments on the re-annotation datasets and find that the large language models perform well on both datasets after adding individual factors. Both GPT-4o and Llama3-70B can achieve an accuracy greater than 87\% on the re-annotation datasets. We also verify the effectiveness of individual factors through ablation studies. We call on future researchers to add individual factors when creating such datasets. Our re-annotation dataset can be found at https://github.com/24yearsoldstudent/Individual-NLU
Do Moral Judgment and Reasoning Capability of LLMs Change with Language? A Study using the Multilingual Defining Issues Test
This paper explores the moral judgment and moral reasoning abilities exhibited by Large Language Models (LLMs) across languages through the Defining Issues Test. It is a well known fact that moral judgment depends on the language in which the question is asked. We extend the work of beyond English, to 5 new languages (Chinese, Hindi, Russian, Spanish and Swahili), and probe three LLMs -- ChatGPT, GPT-4 and Llama2Chat-70B -- that shows substantial multilingual text processing and generation abilities. Our study shows that the moral reasoning ability for all models, as indicated by the post-conventional score, is substantially inferior for Hindi and Swahili, compared to Spanish, Russian, Chinese and English, while there is no clear trend for the performance of the latter four languages. The moral judgments too vary considerably by the language.
Decomposed Prompting: Unveiling Multilingual Linguistic Structure Knowledge in English-Centric Large Language Models
Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge.
CoCo-CoLa: Evaluating and Improving Language Adherence in Multilingual LLMs
Multilingual Large Language Models (LLMs) develop cross-lingual abilities despite being trained on limited parallel data. However, they often struggle to generate responses in the intended language, favoring high-resource languages such as English. In this work, we introduce CoCo-CoLa (Correct Concept - Correct Language), a novel metric to evaluate language adherence in multilingual LLMs. Using fine-tuning experiments on a closed-book QA task across seven languages, we analyze how training in one language affects others' performance. Our findings reveal that multilingual models share task knowledge across languages but exhibit biases in the selection of output language. We identify language-specific layers, showing that final layers play a crucial role in determining output language. Accordingly, we propose a partial training strategy that selectively fine-tunes key layers, improving language adherence while significantly reducing computational cost. Our method achieves comparable or superior performance to full fine-tuning, particularly for low-resource languages, offering a more efficient multilingual adaptation.
TurBLiMP: A Turkish Benchmark of Linguistic Minimal Pairs
We introduce TurBLiMP, the first Turkish benchmark of linguistic minimal pairs, designed to evaluate the linguistic abilities of monolingual and multilingual language models (LMs). Covering 16 linguistic phenomena with 1000 minimal pairs each, TurBLiMP fills an important gap in linguistic evaluation resources for Turkish. In designing the benchmark, we give extra attention to two properties of Turkish that remain understudied in current syntactic evaluations of LMs, namely word order flexibility and subordination through morphological processes. Our experiments on a wide range of LMs and a newly collected set of human acceptability judgments reveal that even cutting-edge Large LMs still struggle with grammatical phenomena that are not challenging for humans, and may also exhibit different sensitivities to word order and morphological complexity compared to humans.
Why We Build Local Large Language Models: An Observational Analysis from 35 Japanese and Multilingual LLMs
Why do we build local large language models (LLMs)? What should a local LLM learn from the target language? Which abilities can be transferred from other languages? Do language-specific scaling laws exist? To explore these research questions, we evaluated 35 Japanese, English, and multilingual LLMs on 19 evaluation benchmarks for Japanese and English, taking Japanese as a local language. Adopting an observational approach, we analyzed correlations of benchmark scores, and conducted principal component analysis (PCA) on the scores to derive ability factors of local LLMs. We found that training on English text can improve the scores of academic subjects in Japanese (JMMLU). In addition, it is unnecessary to specifically train on Japanese text to enhance abilities for solving Japanese code generation, arithmetic reasoning, commonsense, and reading comprehension tasks. In contrast, training on Japanese text could improve question-answering tasks about Japanese knowledge and English-Japanese translation, which indicates that abilities for solving these two tasks can be regarded as Japanese abilities for LLMs. Furthermore, we confirmed that the Japanese abilities scale with the computational budget for Japanese text.
Linguistic Dependencies and Statistical Dependence
Are pairs of words that tend to occur together also likely to stand in a linguistic dependency? This empirical question is motivated by a long history of literature in cognitive science, psycholinguistics, and NLP. In this work we contribute an extensive analysis of the relationship between linguistic dependencies and statistical dependence between words. Improving on previous work, we introduce the use of large pretrained language models to compute contextualized estimates of the pointwise mutual information between words (CPMI). For multiple models and languages, we extract dependency trees which maximize CPMI, and compare to gold standard linguistic dependencies. Overall, we find that CPMI dependencies achieve an unlabelled undirected attachment score of at most approx 0.5. While far above chance, and consistently above a non-contextualized PMI baseline, this score is generally comparable to a simple baseline formed by connecting adjacent words. We analyze which kinds of linguistic dependencies are best captured in CPMI dependencies, and also find marked differences between the estimates of the large pretrained language models, illustrating how their different training schemes affect the type of dependencies they capture.
FLUKE: A Linguistically-Driven and Task-Agnostic Framework for Robustness Evaluation
We present FLUKE (Framework for LingUistically-driven and tasK-agnostic robustness Evaluation), a task-agnostic framework for assessing model robustness through systematic minimal variations of test data. FLUKE introduces controlled variations across linguistic levels - from orthography to dialect and style varieties - and leverages large language models (LLMs) with human validation to generate modifications. We demonstrate FLUKE's utility by evaluating both fine-tuned models and LLMs across four diverse NLP tasks, and reveal that (1) the impact of linguistic variations is highly task-dependent, with some tests being critical for certain tasks but irrelevant for others; (2) while LLMs have better overall robustness compared to fine-tuned models, they still exhibit significant brittleness to certain linguistic variations; (3) all models show substantial vulnerability to negation modifications across most tasks. These findings highlight the importance of systematic robustness testing for understanding model behaviors.
UI-Level Evaluation of ALLaM 34B: Measuring an Arabic-Centric LLM via HUMAIN Chat
Large language models (LLMs) trained primarily on English corpora often struggle to capture the linguistic and cultural nuances of Arabic. To address this gap, the Saudi Data and AI Authority (SDAIA) introduced the ALLaM family of Arabic-focused models. The most capable of these available to the public, ALLaM-34B, was subsequently adopted by HUMAIN, who developed and deployed HUMAIN Chat, a closed conversational web service built on this model. This paper presents an expanded and refined UI-level evaluation of ALLaM-34B. Using a prompt pack spanning modern standard Arabic, five regional dialects, code-switching, factual knowledge, arithmetic and temporal reasoning, creative generation, and adversarial safety, we collected 115 outputs (23 prompts times 5 runs) and scored each with three frontier LLM judges (GPT-5, Gemini 2.5 Pro, Claude Sonnet-4). We compute category-level means with 95\% confidence intervals, analyze score distributions, and visualize dialect-wise metric heat maps. The updated analysis reveals consistently high performance on generation and code-switching tasks (both averaging 4.92/5), alongside strong results in MSA handling (4.74/5), solid reasoning ability (4.64/5), and improved dialect fidelity (4.21/5). Safety-related prompts show stable, reliable performance of (4.54/5). Taken together, these results position ALLaM-34B as a robust and culturally grounded Arabic LLM, demonstrating both technical strength and practical readiness for real-world deployment.
Language Complexity Measurement as a Noisy Zero-Shot Proxy for Evaluating LLM Performance
Large Language Models (LLMs) have made significant strides in natural language generation but often face challenges in tasks requiring precise calculations and structural analysis. This paper investigates the performance of state-of-the-art LLMs on language complexity measurement tasks, through the computation of the LIX readability metric and Average Dependency Distance (ADD). Using Swedish high school and university-level essays, we evaluate the models' abilities to compute LIX scores and perform dependency parsing, comparing their results to established ground truths. Our findings reveal that while all models demonstrate some capacity for these tasks, ChatGPT-o1-mini performs most consistently, achieving the highest accuracy in both LIX computation and dependency parsing. Additionally, we observe a strong significant correlation -0.875 p 0.026 (N=6) between the models' accuracy in computing LIX and their overall performance on the Massive Multitask Language Understanding (MMLU) benchmark. These results suggest that language complexity measurement abilities can serve as a noisy zero-shot proxies for assessing the general capabilities of LLMs, providing a practical method for model evaluation without the need for extensive benchmarking datasets.
The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
Can LLM Generate Culturally Relevant Commonsense QA Data? Case Study in Indonesian and Sundanese
Large Language Models (LLMs) are increasingly being used to generate synthetic data for training and evaluating models. However, it is unclear whether they can generate a good quality of question answering (QA) dataset that incorporates knowledge and cultural nuance embedded in a language, especially for low-resource languages. In this study, we investigate the effectiveness of using LLMs in generating culturally relevant commonsense QA datasets for Indonesian and Sundanese languages. To do so, we create datasets for these languages using various methods involving both LLMs and human annotators, resulting in ~4.5K questions per language (~9K in total), making our dataset the largest of its kind. Our experiments show that automatic data adaptation from an existing English dataset is less effective for Sundanese. Interestingly, using the direct generation method on the target language, GPT-4 Turbo can generate questions with adequate general knowledge in both languages, albeit not as culturally 'deep' as humans. We also observe a higher occurrence of fluency errors in the Sundanese dataset, highlighting the discrepancy between medium- and lower-resource languages.
SandboxAQ's submission to MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval
This paper explores the problems of Question Answering (QA) and Named Entity Recognition (NER) in five diverse languages. We tested five Large Language Models with various prompting methods, including zero-shot, chain-of-thought reasoning, and translation techniques. Our results show that while some models consistently outperform others, their effectiveness varies significantly across tasks and languages. We saw that advanced prompting techniques generally improved QA performance but had mixed results for NER; and we observed that language difficulty patterns differed between tasks. Our findings highlight the need for task-specific approaches in multilingual NLP and suggest that current models may develop different linguistic competencies for different tasks.
PARIKSHA : A Large-Scale Investigation of Human-LLM Evaluator Agreement on Multilingual and Multi-Cultural Data
Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors -- the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyse the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.
Parallel Scaling Law: Unveiling Reasoning Generalization through A Cross-Linguistic Perspective
Recent advancements in Reinforcement Post-Training (RPT) have significantly enhanced the capabilities of Large Reasoning Models (LRMs), sparking increased interest in the generalization of RL-based reasoning. While existing work has primarily focused on investigating its generalization across tasks or modalities, this study proposes a novel cross-linguistic perspective to investigate reasoning generalization. This raises a crucial question: Does the reasoning capability achieved from English RPT effectively transfer to other languages? We address this by systematically evaluating English-centric LRMs on multilingual reasoning benchmarks and introducing a metric to quantify cross-lingual transferability. Our findings reveal that cross-lingual transferability varies significantly across initial model, target language, and training paradigm. Through interventional studies, we find that models with stronger initial English capabilities tend to over-rely on English-specific patterns, leading to diminished cross-lingual generalization. To address this, we conduct a thorough parallel training study. Experimental results yield three key findings: First-Parallel Leap, a substantial leap in performance when transitioning from monolingual to just a single parallel language, and a predictable Parallel Scaling Law, revealing that cross-lingual reasoning transfer follows a power-law with the number of training parallel languages. Moreover, we identify the discrepancy between actual monolingual performance and the power-law prediction as Monolingual Generalization Gap, indicating that English-centric LRMs fail to fully generalize across languages. Our study challenges the assumption that LRM reasoning mirrors human cognition, providing critical insights for the development of more language-agnostic LRMs.
AGIBench: A Multi-granularity, Multimodal, Human-referenced, Auto-scoring Benchmark for Large Language Models
Large language models (LLMs) like ChatGPT have revealed amazing intelligence. How to evaluate the question-solving abilities of LLMs and their degrees of intelligence is a hot-spot but challenging issue. First, the question-solving abilities are interlaced with different ability branches like understanding and massive knowledge categories like mathematics. Second, the inputs of questions are multimodal that may involve text and images. Third, the response format of LLMs is diverse and thus poses great challenges for result extraction and evaluation. In this paper, we propose AGIBench -- a multi-granularity, multimodal, human-referenced, and auto-scoring benchmarking methodology for LLMs. Instead of a collection of blended questions, AGIBench focuses on three typical ability branches and adopts a four-tuple <ability branch, knowledge, difficulty, modal> to label the attributes of each question. First, it supports multi-granularity benchmarking, e.g., per-question, per-ability branch, per-knowledge, per-modal, per-dataset, and per-difficulty level granularities. Second, it contains multimodal input, including text and images. Third, it classifies all the questions into five degrees of difficulty according to the average accuracy rate of abundant educated humans (human-referenced). Fourth, it adopts zero-shot learning to avoid introducing additional unpredictability and provides an auto-scoring method to extract and judge the result. Finally, it defines multi-dimensional metrics, including accuracy under the average, worst, best, and majority voting cases, and repeatability. AGIBench is publically available from https://www.benchcouncil.org/agibench.
Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages
The development of Large Language Models (LLMs) relies on extensive text corpora, which are often unevenly distributed across languages. This imbalance results in LLMs performing significantly better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate. Currently, there is a lack of quantitative methods to evaluate the performance of LLMs in these low-resource languages. To address this gap, we propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations. By comparing the LLM's internal representation of various languages against a baseline derived from English, we can assess the model's multilingual capabilities in a robust and language-agnostic manner. Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores, underscoring the effectiveness of our metric in assessing language-specific capabilities. Besides, the experiments show that there is a strong correlation between the LLM's performance in different languages and the proportion of those languages in its pre-training corpus. These insights underscore the efficacy of the Language Ranker as a tool for evaluating LLM performance across different languages, particularly those with limited resources.
Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding
There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work concerns addressing two major problems in existing Arabic PLMs which constraint progress of the Arabic NLU and NLG fields.First, existing Arabic PLMs are not well-explored and their pre-trainig can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. In this work, we revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore improving Arabic LMs from three perspectives: quality of the pre-training data, size of the model, and incorporating character-level information. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE that is a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the ARGEN benchmark for Arabic NLG tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce of results will be made available shortly.
HKCanto-Eval: A Benchmark for Evaluating Cantonese Language Understanding and Cultural Comprehension in LLMs
The ability of language models to comprehend and interact in diverse linguistic and cultural landscapes is crucial. The Cantonese language used in Hong Kong presents unique challenges for natural language processing due to its rich cultural nuances and lack of dedicated evaluation datasets. The HKCanto-Eval benchmark addresses this gap by evaluating the performance of large language models (LLMs) on Cantonese language understanding tasks, extending to English and Written Chinese for cross-lingual evaluation. HKCanto-Eval integrates cultural and linguistic nuances intrinsic to Hong Kong, providing a robust framework for assessing language models in realistic scenarios. Additionally, the benchmark includes questions designed to tap into the underlying linguistic metaknowledge of the models. Our findings indicate that while proprietary models generally outperform open-weight models, significant limitations remain in handling Cantonese-specific linguistic and cultural knowledge, highlighting the need for more targeted training data and evaluation methods. The code can be accessed at https://github.com/hon9kon9ize/hkeval2025
Fumbling in Babel: An Investigation into ChatGPT's Language Identification Ability
Recently, ChatGPT has emerged as a powerful NLP tool that can carry out several tasks. However, the range of languages ChatGPT can handle remains largely a mystery. In this work, we investigate ChatGPT's language identification abilities. For this purpose, we compile Babel-670, a benchmark comprising 670 languages representing 23 language families. Languages in Babel-670 run the gamut between the very high-resource to the very low-resource and are spoken in five continents. We then study ChatGPT's (both GPT-3.5 and GPT-4) ability to (i) identify both language names and language codes (ii) under both zero- and few-shot conditions (iii) with and without provision of label set. When compared to smaller finetuned language identification tools, we find that ChatGPT lags behind. Our empirical analysis shows the reality that ChatGPT still resides in a state of potential enhancement before it can sufficiently serve diverse communities.
JamPatoisNLI: A Jamaican Patois Natural Language Inference Dataset
JamPatoisNLI provides the first dataset for natural language inference in a creole language, Jamaican Patois. Many of the most-spoken low-resource languages are creoles. These languages commonly have a lexicon derived from a major world language and a distinctive grammar reflecting the languages of the original speakers and the process of language birth by creolization. This gives them a distinctive place in exploring the effectiveness of transfer from large monolingual or multilingual pretrained models. While our work, along with previous work, shows that transfer from these models to low-resource languages that are unrelated to languages in their training set is not very effective, we would expect stronger results from transfer to creoles. Indeed, our experiments show considerably better results from few-shot learning of JamPatoisNLI than for such unrelated languages, and help us begin to understand how the unique relationship between creoles and their high-resource base languages affect cross-lingual transfer. JamPatoisNLI, which consists of naturally-occurring premises and expert-written hypotheses, is a step towards steering research into a traditionally underserved language and a useful benchmark for understanding cross-lingual NLP.
Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments
Large Language Models (LLMs) have shown remarkable performance across various tasks, yet significant disparities remain for non-English languages, and especially native African languages. This paper addresses these disparities by creating approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages, covering a population of over 160 million speakers of: Amharic, Bambara, Igbo, Sepedi (Northern Sotho), Shona, Sesotho (Southern Sotho), Setswana, and Tsonga. Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology. Using the translated benchmarks, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages. Finally, using results from over 400 fine-tuned models, we explore several methods to reduce the LLM performance gap, including high-quality dataset fine-tuning (using an LLM-as-an-Annotator), cross-lingual transfer, and cultural appropriateness adjustments. Key findings include average mono-lingual improvements of 5.6% with fine-tuning (with 5.4% average mono-lingual improvements when using high-quality data over low-quality data), 2.9% average gains from cross-lingual transfer, and a 3.0% out-of-the-box performance boost on culturally appropriate questions. The publicly available benchmarks, translations, and code from this study support further research and development aimed at creating more inclusive and effective language technologies.
Large Language Models Pass the Turing Test
We evaluated 4 systems (ELIZA, GPT-4o, LLaMa-3.1-405B, and GPT-4.5) in two randomised, controlled, and pre-registered Turing tests on independent populations. Participants had 5 minute conversations simultaneously with another human participant and one of these systems before judging which conversational partner they thought was human. When prompted to adopt a humanlike persona, GPT-4.5 was judged to be the human 73% of the time: significantly more often than interrogators selected the real human participant. LLaMa-3.1, with the same prompt, was judged to be the human 56% of the time -- not significantly more or less often than the humans they were being compared to -- while baseline models (ELIZA and GPT-4o) achieved win rates significantly below chance (23% and 21% respectively). The results constitute the first empirical evidence that any artificial system passes a standard three-party Turing test. The results have implications for debates about what kind of intelligence is exhibited by Large Language Models (LLMs), and the social and economic impacts these systems are likely to have.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
For natural language understanding (NLU) technology to be maximally useful, both practically and as a scientific object of study, it must be general: it must be able to process language in a way that is not exclusively tailored to any one specific task or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation benchmark (GLUE), a tool for evaluating and analyzing the performance of models across a diverse range of existing NLU tasks. GLUE is model-agnostic, but it incentivizes sharing knowledge across tasks because certain tasks have very limited training data. We further provide a hand-crafted diagnostic test suite that enables detailed linguistic analysis of NLU models. We evaluate baselines based on current methods for multi-task and transfer learning and find that they do not immediately give substantial improvements over the aggregate performance of training a separate model per task, indicating room for improvement in developing general and robust NLU systems.
Natural Language Inference in Context -- Investigating Contextual Reasoning over Long Texts
Natural language inference (NLI) is a fundamental NLP task, investigating the entailment relationship between two texts. Popular NLI datasets present the task at sentence-level. While adequate for testing semantic representations, they fall short for testing contextual reasoning over long texts, which is a natural part of the human inference process. We introduce ConTRoL, a new dataset for ConTextual Reasoning over Long texts. Consisting of 8,325 expert-designed "context-hypothesis" pairs with gold labels, ConTRoL is a passage-level NLI dataset with a focus on complex contextual reasoning types such as logical reasoning. It is derived from competitive selection and recruitment test (verbal reasoning test) for police recruitment, with expert level quality. Compared with previous NLI benchmarks, the materials in ConTRoL are much more challenging, involving a range of reasoning types. Empirical results show that state-of-the-art language models perform by far worse than educated humans. Our dataset can also serve as a testing-set for downstream tasks like Checking Factual Correctness of Summaries.
You don't understand me!: Comparing ASR results for L1 and L2 speakers of Swedish
The performance of Automatic Speech Recognition (ASR) systems has constantly increased in state-of-the-art development. However, performance tends to decrease considerably in more challenging conditions (e.g., background noise, multiple speaker social conversations) and with more atypical speakers (e.g., children, non-native speakers or people with speech disorders), which signifies that general improvements do not necessarily transfer to applications that rely on ASR, e.g., educational software for younger students or language learners. In this study, we focus on the gap in performance between recognition results for native and non-native, read and spontaneous, Swedish utterances transcribed by different ASR services. We compare the recognition results using Word Error Rate and analyze the linguistic factors that may generate the observed transcription errors.
Revisiting the Reliability of Psychological Scales on Large Language Models
Recent research has focused on examining Large Language Models' (LLMs) characteristics from a psychological standpoint, acknowledging the necessity of understanding their behavioral characteristics. The administration of personality tests to LLMs has emerged as a noteworthy area in this context. However, the suitability of employing psychological scales, initially devised for humans, on LLMs is a matter of ongoing debate. Our study aims to determine the reliability of applying personality assessments to LLMs, explicitly investigating whether LLMs demonstrate consistent personality traits. Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory, indicating a satisfactory level of reliability. Furthermore, our research explores the potential of GPT-3.5 to emulate diverse personalities and represent various groups-a capability increasingly sought after in social sciences for substituting human participants with LLMs to reduce costs. Our findings reveal that LLMs have the potential to represent different personalities with specific prompt instructions.
MMSU: A Massive Multi-task Spoken Language Understanding and Reasoning Benchmark
Speech inherently contains rich acoustic information that extends far beyond the textual language. In real-world spoken language understanding, effective interpretation often requires integrating semantic meaning (e.g., content), paralinguistic features (e.g., emotions, speed, pitch) and phonological characteristics (e.g., prosody, intonation, rhythm), which are embedded in speech. While recent multimodal Speech Large Language Models (SpeechLLMs) have demonstrated remarkable capabilities in processing audio information, their ability to perform fine-grained perception and complex reasoning in natural speech remains largely unexplored. To address this gap, we introduce MMSU, a comprehensive benchmark designed specifically for understanding and reasoning in spoken language. MMSU comprises 5,000 meticulously curated audio-question-answer triplets across 47 distinct tasks. To ground our benchmark in linguistic theory, we systematically incorporate a wide range of linguistic phenomena, including phonetics, prosody, rhetoric, syntactics, semantics, and paralinguistics. Through a rigorous evaluation of 14 advanced SpeechLLMs, we identify substantial room for improvement in existing models, highlighting meaningful directions for future optimization. MMSU establishes a new standard for comprehensive assessment of spoken language understanding, providing valuable insights for developing more sophisticated human-AI speech interaction systems. MMSU benchmark is available at https://huggingface.co/datasets/ddwang2000/MMSU. Evaluation Code is available at https://github.com/dingdongwang/MMSU_Bench.
Improving the Inclusivity of Dutch Speech Recognition by Fine-tuning Whisper on the JASMIN-CGN Corpus
We test and study the variation in speech recognition of fine-tuned versions of the Whisper model on child, elderly and non-native Dutch speech from the JASMIN-CGN corpus. Our primary goal is to evaluate how speakers' age and linguistic background influence Whisper's performance. Whisper achieves varying Word Error Rates (WER) when fine-tuned on subpopulations of specific ages and linguistic backgrounds. Fine-tuned performance is remarkably better than zero-shot performance, achieving a relative reduction in WER of 81% for native children, 72% for non-native children, 67% for non-native adults, and 65% for native elderly people. Our findings underscore the importance of training speech recognition models like Whisper on underrepresented subpopulations such as children, the elderly, and non-native speakers.
DHP Benchmark: Are LLMs Good NLG Evaluators?
Large Language Models (LLMs) are increasingly serving as evaluators in Natural Language Generation (NLG) tasks. However, the capabilities of LLMs in scoring NLG quality remain inadequately explored. Current studies depend on human assessments and simple metrics that fail to capture the discernment of LLMs across diverse NLG tasks. To address this gap, we propose the Discernment of Hierarchical Perturbation (DHP) benchmarking framework, which provides quantitative discernment scores for LLMs utilizing hierarchically perturbed text data and statistical tests to measure the NLG evaluation capabilities of LLMs systematically. We have re-established six evaluation datasets for this benchmark, covering four NLG tasks: Summarization, Story Completion, Question Answering, and Translation. Our comprehensive benchmarking of five major LLM series provides critical insight into their strengths and limitations as NLG evaluators.
MELAC: Massive Evaluation of Large Language Models with Alignment of Culture in Persian Language
As large language models (LLMs) become increasingly embedded in our daily lives, evaluating their quality and reliability across diverse contexts has become essential. While comprehensive benchmarks exist for assessing LLM performance in English, there remains a significant gap in evaluation resources for other languages. Moreover, because most LLMs are trained primarily on data rooted in European and American cultures, they often lack familiarity with non-Western cultural contexts. To address this limitation, our study focuses on the Persian language and Iranian culture. We introduce 19 new evaluation datasets specifically designed to assess LLMs on topics such as Iranian law, Persian grammar, Persian idioms, and university entrance exams. Using these datasets, we benchmarked 41 prominent LLMs, aiming to bridge the existing cultural and linguistic evaluation gap in the field.
Evaluating GPT-4 and ChatGPT on Japanese Medical Licensing Examinations
As large language models (LLMs) gain popularity among speakers of diverse languages, we believe that it is crucial to benchmark them to better understand model behaviors, failures, and limitations in languages beyond English. In this work, we evaluate LLM APIs (ChatGPT, GPT-3, and GPT-4) on the Japanese national medical licensing examinations from the past five years, including the current year. Our team comprises native Japanese-speaking NLP researchers and a practicing cardiologist based in Japan. Our experiments show that GPT-4 outperforms ChatGPT and GPT-3 and passes all six years of the exams, highlighting LLMs' potential in a language that is typologically distant from English. However, our evaluation also exposes critical limitations of the current LLM APIs. First, LLMs sometimes select prohibited choices that should be strictly avoided in medical practice in Japan, such as suggesting euthanasia. Further, our analysis shows that the API costs are generally higher and the maximum context size is smaller for Japanese because of the way non-Latin scripts are currently tokenized in the pipeline. We release our benchmark as Igaku QA as well as all model outputs and exam metadata. We hope that our results and benchmark will spur progress on more diverse applications of LLMs. Our benchmark is available at https://github.com/jungokasai/IgakuQA.
Through the Lens of Core Competency: Survey on Evaluation of Large Language Models
From pre-trained language model (PLM) to large language model (LLM), the field of natural language processing (NLP) has witnessed steep performance gains and wide practical uses. The evaluation of a research field guides its direction of improvement. However, LLMs are extremely hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inadequate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios. To tackle these problems, existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety. For every competency, we introduce its definition, corresponding benchmarks, and metrics. Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system. Finally, we give our suggestions on the future direction of LLM's evaluation.
Language Models' Factuality Depends on the Language of Inquiry
Multilingual language models (LMs) are expected to recall factual knowledge consistently across languages, yet they often fail to transfer knowledge between languages even when they possess the correct information in one of the languages. For example, we find that an LM may correctly identify Rashed Al Shashai as being from Saudi Arabia when asked in Arabic, but consistently fails to do so when asked in English or Swahili. To systematically investigate this limitation, we introduce a benchmark of 10,000 country-related facts across 13 languages and propose three novel metrics: Factual Recall Score, Knowledge Transferability Score, and Cross-Lingual Factual Knowledge Transferability Score-to quantify factual recall and knowledge transferability in LMs across different languages. Our results reveal fundamental weaknesses in today's state-of-the-art LMs, particularly in cross-lingual generalization where models fail to transfer knowledge effectively across different languages, leading to inconsistent performance sensitive to the language used. Our findings emphasize the need for LMs to recognize language-specific factual reliability and leverage the most trustworthy information across languages. We release our benchmark and evaluation framework to drive future research in multilingual knowledge transfer.
Cross-Lingual Consistency of Factual Knowledge in Multilingual Language Models
Multilingual large-scale Pretrained Language Models (PLMs) have been shown to store considerable amounts of factual knowledge, but large variations are observed across languages. With the ultimate goal of ensuring that users with different language backgrounds obtain consistent feedback from the same model, we study the cross-lingual consistency (CLC) of factual knowledge in various multilingual PLMs. To this end, we propose a Ranking-based Consistency (RankC) metric to evaluate knowledge consistency across languages independently from accuracy. Using this metric, we conduct an in-depth analysis of the determining factors for CLC, both at model level and at language-pair level. Among other results, we find that increasing model size leads to higher factual probing accuracy in most languages, but does not improve cross-lingual consistency. Finally, we conduct a case study on CLC when new factual associations are inserted in the PLMs via model editing. Results on a small sample of facts inserted in English reveal a clear pattern whereby the new piece of knowledge transfers only to languages with which English has a high RankC score.
Matching domain experts by training from scratch on domain knowledge
Recently, large language models (LLMs) have outperformed human experts in predicting the results of neuroscience experiments (Luo et al., 2024). What is the basis for this performance? One possibility is that statistical patterns in that specific scientific literature, as opposed to emergent reasoning abilities arising from broader training, underlie LLMs' performance. To evaluate this possibility, we trained (next word prediction) a relatively small 124M-parameter GPT-2 model on 1.3 billion tokens of domain-specific knowledge. Despite being orders of magnitude smaller than larger LLMs trained on trillions of tokens, small models achieved expert-level performance in predicting neuroscience results. Small models trained on the neuroscience literature succeeded when they were trained from scratch using a tokenizer specifically trained on neuroscience text or when the neuroscience literature was used to finetune a pretrained GPT-2. Our results indicate that expert-level performance may be attained by even small LLMs through domain-specific, auto-regressive training approaches.
I Think, Therefore I Am Under-Qualified? A Benchmark for Evaluating Linguistic Shibboleth Detection in LLM Hiring Evaluations
This paper introduces a comprehensive benchmark for evaluating how Large Language Models (LLMs) respond to linguistic shibboleths: subtle linguistic markers that can inadvertently reveal demographic attributes such as gender, social class, or regional background. Through carefully constructed interview simulations using 100 validated question-response pairs, we demonstrate how LLMs systematically penalize certain linguistic patterns, particularly hedging language, despite equivalent content quality. Our benchmark generates controlled linguistic variations that isolate specific phenomena while maintaining semantic equivalence, which enables the precise measurement of demographic bias in automated evaluation systems. We validate our approach along multiple linguistic dimensions, showing that hedged responses receive 25.6% lower ratings on average, and demonstrate the benchmark's effectiveness in identifying model-specific biases. This work establishes a foundational framework for detecting and measuring linguistic discrimination in AI systems, with broad applications to fairness in automated decision-making contexts.
ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models
AI generated content (AIGC) presents considerable challenge to educators around the world. Instructors need to be able to detect such text generated by large language models, either with the naked eye or with the help of some tools. There is also growing need to understand the lexical, syntactic and stylistic features of AIGC. To address these challenges in English language teaching, we first present ArguGPT, a balanced corpus of 4,038 argumentative essays generated by 7 GPT models in response to essay prompts from three sources: (1) in-class or homework exercises, (2) TOEFL and (3) GRE writing tasks. Machine-generated texts are paired with roughly equal number of human-written essays with three score levels matched in essay prompts. We then hire English instructors to distinguish machine essays from human ones. Results show that when first exposed to machine-generated essays, the instructors only have an accuracy of 61% in detecting them. But the number rises to 67% after one round of minimal self-training. Next, we perform linguistic analyses of these essays, which show that machines produce sentences with more complex syntactic structures while human essays tend to be lexically more complex. Finally, we test existing AIGC detectors and build our own detectors using SVMs and RoBERTa. Results suggest that a RoBERTa fine-tuned with the training set of ArguGPT achieves above 90% accuracy in both essay- and sentence-level classification. To the best of our knowledge, this is the first comprehensive analysis of argumentative essays produced by generative large language models. Machine-authored essays in ArguGPT and our models will be made publicly available at https://github.com/huhailinguist/ArguGPT
Lost in the Logic: An Evaluation of Large Language Models' Reasoning Capabilities on LSAT Logic Games
In this thesis, I evaluate the performance of Large Language Models (LLMs) on the Law School Admissions Test (LSAT), specifically the Logic Games section of the test. I focus on this section because it presents a complex logical reasoning task and thus is a valuable source of data for evaluating how modern, increasingly capable LLMs can handle hard logical reasoning tasks. I construct a dataset of LSAT logic games and their associated metadata, and extensively evaluate LLMs' performance in a Chain-of-Thought prompting setting. Given the weak performance in this setting, I explore other prompting frameworks on a smaller subset of the dataset, adapting ideas from Reflexion to this task. This results in a substantially improved accuracy of 70 percent for GPT-4 and 46 percent for GPT-3.5 on this data subset, highlighting the capacity of LLMs to revise their logical errors, despite initially weak performance. Finally, I analyze the types of logic games that models perform better or worse on, as well as the types of logical errors I observe from human annotation, providing detailed insights on the logical reasoning capabilities of LLMs.
Belief in the Machine: Investigating Epistemological Blind Spots of Language Models
As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.
Same Author or Just Same Topic? Towards Content-Independent Style Representations
Linguistic style is an integral component of language. Recent advances in the development of style representations have increasingly used training objectives from authorship verification (AV): Do two texts have the same author? The assumption underlying the AV training task (same author approximates same writing style) enables self-supervised and, thus, extensive training. However, a good performance on the AV task does not ensure good "general-purpose" style representations. For example, as the same author might typically write about certain topics, representations trained on AV might also encode content information instead of style alone. We introduce a variation of the AV training task that controls for content using conversation or domain labels. We evaluate whether known style dimensions are represented and preferred over content information through an original variation to the recently proposed STEL framework. We find that representations trained by controlling for conversation are better than representations trained with domain or no content control at representing style independent from content.
Assessing Translation capabilities of Large Language Models involving English and Indian Languages
Generative Large Language Models (LLMs) have achieved remarkable advancements in various NLP tasks. In this work, our aim is to explore the multilingual capabilities of large language models by using machine translation as a task involving English and 22 Indian languages. We first investigate the translation capabilities of raw large language models, followed by exploring the in-context learning capabilities of the same raw models. We fine-tune these large language models using parameter efficient fine-tuning methods such as LoRA and additionally with full fine-tuning. Through our study, we have identified the best performing large language model for the translation task involving LLMs, which is based on LLaMA. Our results demonstrate significant progress, with average BLEU scores of 13.42, 15.93, 12.13, 12.30, and 12.07, as well as CHRF scores of 43.98, 46.99, 42.55, 42.42, and 45.39, respectively, using 2-stage fine-tuned LLaMA-13b for English to Indian languages on IN22 (conversational), IN22 (general), flores200-dev, flores200-devtest, and newstest2019 testsets. Similarly, for Indian languages to English, we achieved average BLEU scores of 14.03, 16.65, 16.17, 15.35 and 12.55 along with chrF scores of 36.71, 40.44, 40.26, 39.51, and 36.20, respectively, using fine-tuned LLaMA-13b on IN22 (conversational), IN22 (general), flores200-dev, flores200-devtest, and newstest2019 testsets. Overall, our findings highlight the potential and strength of large language models for machine translation capabilities, including for languages that are currently underrepresented in LLMs.
SERENGETI: Massively Multilingual Language Models for Africa
Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\href{https://github.com/UBC-NLP/serengeti{https://github.com/UBC-NLP/serengeti}}
Evaluating the Symbol Binding Ability of Large Language Models for Multiple-Choice Questions in Vietnamese General Education
In this paper, we evaluate the ability of large language models (LLMs) to perform multiple choice symbol binding (MCSB) for multiple choice question answering (MCQA) tasks in zero-shot, one-shot, and few-shot settings. We focus on Vietnamese, with fewer challenging MCQA datasets than in English. The two existing datasets, ViMMRC 1.0 and ViMMRC 2.0, focus on literature. Recent research in Vietnamese natural language processing (NLP) has focused on the Vietnamese National High School Graduation Examination (VNHSGE) from 2019 to 2023 to evaluate ChatGPT. However, these studies have mainly focused on how ChatGPT solves the VNHSGE step by step. We aim to create a novel and high-quality dataset by providing structured guidelines for typing LaTeX formulas for mathematics, physics, chemistry, and biology. This dataset can be used to evaluate the MCSB ability of LLMs and smaller language models (LMs) because it is typed in a strict LaTeX style. We focus on predicting the character (A, B, C, or D) that is the most likely answer to a question, given the context of the question. Our evaluation of six well-known LLMs, namely BLOOMZ-7.1B-MT, LLaMA-2-7B, LLaMA-2-70B, GPT-3, GPT-3.5, and GPT-4.0, on the ViMMRC 1.0 and ViMMRC 2.0 benchmarks and our proposed dataset shows promising results on the MCSB ability of LLMs for Vietnamese. The dataset is available for research purposes only.
What's the Meaning of Superhuman Performance in Today's NLU?
In the last five years, there has been a significant focus in Natural Language Processing (NLP) on developing larger Pretrained Language Models (PLMs) and introducing benchmarks such as SuperGLUE and SQuAD to measure their abilities in language understanding, reasoning, and reading comprehension. These PLMs have achieved impressive results on these benchmarks, even surpassing human performance in some cases. This has led to claims of superhuman capabilities and the provocative idea that certain tasks have been solved. In this position paper, we take a critical look at these claims and ask whether PLMs truly have superhuman abilities and what the current benchmarks are really evaluating. We show that these benchmarks have serious limitations affecting the comparison between humans and PLMs and provide recommendations for fairer and more transparent benchmarks.
The Calibration Gap between Model and Human Confidence in Large Language Models
For large language models (LLMs) to be trusted by humans they need to be well-calibrated in the sense that they can accurately assess and communicate how likely it is that their predictions are correct. Recent work has focused on the quality of internal LLM confidence assessments, but the question remains of how well LLMs can communicate this internal model confidence to human users. This paper explores the disparity between external human confidence in an LLM's responses and the internal confidence of the model. Through experiments involving multiple-choice questions, we systematically examine human users' ability to discern the reliability of LLM outputs. Our study focuses on two key areas: (1) assessing users' perception of true LLM confidence and (2) investigating the impact of tailored explanations on this perception. The research highlights that default explanations from LLMs often lead to user overestimation of both the model's confidence and its' accuracy. By modifying the explanations to more accurately reflect the LLM's internal confidence, we observe a significant shift in user perception, aligning it more closely with the model's actual confidence levels. This adjustment in explanatory approach demonstrates potential for enhancing user trust and accuracy in assessing LLM outputs. The findings underscore the importance of transparent communication of confidence levels in LLMs, particularly in high-stakes applications where understanding the reliability of AI-generated information is essential.
Do language models practice what they preach? Examining language ideologies about gendered language reform encoded in LLMs
We study language ideologies in text produced by LLMs through a case study on English gendered language reform (related to role nouns like congressperson/-woman/-man, and singular they). First, we find political bias: when asked to use language that is "correct" or "natural", LLMs use language most similarly to when asked to align with conservative (vs. progressive) values. This shows how LLMs' metalinguistic preferences can implicitly communicate the language ideologies of a particular political group, even in seemingly non-political contexts. Second, we find LLMs exhibit internal inconsistency: LLMs use gender-neutral variants more often when more explicit metalinguistic context is provided. This shows how the language ideologies expressed in text produced by LLMs can vary, which may be unexpected to users. We discuss the broader implications of these findings for value alignment.
Development of an NLP-driven computer-based test guide for visually impaired students
In recent years, advancements in Natural Language Processing (NLP) techniques have revolutionized the field of accessibility and exclusivity of testing, particularly for visually impaired students (VIS). CBT has shown in years back its relevance in terms of administering exams electronically, making the test process easier, providing quicker and more accurate results, and offering greater flexibility and accessibility for candidates. Yet, its relevance was not felt by the visually impaired students as they cannot access printed documents. Hence, in this paper, we present an NLP-driven Computer-Based Test guide for visually impaired students. It employs a speech technology pre-trained methods to provide real-time assistance and support to visually impaired students. The system utilizes NLP technologies to convert the text-based questions and the associated options in a machine-readable format. Subsequently, the speech technology pre-trained model processes the converted text enabling the VIS to comprehend and analyze the content. Furthermore, we validated that this pre-trained model is not perverse by testing for accuracy using sample audio datasets labels (A, B, C, D, E, F, G) to compare with the voice recordings obtained from 20 VIS which is been predicted by the system to attain values for precision, recall, and F1-scores. These metrics are used to assess the performance of the pre-trained model and have indicated that it is proficient enough to give its better performance to the evaluated system. The methodology adopted for this system is Object Oriented Analysis and Design Methodology (OOADM) where Objects are discussed and built by modeling real-world instances.
Subspace Chronicles: How Linguistic Information Emerges, Shifts and Interacts during Language Model Training
Representational spaces learned via language modeling are fundamental to Natural Language Processing (NLP), however there has been limited understanding regarding how and when during training various types of linguistic information emerge and interact. Leveraging a novel information theoretic probing suite, which enables direct comparisons of not just task performance, but their representational subspaces, we analyze nine tasks covering syntax, semantics and reasoning, across 2M pre-training steps and five seeds. We identify critical learning phases across tasks and time, during which subspaces emerge, share information, and later disentangle to specialize. Across these phases, syntactic knowledge is acquired rapidly after 0.5% of full training. Continued performance improvements primarily stem from the acquisition of open-domain knowledge, while semantics and reasoning tasks benefit from later boosts to long-range contextualization and higher specialization. Measuring cross-task similarity further reveals that linguistically related tasks share information throughout training, and do so more during the critical phase of learning than before or after. Our findings have implications for model interpretability, multi-task learning, and learning from limited data.
Domain-adaptative Continual Learning for Low-resource Tasks: Evaluation on Nepali
Continual learning has emerged as an important research direction due to the infeasibility of retraining large language models (LLMs) from scratch in the event of new data availability. Of great interest is the domain-adaptive pre-training (DAPT) paradigm, which focuses on continually training a pre-trained language model to adapt it to a domain it was not originally trained on. In this work, we evaluate the feasibility of DAPT in a low-resource setting, namely the Nepali language. We use synthetic data to continue training Llama 3 8B to adapt it to the Nepali language in a 4-bit QLoRA setting. We evaluate the adapted model on its performance, forgetting, and knowledge acquisition. We compare the base model and the final model on their Nepali generation abilities, their performance on popular benchmarks, and run case-studies to probe their linguistic knowledge in Nepali. We see some unsurprising forgetting in the final model, but also surprisingly find that increasing the number of shots during evaluation yields better percent increases in the final model (as high as 19.29% increase) compared to the base model (4.98%), suggesting latent retention. We also explore layer-head self-attention heatmaps to establish dependency resolution abilities of the final model in Nepali.
Large Language Models Are Zero-Shot Text Classifiers
Retrained large language models (LLMs) have become extensively used across various sub-disciplines of natural language processing (NLP). In NLP, text classification problems have garnered considerable focus, but still faced with some limitations related to expensive computational cost, time consumption, and robust performance to unseen classes. With the proposal of chain of thought prompting (CoT), LLMs can be implemented using zero-shot learning (ZSL) with the step by step reasoning prompts, instead of conventional question and answer formats. The zero-shot LLMs in the text classification problems can alleviate these limitations by directly utilizing pretrained models to predict both seen and unseen classes. Our research primarily validates the capability of GPT models in text classification. We focus on effectively utilizing prompt strategies to various text classification scenarios. Besides, we compare the performance of zero shot LLMs with other state of the art text classification methods, including traditional machine learning methods, deep learning methods, and ZSL methods. Experimental results demonstrate that the performance of LLMs underscores their effectiveness as zero-shot text classifiers in three of the four datasets analyzed. The proficiency is especially advantageous for small businesses or teams that may not have extensive knowledge in text classification.
A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models
As Large Language Models (LLMs) continue to advance in their ability to write human-like text, a key challenge remains around their tendency to hallucinate generating content that appears factual but is ungrounded. This issue of hallucination is arguably the biggest hindrance to safely deploying these powerful LLMs into real-world production systems that impact people's lives. The journey toward widespread adoption of LLMs in practical settings heavily relies on addressing and mitigating hallucinations. Unlike traditional AI systems focused on limited tasks, LLMs have been exposed to vast amounts of online text data during training. While this allows them to display impressive language fluency, it also means they are capable of extrapolating information from the biases in training data, misinterpreting ambiguous prompts, or modifying the information to align superficially with the input. This becomes hugely alarming when we rely on language generation capabilities for sensitive applications, such as summarizing medical records, financial analysis reports, etc. This paper presents a comprehensive survey of over 32 techniques developed to mitigate hallucination in LLMs. Notable among these are Retrieval Augmented Generation (Lewis et al, 2021), Knowledge Retrieval (Varshney et al,2023), CoNLI (Lei et al, 2023), and CoVe (Dhuliawala et al, 2023). Furthermore, we introduce a detailed taxonomy categorizing these methods based on various parameters, such as dataset utilization, common tasks, feedback mechanisms, and retriever types. This classification helps distinguish the diverse approaches specifically designed to tackle hallucination issues in LLMs. Additionally, we analyze the challenges and limitations inherent in these techniques, providing a solid foundation for future research in addressing hallucinations and related phenomena within the realm of LLMs.
Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences
Language models (LMs) should provide reliable confidence estimates to help users detect mistakes in their outputs and defer to human experts when necessary. Asking a language model to assess its confidence ("Score your confidence from 0-1.") is a natural way of evaluating its uncertainty. However, models struggle to provide absolute assessments of confidence (i.e. judging confidence in answering a question independent of other questions) and the coarse-grained scores they produce are not useful for evaluating the correctness of their answers. We propose relative confidence estimation, where we match up questions against each other and ask the model to make relative judgments of confidence ("Which question are you more confident in answering correctly?"). Treating each question as a "player" in a series of matchups against other questions and the model's preferences as match outcomes, we can use rank aggregation methods like Elo rating and Bradley-Terry to translate the model's confidence preferences into confidence scores. We evaluate relative confidence estimation against absolute confidence estimation and self-consistency confidence methods on five state-of-the-art LMs -- GPT-4, GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnet, and Llama 3.1 405B -- across 14 challenging STEM, social science, and commonsense reasoning question answering tasks. Our results demonstrate that relative confidence estimation consistently provides more reliable confidence scores than absolute confidence estimation, with average gains of 3.5% in selective classification AUC over direct absolute confidence estimation methods and 1.7% over self-consistency approaches across all models and datasets.
Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S
Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world.
IndoNLI: A Natural Language Inference Dataset for Indonesian
We present IndoNLI, the first human-elicited NLI dataset for Indonesian. We adapt the data collection protocol for MNLI and collect nearly 18K sentence pairs annotated by crowd workers and experts. The expert-annotated data is used exclusively as a test set. It is designed to provide a challenging test-bed for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural changes, idioms, or temporal and spatial reasoning. Experiment results show that XLM-R outperforms other pre-trained models in our data. The best performance on the expert-annotated data is still far below human performance (13.4% accuracy gap), suggesting that this test set is especially challenging. Furthermore, our analysis shows that our expert-annotated data is more diverse and contains fewer annotation artifacts than the crowd-annotated data. We hope this dataset can help accelerate progress in Indonesian NLP research.
How Multilingual is Multilingual LLM?
Large Language Models (LLMs), trained predominantly on extensive English data, often exhibit limitations when applied to other languages. Current research is primarily focused on enhancing the multilingual capabilities of these models by employing various tuning strategies. Despite their effectiveness in certain languages, the understanding of the multilingual abilities of LLMs remains incomplete. This study endeavors to evaluate the multilingual capacity of LLMs by conducting an exhaustive analysis across 101 languages, and classifies languages with similar characteristics into four distinct quadrants. By delving into each quadrant, we shed light on the rationale behind their categorization and offer actionable guidelines for tuning these languages. Extensive experiments reveal that existing LLMs possess multilingual capabilities that surpass our expectations, and we can significantly improve the multilingual performance of LLMs by focusing on these distinct attributes present in each quadrant.
Logical Natural Language Generation from Open-Domain Tables
Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference, an important aspect of human thinking and language. In this paper, we suggest a new NLG task where a model is tasked with generating natural language statements that can be logically entailed by the facts in an open-domain semi-structured table. To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset chen2019tabfact featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w.r.t.\ logical inference. The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order. In our experiments, we comprehensively survey different generation architectures (LSTM, Transformer, Pre-Trained LM) trained with different algorithms (RL, Adversarial Training, Coarse-to-Fine) on the dataset and made following observations: 1) Pre-Trained LM can significantly boost both the fluency and logical fidelity metrics, 2) RL and Adversarial Training are trading fluency for fidelity, 3) Coarse-to-Fine generation can help partially alleviate the fidelity issue while maintaining high language fluency. The code and data are available at https://github.com/wenhuchen/LogicNLG.
On A Scale From 1 to 5: Quantifying Hallucination in Faithfulness Evaluation
Hallucination has been a popular topic in natural language generation (NLG). In real-world applications, unfaithful content can result in poor data quality or loss of trust from end users. Thus, it is crucial to fact-check before adopting NLG for production usage, which can be expensive if done manually. In this paper, we investigate automated faithfulness evaluation in guided NLG. We developed a rubric template and used large language models (LLMs) to score the generation on quantifiable scales. We compared popular LLMs as well as widely adopted natural language inference (NLI) models in scoring quality and sensitivity. In addition, we developed methods for the generation of synthetic unfaithful data, as well as heuristics to quantify the percentage of hallucination. Our results on 4 travel-domain industry dataset show that GPT-4 can provide accurate judgement and explanation of whether a source and a generation are factually consistent. Furthermore, we found that tuning NLI models on synthetic data can improve performance. Lastly, we present insights on the latency and cost of deploying such a system.
ViANLI: Adversarial Natural Language Inference for Vietnamese
The development of Natural Language Processing (NLI) datasets and models has been inspired by innovations in annotation design. With the rapid development of machine learning models today, the performance of existing machine learning models has quickly reached state-of-the-art results on a variety of tasks related to natural language processing, including natural language inference tasks. By using a pre-trained model during the annotation process, it is possible to challenge current NLI models by having humans produce premise-hypothesis combinations that the machine model cannot correctly predict. To remain attractive and challenging in the research of natural language inference for Vietnamese, in this paper, we introduce the adversarial NLI dataset to the NLP research community with the name ViANLI. This data set contains more than 10K premise-hypothesis pairs and is built by a continuously adjusting process to obtain the most out of the patterns generated by the annotators. ViANLI dataset has brought many difficulties to many current SOTA models when the accuracy of the most powerful model on the test set only reached 48.4%. Additionally, the experimental results show that the models trained on our dataset have significantly improved the results on other Vietnamese NLI datasets.
IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages
As large language models (LLMs) see increasing adoption across the globe, it is imperative for LLMs to be representative of the linguistic diversity of the world. India is a linguistically diverse country of 1.4 Billion people. To facilitate research on multilingual LLM evaluation, we release IndicGenBench - the largest benchmark for evaluating LLMs on user-facing generation tasks across a diverse set 29 of Indic languages covering 13 scripts and 4 language families. IndicGenBench is composed of diverse generation tasks like cross-lingual summarization, machine translation, and cross-lingual question answering. IndicGenBench extends existing benchmarks to many Indic languages through human curation providing multi-way parallel evaluation data for many under-represented Indic languages for the first time. We evaluate a wide range of proprietary and open-source LLMs including GPT-3.5, GPT-4, PaLM-2, mT5, Gemma, BLOOM and LLaMA on IndicGenBench in a variety of settings. The largest PaLM-2 models performs the best on most tasks, however, there is a significant performance gap in all languages compared to English showing that further research is needed for the development of more inclusive multilingual language models. IndicGenBench is released at www.github.com/google-research-datasets/indic-gen-bench
Beyond Understanding: Evaluating the Pragmatic Gap in LLMs' Cultural Processing of Figurative Language
We present a comprehensive evaluation of the ability of large language models (LLMs) to process culturally grounded language, specifically to understand and pragmatically use figurative expressions that encode local knowledge and cultural nuance. Using figurative language as a proxy for cultural nuance and local knowledge, we design evaluation tasks for contextual understanding, pragmatic use, and connotation interpretation in Arabic and English. We evaluate 22 open- and closed-source LLMs on Egyptian Arabic idioms, multidialectal Arabic proverbs, and English proverbs. Our results show a consistent hierarchy: the average accuracy for Arabic proverbs is 4.29% lower than for English proverbs, and performance for Egyptian idioms is 10.28% lower than for Arabic proverbs. For the pragmatic use task, accuracy drops by 14.07% relative to understanding, though providing contextual idiomatic sentences improves accuracy by 10.66%. Models also struggle with connotative meaning, reaching at most 85.58% agreement with human annotators on idioms with 100% inter-annotator agreement. These findings demonstrate that figurative language serves as an effective diagnostic for cultural reasoning: while LLMs can often interpret figurative meaning, they face challenges in using it appropriately. To support future research, we release Kinayat, the first dataset of Egyptian Arabic idioms designed for both figurative understanding and pragmatic use evaluation.
ConfTuner: Training Large Language Models to Express Their Confidence Verbally
Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as science, law, and healthcare, where accurate expressions of uncertainty are essential for reliability and trust. However, current LLMs are often observed to generate incorrect answers with high confidence, a phenomenon known as "overconfidence". Recent efforts have focused on calibrating LLMs' verbalized confidence: i.e., their expressions of confidence in text form, such as "I am 80% confident that...". Existing approaches either rely on prompt engineering or fine-tuning with heuristically generated uncertainty estimates, both of which have limited effectiveness and generalizability. Motivated by the notion of proper scoring rules for calibration in classical machine learning models, we introduce ConfTuner, a simple and efficient fine-tuning method that introduces minimal overhead and does not require ground-truth confidence scores or proxy confidence estimates. ConfTuner relies on a new loss function, tokenized Brier score, which we theoretically prove to be a proper scoring rule, intuitively meaning that it "correctly incentivizes the model to report its true probability of being correct". ConfTuner improves calibration across diverse reasoning tasks and generalizes to black-box models such as GPT-4o. Our results further show that better-calibrated confidence enables downstream gains in self-correction and model cascade, advancing the development of trustworthy LLM systems. The code is available at https://github.com/liushiliushi/ConfTuner.
NileChat: Towards Linguistically Diverse and Culturally Aware LLMs for Local Communities
Enhancing the linguistic capabilities of Large Language Models (LLMs) to include low-resource languages is a critical research area. Current research directions predominantly rely on synthetic data generated by translating English corpora, which, while demonstrating promising linguistic understanding and translation abilities, often results in models aligned with source language culture. These models frequently fail to represent the cultural heritage and values of local communities. This work proposes a methodology to create both synthetic and retrieval-based pre-training data tailored to a specific community, considering its (i) language, (ii) cultural heritage, and (iii) cultural values. We demonstrate our methodology using Egyptian and Moroccan dialects as testbeds, chosen for their linguistic and cultural richness and current underrepresentation in LLMs. As a proof-of-concept, we develop NileChat, a 3B parameter LLM adapted for Egyptian and Moroccan communities, incorporating their language, cultural heritage, and values. Our results on various understanding, translation, and cultural and values alignment benchmarks show that NileChat outperforms existing Arabic-aware LLMs of similar size and performs on par with larger models. We share our methods, data, and models with the community to promote the inclusion and coverage of more diverse communities in LLM development.
The Gold Medals in an Empty Room: Diagnosing Metalinguistic Reasoning in LLMs with Camlang
Large Language Models (LLMs) achieve gold-medal performance across many benchmarks, yet it remains unclear whether such success reflects genuine reasoning or pattern matching. From a cognitive science perspective, an informative test is whether models can master an unfamiliar language through explicit metalinguistic deductive learning, a paradigm where human learners can reliably internalise grammatical systems through metalinguistic reasoning. We address this question with Camlang, a novel constructed language that exhibits naturalistic yet unattested feature combinations. Camlang consists of two explicit resources, a grammar book and a bilingual dictionary, which mirror adult second-language learning via explicit grammar rules and lexical lookup, and enable us to disentangle errors in morpho-syntax, lexical semantics, and sentence-level reasoning. Human experiments show that these resources are sufficient for participants to acquire Camlang and successfully solve Camlang tasks. To operationalise evaluation, we adapt CommonsenseQA into Camlang, creating Camlang-CSQA-v0, the first task in a broader suite where solving questions requires applying grammar rules and lexical mappings. Experimental results show that GPT-5 achieves 98\% EM accuracy in English but only 47\% in Camlang, far below human performance at 87\%, while other state-of-the-art reasoning LLMs perform even worse. Human verification further reveals that most model successes stem from shallow lexical alignment while GPT-5 shows emerging metalinguistic awareness to a limited extent but not systematic grammatical mastery as humans. Camlang establishes a cognitively grounded evaluation paradigm that exposes fundamental gaps between current models and human metalinguistic competence.
Building High-Quality Datasets for Portuguese LLMs: From Common Crawl Snapshots to Industrial-Grade Corpora
The performance of large language models (LLMs) is deeply influenced by the quality and composition of their training data. While much of the existing work has centered on English, there remains a gap in understanding how to construct effective training corpora for other languages. We explore scalable methods for building web-based corpora for LLMs. We apply them to build a new 120B token corpus in Portuguese that achieves competitive results to an industrial-grade corpus. Using a continual pretraining setup, we study how different data selection and preprocessing strategies affect LLM performance when transitioning a model originally trained in English to another language. Our findings demonstrate the value of language-specific filtering pipelines, including classifiers for education, science, technology, engineering, and mathematics (STEM), as well as toxic content. We show that adapting a model to the target language leads to performance improvements, reinforcing the importance of high-quality, language-specific data. While our case study focuses on Portuguese, our methods are applicable to other languages, offering insights for multilingual LLM development.
Tibyan Corpus: Balanced and Comprehensive Error Coverage Corpus Using ChatGPT for Arabic Grammatical Error Correction
Natural language processing (NLP) utilizes text data augmentation to overcome sample size constraints. Increasing the sample size is a natural and widely used strategy for alleviating these challenges. In this study, we chose Arabic to increase the sample size and correct grammatical errors. Arabic is considered one of the languages with limited resources for grammatical error correction (GEC). Furthermore, QALB-14 and QALB-15 are the only datasets used in most Arabic grammatical error correction research, with approximately 20,500 parallel examples, which is considered low compared with other languages. Therefore, this study aims to develop an Arabic corpus called "Tibyan" for grammatical error correction using ChatGPT. ChatGPT is used as a data augmenter tool based on a pair of Arabic sentences containing grammatical errors matched with a sentence free of errors extracted from Arabic books, called guide sentences. Multiple steps were involved in establishing our corpus, including the collection and pre-processing of a pair of Arabic texts from various sources, such as books and open-access corpora. We then used ChatGPT to generate a parallel corpus based on the text collected previously, as a guide for generating sentences with multiple types of errors. By engaging linguistic experts to review and validate the automatically generated sentences, we ensured that they were correct and error-free. The corpus was validated and refined iteratively based on feedback provided by linguistic experts to improve its accuracy. Finally, we used the Arabic Error Type Annotation tool (ARETA) to analyze the types of errors in the Tibyan corpus. Our corpus contained 49 of errors, including seven types: orthography, morphology, syntax, semantics, punctuation, merge, and split. The Tibyan corpus contains approximately 600 K tokens.
ALERT: Adapting Language Models to Reasoning Tasks
Current large language models can perform reasonably well on complex tasks that require step-by-step reasoning with few-shot learning. Are these models applying reasoning skills they have learnt during pre-training and reason outside of their training context, or are they simply memorizing their training corpus at finer granularity and have learnt to better understand their context? To tease apart these possibilities, we introduce ALERT, a benchmark and suite of analyses for assessing language models' reasoning ability comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. ALERT provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. We leverage ALERT to further investigate the role of finetuning. With extensive empirical analysis we find that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during finetuning stage compared to pretraining state. We also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.
Self-Assessment Tests are Unreliable Measures of LLM Personality
As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using self-assessment personality tests developed to measure human personality. Yet almost none of these works verify the applicability of these tests on LLMs. In this paper, we analyze the reliability of LLM personality scores obtained from self-assessment personality tests using two simple experiments. We first introduce the property of prompt sensitivity, where three semantically equivalent prompts representing three intuitive ways of administering self-assessment tests on LLMs are used to measure the personality of the same LLM. We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios. We then introduce the property of option-order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the self-assessment test scores are not robust to the order of the options. These simple tests, done on ChatGPT and three Llama2 models of different sizes, show that self-assessment personality tests created for humans are unreliable measures of personality in LLMs.
ParamBench: A Graduate-Level Benchmark for Evaluating LLM Understanding on Indic Subjects
Large language models have been widely evaluated on tasks such as comprehension, summarization, code generation, etc. However, their performance on graduate-level, culturally grounded questions in the Indian context remains largely unexplored. Existing Indian benchmarks emphasise basic fact-orientated queries that offer limited assessment of a deeper disciplinary understanding tailored to the Indian setting. In this paper, we present ParamBench, consisting of more than 17K questions in the Hindi language, comprising questionnaires from 21 diverse subjects. These questions are primarily derived from a nationwide graduate-level entrance examination covering topics such as history, music, instruments, yoga, literature, philosophy, law, etc.~ specifically for the Indian context. Additionally, we assess the ability of LLMs to handle diverse question formats - such as list-based matching, assertion-reason pairs, and sequence ordering - alongside conventional multiple-choice questions. We evaluated the performance of more than 16 open source LLMs on this benchmark, observing that Gemma3-27B attains the highest overall accuracy of 56.4\%. Furthermore, subject-wise analysis indicates that even for the best-performing LLMs, performance remains weak on topics such as music, classical instruments, and law, underscoring persistent challenges in culturally grounded reasoning. The dataset and source code is present at https://github.com/ayushbits/ParamBench.
CaLMQA: Exploring culturally specific long-form question answering across 23 languages
Despite rising global usage of large language models (LLMs), their ability to generate long-form answers to culturally specific questions remains unexplored in many languages. To fill this gap, we perform the first study of textual multilingual long-form QA by creating CaLMQA, a dataset of 51.7K culturally specific questions across 23 different languages. We define culturally specific questions as those that refer to concepts unique to one or a few cultures, or have different answers depending on the cultural or regional context. We obtain these questions by crawling naturally-occurring questions from community web forums in high-resource languages, and by hiring native speakers to write questions in under-resourced, rarely-studied languages such as Fijian and Kirundi. Our data collection methodologies are translation-free, enabling the collection of culturally unique questions like "Kuber iki umwami wa mbere w'uburundi yitwa Ntare?" (Kirundi; English translation: "Why was the first king of Burundi called Ntare (Lion)?"). We evaluate factuality, relevance and surface-level quality of LLM-generated long-form answers, finding that (1) for many languages, even the best models make critical surface-level errors (e.g., answering in the wrong language, repetition), especially for low-resource languages; and (2) answers to culturally specific questions contain more factual errors than answers to culturally agnostic questions -- questions that have consistent meaning and answer across many cultures. We release CaLMQA to facilitate future research in cultural and multilingual long-form QA.
Automated Educational Question Generation at Different Bloom's Skill Levels using Large Language Models: Strategies and Evaluation
Developing questions that are pedagogically sound, relevant, and promote learning is a challenging and time-consuming task for educators. Modern-day large language models (LLMs) generate high-quality content across multiple domains, potentially helping educators to develop high-quality questions. Automated educational question generation (AEQG) is important in scaling online education catering to a diverse student population. Past attempts at AEQG have shown limited abilities to generate questions at higher cognitive levels. In this study, we examine the ability of five state-of-the-art LLMs of different sizes to generate diverse and high-quality questions of different cognitive levels, as defined by Bloom's taxonomy. We use advanced prompting techniques with varying complexity for AEQG. We conducted expert and LLM-based evaluations to assess the linguistic and pedagogical relevance and quality of the questions. Our findings suggest that LLms can generate relevant and high-quality educational questions of different cognitive levels when prompted with adequate information, although there is a significant variance in the performance of the five LLms considered. We also show that automated evaluation is not on par with human evaluation.
An Early Evaluation of GPT-4V(ision)
In this paper, we evaluate different abilities of GPT-4V including visual understanding, language understanding, visual puzzle solving, and understanding of other modalities such as depth, thermal, video, and audio. To estimate GPT-4V's performance, we manually construct 656 test instances and carefully evaluate the results of GPT-4V. The highlights of our findings are as follows: (1) GPT-4V exhibits impressive performance on English visual-centric benchmarks but fails to recognize simple Chinese texts in the images; (2) GPT-4V shows inconsistent refusal behavior when answering questions related to sensitive traits such as gender, race, and age; (3) GPT-4V obtains worse results than GPT-4 (API) on language understanding tasks including general language understanding benchmarks and visual commonsense knowledge evaluation benchmarks; (4) Few-shot prompting can improve GPT-4V's performance on both visual understanding and language understanding; (5) GPT-4V struggles to find the nuances between two similar images and solve the easy math picture puzzles; (6) GPT-4V shows non-trivial performance on the tasks of similar modalities to image, such as video and thermal. Our experimental results reveal the ability and limitations of GPT-4V and we hope our paper can provide some insights into the application and research of GPT-4V.
HellaSwag-Pro: A Large-Scale Bilingual Benchmark for Evaluating the Robustness of LLMs in Commonsense Reasoning
Large language models (LLMs) have shown remarkable capabilities in commonsense reasoning; however, some variations in questions can trigger incorrect responses. Do these models truly understand commonsense knowledge, or just memorize expression patterns? To investigate this question, we present the first extensive robustness evaluation of LLMs in commonsense reasoning. We introduce HellaSwag-Pro, a large-scale bilingual benchmark consisting of 11,200 cases, by designing and compiling seven types of question variants. To construct this benchmark, we propose a two-stage method to develop Chinese HellaSwag, a finely annotated dataset comprising 12,000 instances across 56 categories. We conduct extensive experiments on 41 representative LLMs, revealing that these LLMs are far from robust in commonsense reasoning. Furthermore, this robustness varies depending on the language in which the LLM is tested. This work establishes a high-quality evaluation benchmark, with extensive experiments offering valuable insights to the community in commonsense reasoning for LLMs.
Automatic Readability Assessment of German Sentences with Transformer Ensembles
Reliable methods for automatic readability assessment have the potential to impact a variety of fields, ranging from machine translation to self-informed learning. Recently, large language models for the German language (such as GBERT and GPT-2-Wechsel) have become available, allowing to develop Deep Learning based approaches that promise to further improve automatic readability assessment. In this contribution, we studied the ability of ensembles of fine-tuned GBERT and GPT-2-Wechsel models to reliably predict the readability of German sentences. We combined these models with linguistic features and investigated the dependence of prediction performance on ensemble size and composition. Mixed ensembles of GBERT and GPT-2-Wechsel performed better than ensembles of the same size consisting of only GBERT or GPT-2-Wechsel models. Our models were evaluated in the GermEval 2022 Shared Task on Text Complexity Assessment on data of German sentences. On out-of-sample data, our best ensemble achieved a root mean squared error of 0.435.
Pretrained Language Model Embryology: The Birth of ALBERT
While behaviors of pretrained language models (LMs) have been thoroughly examined, what happened during pretraining is rarely studied. We thus investigate the developmental process from a set of randomly initialized parameters to a totipotent language model, which we refer to as the embryology of a pretrained language model. Our results show that ALBERT learns to reconstruct and predict tokens of different parts of speech (POS) in different learning speeds during pretraining. We also find that linguistic knowledge and world knowledge do not generally improve as pretraining proceeds, nor do downstream tasks' performance. These findings suggest that knowledge of a pretrained model varies during pretraining, and having more pretrain steps does not necessarily provide a model with more comprehensive knowledge. We will provide source codes and pretrained models to reproduce our results at https://github.com/d223302/albert-embryology.
IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation
Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource -- yet widely spoken -- languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks -- despite using only one-fifth the parameters of a larger multilingual model, mBART-LARGE (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, local languages to achieve more efficient learning and faster inference for very low-resource languages like Javanese and Sundanese.
MILU: A Multi-task Indic Language Understanding Benchmark
Evaluating Large Language Models (LLMs) in low-resource and linguistically diverse languages remains a significant challenge in NLP, particularly for languages using non-Latin scripts like those spoken in India. Existing benchmarks predominantly focus on English, leaving substantial gaps in assessing LLM capabilities in these languages. We introduce MILU, a Multi task Indic Language Understanding Benchmark, a comprehensive evaluation benchmark designed to address this gap. MILU spans 8 domains and 42 subjects across 11 Indic languages, reflecting both general and culturally specific knowledge. With an India-centric design, incorporates material from regional and state-level examinations, covering topics such as local history, arts, festivals, and laws, alongside standard subjects like science and mathematics. We evaluate over 42 LLMs, and find that current LLMs struggle with MILU, with GPT-4o achieving the highest average accuracy at 72 percent. Open multilingual models outperform language-specific fine-tuned models, which perform only slightly better than random baselines. Models also perform better in high resource languages as compared to low resource ones. Domain-wise analysis indicates that models perform poorly in culturally relevant areas like Arts and Humanities, Law and Governance compared to general fields like STEM. To the best of our knowledge, MILU is the first of its kind benchmark focused on Indic languages, serving as a crucial step towards comprehensive cultural evaluation. All code, benchmarks, and artifacts will be made publicly available to foster open research.
A Latent-Variable Model for Intrinsic Probing
The success of pre-trained contextualized representations has prompted researchers to analyze them for the presence of linguistic information. Indeed, it is natural to assume that these pre-trained representations do encode some level of linguistic knowledge as they have brought about large empirical improvements on a wide variety of NLP tasks, which suggests they are learning true linguistic generalization. In this work, we focus on intrinsic probing, an analysis technique where the goal is not only to identify whether a representation encodes a linguistic attribute but also to pinpoint where this attribute is encoded. We propose a novel latent-variable formulation for constructing intrinsic probes and derive a tractable variational approximation to the log-likelihood. Our results show that our model is versatile and yields tighter mutual information estimates than two intrinsic probes previously proposed in the literature. Finally, we find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
VNHSGE: VietNamese High School Graduation Examination Dataset for Large Language Models
The VNHSGE (VietNamese High School Graduation Examination) dataset, developed exclusively for evaluating large language models (LLMs), is introduced in this article. The dataset, which covers nine subjects, was generated from the Vietnamese National High School Graduation Examination and comparable tests. 300 literary essays have been included, and there are over 19,000 multiple-choice questions on a range of topics. The dataset assesses LLMs in multitasking situations such as question answering, text generation, reading comprehension, visual question answering, and more by including both textual data and accompanying images. Using ChatGPT and BingChat, we evaluated LLMs on the VNHSGE dataset and contrasted their performance with that of Vietnamese students to see how well they performed. The results show that ChatGPT and BingChat both perform at a human level in a number of areas, including literature, English, history, geography, and civics education. They still have space to grow, though, especially in the areas of mathematics, physics, chemistry, and biology. The VNHSGE dataset seeks to provide an adequate benchmark for assessing the abilities of LLMs with its wide-ranging coverage and variety of activities. We intend to promote future developments in the creation of LLMs by making this dataset available to the scientific community, especially in resolving LLMs' limits in disciplines involving mathematics and the natural sciences.
TMIQ: Quantifying Test and Measurement Domain Intelligence in Large Language Models
The Test and Measurement domain, known for its strict requirements for accuracy and efficiency, is increasingly adopting Generative AI technologies to enhance the performance of data analysis, automation, and decision-making processes. Among these, Large Language Models (LLMs) show significant promise for advancing automation and precision in testing. However, the evaluation of LLMs in this specialized area remains insufficiently explored. To address this gap, we introduce the Test and Measurement Intelligence Quotient (TMIQ), a benchmark designed to quantitatively assess LLMs across a wide range of electronic engineering tasks. TMIQ offers a comprehensive set of scenarios and metrics for detailed evaluation, including SCPI command matching accuracy, ranked response evaluation, Chain-of-Thought Reasoning (CoT), and the impact of output formatting variations required by LLMs on performance. In testing various LLMs, our findings indicate varying levels of proficiency, with exact SCPI command match accuracy ranging from around 56% to 73%, and ranked matching first-position scores achieving around 33% for the best-performing model. We also assess token usage, cost-efficiency, and response times, identifying trade-offs between accuracy and operational efficiency. Additionally, we present a command-line interface (CLI) tool that enables users to generate datasets using the same methodology, allowing for tailored assessments of LLMs. TMIQ and the CLI tool provide a rigorous, reproducible means of evaluating LLMs for production environments, facilitating continuous monitoring and identifying strengths and areas for improvement, and driving innovation in their selections for applications within the Test and Measurement industry.
Thinking Fast and Slow in Large Language Models
Large language models (LLMs) are currently at the forefront of intertwining AI systems with human communication and everyday life. Therefore, it is of great importance to evaluate their emerging abilities. In this study, we show that LLMs like GPT-3 exhibit behavior that strikingly resembles human-like intuition - and the cognitive errors that come with it. However, LLMs with higher cognitive capabilities, in particular ChatGPT and GPT-4, learned to avoid succumbing to these errors and perform in a hyperrational manner. For our experiments, we probe LLMs with the Cognitive Reflection Test (CRT) as well as semantic illusions that were originally designed to investigate intuitive decision-making in humans. Our study demonstrates that investigating LLMs with methods from psychology has the potential to reveal otherwise unknown emergent traits.
IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP
Although the Indonesian language is spoken by almost 200 million people and the 10th most spoken language in the world, it is under-represented in NLP research. Previous work on Indonesian has been hampered by a lack of annotated datasets, a sparsity of language resources, and a lack of resource standardization. In this work, we release the IndoLEM dataset comprising seven tasks for the Indonesian language, spanning morpho-syntax, semantics, and discourse. We additionally release IndoBERT, a new pre-trained language model for Indonesian, and evaluate it over IndoLEM, in addition to benchmarking it against existing resources. Our experiments show that IndoBERT achieves state-of-the-art performance over most of the tasks in IndoLEM.
Crossing the Linguistic Causeway: A Binational Approach for Translating Soundscape Attributes to Bahasa Melayu
Translation of perceptual descriptors such as the perceived affective quality attributes in the soundscape standard (ISO/TS 12913-2:2018) is an inherently intricate task, especially if the target language is used in multiple countries. Despite geographical proximity and a shared language of Bahasa Melayu (Standard Malay), differences in culture and language education policies between Singapore and Malaysia could invoke peculiarities in the affective appraisal of sounds. To generate provisional translations of the eight perceived affective attributes -- eventful, vibrant, pleasant, calm, uneventful, monotonous, annoying, and chaotic -- into Bahasa Melayu that is applicable in both Singapore and Malaysia, a binational expert-led approach supplemented by a quantitative evaluation framework was adopted. A set of preliminary translation candidates were developed via a four-stage process, firstly by a qualified translator, which was then vetted by linguistics experts, followed by examination via an experiential evaluation, and finally reviewed by the core research team. A total of 66 participants were then recruited cross-nationally to quantitatively evaluate the preliminary translation candidates. Of the eight attributes, cross-national differences were observed only in the translation of annoying. For instance, "menjengkelkan" was found to be significantly less understood in Singapore than in Malaysia, as well as less understandable than "membingitkan" within Singapore. Results of the quantitative evaluation also revealed the imperfect nature of foreign language translations for perceptual descriptors, which suggests a possibility for exploring corrective measures.
SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales
Large language models (LLMs) often generate inaccurate or fabricated information and generally fail to indicate their confidence, which limits their broader applications. Previous work elicits confidence from LLMs by direct or self-consistency prompting, or constructing specific datasets for supervised finetuning. The prompting-based approaches have inferior performance, and the training-based approaches are limited to binary or inaccurate group-level confidence estimates. In this work, we present the advanced SaySelf, a training framework that teaches LLMs to express more accurate fine-grained confidence estimates. In addition, beyond the confidence scores, SaySelf initiates the process of directing LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge and explain their uncertainty. This is achieved by using an LLM to automatically summarize the uncertainties in specific knowledge via natural language. The summarization is based on the analysis of the inconsistency in multiple sampled reasoning chains, and the resulting data is utilized for supervised fine-tuning. Moreover, we utilize reinforcement learning with a meticulously crafted reward function to calibrate the confidence estimates, motivating LLMs to deliver accurate, high-confidence predictions and to penalize overconfidence in erroneous outputs. Experimental results in both in-distribution and out-of-distribution datasets demonstrate the effectiveness of SaySelf in reducing the confidence calibration error and maintaining the task performance. We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration. The code is made public at https://github.com/xu1868/SaySelf.
NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian
Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.
Flaw or Artifact? Rethinking Prompt Sensitivity in Evaluating LLMs
Prompt sensitivity, referring to the phenomenon where paraphrasing (i.e., repeating something written or spoken using different words) leads to significant changes in large language model (LLM) performance, has been widely accepted as a core limitation of LLMs. In this work, we revisit this issue and ask: Is the widely reported high prompt sensitivity truly an inherent weakness of LLMs, or is it largely an artifact of evaluation processes? To answer this question, we systematically evaluate 7 LLMs (e.g., GPT and Gemini family) across 6 benchmarks, including both multiple-choice and open-ended tasks on 12 diverse prompt templates. We find that much of the prompt sensitivity stems from heuristic evaluation methods, including log-likelihood scoring and rigid answer matching, which often overlook semantically correct responses expressed through alternative phrasings, such as synonyms or paraphrases. When we adopt LLM-as-a-Judge evaluations, we observe a substantial reduction in performance variance and a consistently higher correlation in model rankings across prompts. Our findings suggest that modern LLMs are more robust to prompt templates than previously believed, and that prompt sensitivity may be more an artifact of evaluation than a flaw in the models.
GottBERT: a pure German Language Model
Lately, pre-trained language models advanced the field of natural language processing (NLP). The introduction of Bidirectional Encoders for Transformers (BERT) and its optimized version RoBERTa have had significant impact and increased the relevance of pre-trained models. First, research in this field mainly started on English data followed by models trained with multilingual text corpora. However, current research shows that multilingual models are inferior to monolingual models. Currently, no German single language RoBERTa model is yet published, which we introduce in this work (GottBERT). The German portion of the OSCAR data set was used as text corpus. In an evaluation we compare its performance on the two Named Entity Recognition (NER) tasks Conll 2003 and GermEval 2014 as well as on the text classification tasks GermEval 2018 (fine and coarse) and GNAD with existing German single language BERT models and two multilingual ones. GottBERT was pre-trained related to the original RoBERTa model using fairseq. All downstream tasks were trained using hyperparameter presets taken from the benchmark of German BERT. The experiments were setup utilizing FARM. Performance was measured by the F_{1} score. GottBERT was successfully pre-trained on a 256 core TPU pod using the RoBERTa BASE architecture. Even without extensive hyper-parameter optimization, in all NER and one text classification task, GottBERT already outperformed all other tested German and multilingual models. In order to support the German NLP field, we publish GottBERT under the AGPLv3 license.
Psycholinguistic Word Features: a New Approach for the Evaluation of LLMs Alignment with Humans
The evaluation of LLMs has so far focused primarily on how well they can perform different tasks such as reasoning, question-answering, paraphrasing, or translating. For most of these tasks, performance can be measured with objective metrics, such as the number of correct answers. However, other language features are not easily quantified. For example, arousal, concreteness, or gender associated with a given word, as well as the extent to which we experience words with senses and relate them to a specific sense. Those features have been studied for many years by psycholinguistics, conducting large-scale experiments with humans to produce ratings for thousands of words. This opens an opportunity to evaluate how well LLMs align with human ratings on these word features, taking advantage of existing studies that cover many different language features in a large number of words. In this paper, we evaluate the alignment of a representative group of LLMs with human ratings on two psycholinguistic datasets: the Glasgow and Lancaster norms. These datasets cover thirteen features over thousands of words. The results show that alignment is black{generally} better in the Glasgow norms evaluated (arousal, valence, dominance, concreteness, imageability, familiarity, and gender) than on the Lancaster norms evaluated (introceptive, gustatory, olfactory, haptic, auditory, and visual). This suggests a potential limitation of current LLMs in aligning with human sensory associations for words, which may be due to their lack of embodied cognition present in humans and illustrates the usefulness of evaluating LLMs with psycholinguistic datasets.
Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions
Large-scale Pretrained Language Models (LLMs), such as ChatGPT and GPT4, have shown strong abilities in multilingual translations, without being explicitly trained on parallel corpora. It is interesting how the LLMs obtain their ability to carry out translation instructions for different languages. In this paper, we present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7B, to perform multilingual translation following given instructions. Firstly, we show that multilingual LLMs have stronger translation abilities than previously demonstrated. For a certain language, the performance depends on its similarity to English and the amount of data used in the pretraining phase. Secondly, we find that LLMs' ability to carry out translation instructions relies on the understanding of translation instructions and the alignment among different languages. With multilingual finetuning, LLMs could learn to perform the translation task well even for those language pairs unseen during the instruction tuning phase.
LLM Comparative Assessment: Zero-shot NLG Evaluation through Pairwise Comparisons using Large Language Models
Current developments in large language models (LLMs) have enabled impressive zero-shot capabilities across various natural language tasks. An interesting application of these systems is in the automated assessment of natural language generation (NLG), a highly challenging area with great practical benefit. In this paper, we explore two options for exploiting the emergent abilities of LLMs for zero-shot NLG assessment: absolute score prediction, and comparative assessment which uses relative comparisons between pairs of candidates. Though comparative assessment has not been extensively studied in NLG assessment, we note that humans often find it more intuitive to compare two options rather than scoring each one independently. This work examines comparative assessment from multiple perspectives: performance compared to absolute grading; positional biases in the prompt; and efficient ranking in terms of the number of comparisons. We illustrate that LLM comparative assessment is a simple, general and effective approach for NLG assessment. For moderate-sized open-source LLMs, such as FlanT5 and Llama2-chat, comparative assessment is superior to prompt scoring, and in many cases can achieve performance competitive with state-of-the-art methods. Additionally, we demonstrate that LLMs often exhibit strong positional biases when making pairwise comparisons, and we propose debiasing methods that can further improve performance.
QuRating: Selecting High-Quality Data for Training Language Models
Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications.
Komodo: A Linguistic Expedition into Indonesia's Regional Languages
The recent breakthroughs in Large Language Models (LLMs) have mostly focused on languages with easily available and sufficient resources, such as English. However, there remains a significant gap for languages that lack sufficient linguistic resources in the public domain. Our work introduces Komodo-7B, 7-billion-parameter Large Language Models designed to address this gap by seamlessly operating across Indonesian, English, and 11 regional languages in Indonesia. Komodo-7B is a family of LLMs that consist of Komodo-7B-Base and Komodo-7B-Instruct. Komodo-7B-Instruct stands out by achieving state-of-the-art performance in various tasks and languages, outperforming the benchmarks set by OpenAI's GPT-3.5, Cohere's Aya-101, Llama-2-Chat-13B, Mixtral-8x7B-Instruct-v0.1, Gemma-7B-it , and many more. This model not only demonstrates superior performance in both language-specific and overall assessments but also highlights its capability to excel in linguistic diversity. Our commitment to advancing language models extends beyond well-resourced languages, aiming to bridge the gap for those with limited linguistic assets. Additionally, Komodo-7B-Instruct's better cross-language understanding contributes to addressing educational disparities in Indonesia, offering direct translations from English to 11 regional languages, a significant improvement compared to existing language translation services. Komodo-7B represents a crucial step towards inclusivity and effectiveness in language models, providing to the linguistic needs of diverse communities.
PUB: A Pragmatics Understanding Benchmark for Assessing LLMs' Pragmatics Capabilities
LLMs have demonstrated remarkable capability for understanding semantics, but they often struggle with understanding pragmatics. To demonstrate this fact, we release a Pragmatics Understanding Benchmark (PUB) dataset consisting of fourteen tasks in four pragmatics phenomena, namely, Implicature, Presupposition, Reference, and Deixis. We curated high-quality test sets for each task, consisting of Multiple Choice Question Answers (MCQA). PUB includes a total of 28k data points, 6.1k of which have been created by us, and the rest are adapted from existing datasets. We evaluated nine models varying in the number of parameters and type of training. Our study indicates that fine-tuning for instruction-following and chat significantly enhances the pragmatics capabilities of smaller language models. However, for larger models, the base versions perform comparably with their chat-adapted counterparts. Additionally, there is a noticeable performance gap between human capabilities and model capabilities. Furthermore, unlike the consistent performance of humans across various tasks, the models demonstrate variability in their proficiency, with performance levels fluctuating due to different hints and the complexities of tasks within the same dataset. Overall, the benchmark aims to provide a comprehensive evaluation of LLM's ability to handle real-world language tasks that require pragmatic reasoning.
Goldfish: Monolingual Language Models for 350 Languages
For many low-resource languages, the only available language models are large multilingual models trained on many languages simultaneously. However, using FLORES perplexity as a metric, we find that these models perform worse than bigrams for many languages (e.g. 24% of languages in XGLM 4.5B; 43% in BLOOM 7.1B). To facilitate research that focuses on low-resource languages, we pre-train and release Goldfish, a suite of monolingual autoregressive Transformer language models up to 125M parameters for 350 languages. The Goldfish reach lower FLORES perplexities than BLOOM, XGLM, and MaLA-500 on 98 of 204 FLORES languages, despite each Goldfish model being over 10x smaller. However, the Goldfish significantly underperform larger multilingual models on reasoning benchmarks, suggesting that for low-resource languages, multilinguality primarily improves general reasoning abilities rather than basic text generation. We release models trained on 5MB (350 languages), 10MB (288 languages), 100MB (166 languages), and 1GB (83 languages) of text data where available. The Goldfish models are available as baselines, fine-tuning sources, or augmentations to existing models in low-resource NLP research, and they are further useful for crosslinguistic studies requiring maximally comparable models across languages.
Language Models Model Language
Linguistic commentary on LLMs, heavily influenced by the theoretical frameworks of de Saussure and Chomsky, is often speculative and unproductive. Critics challenge whether LLMs can legitimately model language, citing the need for "deep structure" or "grounding" to achieve an idealized linguistic "competence." We argue for a radical shift in perspective towards the empiricist principles of Witold Ma\'nczak, a prominent general and historical linguist. He defines language not as a "system of signs" or a "computational system of the brain" but as the totality of all that is said and written. Above all, he identifies frequency of use of particular language elements as language's primary governing principle. Using his framework, we challenge prior critiques of LLMs and provide a constructive guide for designing, evaluating, and interpreting language models.
Automated Generation of Multiple-Choice Cloze Questions for Assessing English Vocabulary Using GPT-turbo 3.5
A common way of assessing language learners' mastery of vocabulary is via multiple-choice cloze (i.e., fill-in-the-blank) questions. But the creation of test items can be laborious for individual teachers or in large-scale language programs. In this paper, we evaluate a new method for automatically generating these types of questions using large language models (LLM). The VocaTT (vocabulary teaching and training) engine is written in Python and comprises three basic steps: pre-processing target word lists, generating sentences and candidate word options using GPT, and finally selecting suitable word options. To test the efficiency of this system, 60 questions were generated targeting academic words. The generated items were reviewed by expert reviewers who judged the well-formedness of the sentences and word options, adding comments to items judged not well-formed. Results showed a 75% rate of well-formedness for sentences and 66.85% rate for suitable word options. This is a marked improvement over the generator used earlier in our research which did not take advantage of GPT's capabilities. Post-hoc qualitative analysis reveals several points for improvement in future work including cross-referencing part-of-speech tagging, better sentence validation, and improving GPT prompts.
Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models
As current training data for Large Language Models (LLMs) are dominated by English corpus, they are English-centric and they present impressive performance on English reasoning tasks.This paper primarily studies English-centric models, but our method could be universal by using the centric language in the dictionary for non-English-centric LLMs. Yet, they usually suffer from lower performance in other languages. There are about 7,000 languages over the world, and many are low-resourced on English-centric LLMs. For the sake of people who primarily speak these languages, it is especially urgent to enable our LLMs in those languages. Model training is usually effective, but computationally expensive and requires experienced NLP practitioners. This paper presents a novel and simple yet effective method called Dictionary Insertion Prompting (DIP). When providing a non-English prompt, DIP looks up a word dictionary and inserts words' English counterparts into the prompt for LLMs. It then enables better translation into English and better English model thinking steps which leads to obviously better results. We experiment with about 200 languages from FLORES-200. Since there are no adequate datasets, we use the NLLB translator to create synthetic multilingual benchmarks from the existing 4 English reasoning benchmarks such as GSM8K and AQuA. Despite the simplicity and computationally lightweight, we surprisingly found the effectiveness of DIP on math and commonsense reasoning tasks on multiple open-source and close-source LLMs.Our dictionaries, code, and synthetic benchmarks will be open-sourced to facilitate future research.
ALDi: Quantifying the Arabic Level of Dialectness of Text
Transcribed speech and user-generated text in Arabic typically contain a mixture of Modern Standard Arabic (MSA), the standardized language taught in schools, and Dialectal Arabic (DA), used in daily communications. To handle this variation, previous work in Arabic NLP has focused on Dialect Identification (DI) on the sentence or the token level. However, DI treats the task as binary, whereas we argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi), a continuous linguistic variable. We introduce the AOC-ALDi dataset (derived from the AOC dataset), containing 127,835 sentences (17% from news articles and 83% from user comments on those articles) which are manually labeled with their level of dialectness. We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora (including dialects and genres not included in AOC-ALDi), providing a more nuanced picture than traditional DI systems. Through case studies, we illustrate how ALDi can reveal Arabic speakers' stylistic choices in different situations, a useful property for sociolinguistic analyses.
TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese
Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. In this study, we document the development of open-foundation models tailored for use in low-resource settings, their limitations, and their benefits. This is the TeenyTinyLlama pair: two compact models for Brazilian Portuguese text generation. We release them under the permissive Apache 2.0 license on GitHub and Hugging Face for community use and further development. See https://github.com/Nkluge-correa/TeenyTinyLlama
Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through Counterfactual Tasks
The impressive performance of recent language models across a wide range of tasks suggests that they possess a degree of abstract reasoning skills. Are these skills general and transferable, or specialized to specific tasks seen during pretraining? To disentangle these effects, we propose an evaluation framework based on "counterfactual" task variants that deviate from the default assumptions underlying standard tasks. Across a suite of 11 tasks, we observe nontrivial performance on the counterfactual variants, but nevertheless find that performance substantially and consistently degrades compared to the default conditions. This suggests that while current LMs may possess abstract task-solving skills to a degree, they often also rely on narrow, non-transferable procedures for task-solving. These results motivate a more careful interpretation of language model performance that teases apart these aspects of behavior.
Implications of Multi-Word Expressions on English to Bharti Braille Machine Translation
In this paper, we have shown the improvement of English to Bharti Braille machine translation system. We have shown how we can improve a baseline NMT model by adding some linguistic knowledge to it. This was done for five language pairs where English sentences were translated into five Indian languages and then subsequently to corresponding Bharti Braille. This has been demonstrated by adding a sub-module for translating multi-word expressions. The approach shows promising results as across language pairs, we could see improvement in the quality of NMT outputs. The least improvement was observed in English-Nepali language pair with 22.08% and the most improvement was observed in the English-Hindi language pair with 23.30%.
Absher: A Benchmark for Evaluating Large Language Models Understanding of Saudi Dialects
As large language models (LLMs) become increasingly central to Arabic NLP applications, evaluating their understanding of regional dialects and cultural nuances is essential, particularly in linguistically diverse settings like Saudi Arabia. This paper introduces Absher, a comprehensive benchmark specifically designed to assess LLMs performance across major Saudi dialects. Absher comprises over 18,000 multiple-choice questions spanning six distinct categories: Meaning, True/False, Fill-in-the-Blank, Contextual Usage, Cultural Interpretation, and Location Recognition. These questions are derived from a curated dataset of dialectal words, phrases, and proverbs sourced from various regions of Saudi Arabia. We evaluate several state-of-the-art LLMs, including multilingual and Arabic-specific models. We also provide detailed insights into their capabilities and limitations. Our results reveal notable performance gaps, particularly in tasks requiring cultural inference or contextual understanding. Our findings highlight the urgent need for dialect-aware training and culturally aligned evaluation methodologies to improve LLMs performance in real-world Arabic applications.
ChatGPT MT: Competitive for High- (but not Low-) Resource Languages
Large language models (LLMs) implicitly learn to perform a range of language tasks, including machine translation (MT). Previous studies explore aspects of LLMs' MT capabilities. However, there exist a wide variety of languages for which recent LLM MT performance has never before been evaluated. Without published experimental evidence on the matter, it is difficult for speakers of the world's diverse languages to know how and whether they can use LLMs for their languages. We present the first experimental evidence for an expansive set of 204 languages, along with MT cost analysis, using the FLORES-200 benchmark. Trends reveal that GPT models approach or exceed traditional MT model performance for some high-resource languages (HRLs) but consistently lag for low-resource languages (LRLs), under-performing traditional MT for 84.1% of languages we covered. Our analysis reveals that a language's resource level is the most important feature in determining ChatGPT's relative ability to translate it, and suggests that ChatGPT is especially disadvantaged for LRLs and African languages.
Measuring Taiwanese Mandarin Language Understanding
The evaluation of large language models (LLMs) has drawn substantial attention in the field recently. This work focuses on evaluating LLMs in a Chinese context, specifically, for Traditional Chinese which has been largely underrepresented in existing benchmarks. We present TMLU, a holistic evaluation suit tailored for assessing the advanced knowledge and reasoning capability in LLMs, under the context of Taiwanese Mandarin. TMLU consists of an array of 37 subjects across social science, STEM, humanities, Taiwan-specific content, and others, ranging from middle school to professional levels. In addition, we curate chain-of-thought-like few-shot explanations for each subject to facilitate the evaluation of complex reasoning skills. To establish a comprehensive baseline, we conduct extensive experiments and analysis on 24 advanced LLMs. The results suggest that Chinese open-weight models demonstrate inferior performance comparing to multilingual proprietary ones, and open-weight models tailored for Taiwanese Mandarin lag behind the Simplified-Chinese counterparts. The findings indicate great headrooms for improvement, and emphasize the goal of TMLU to foster the development of localized Taiwanese-Mandarin LLMs. We release the benchmark and evaluation scripts for the community to promote future research.
FilBench: Can LLMs Understand and Generate Filipino?
Despite the impressive performance of LLMs on English-based tasks, little is known about their capabilities in specific languages such as Filipino. In this work, we address this gap by introducing FilBench, a Filipino-centric benchmark designed to evaluate LLMs across a diverse set of tasks and capabilities in Filipino, Tagalog, and Cebuano. We carefully curate the tasks in FilBench to reflect the priorities and trends of NLP research in the Philippines such as Cultural Knowledge, Classical NLP, Reading Comprehension, and Generation. By evaluating 27 state-of-the-art LLMs on FilBench, we find that several LLMs suffer from reading comprehension and translation capabilities. Our results indicate that FilBench is challenging, with the best model, GPT-4o, achieving only a score of 72.23%. Moreover, we also find that models trained specifically for Southeast Asian languages tend to underperform on FilBench, with the highest-performing model, SEA-LION v3 70B, achieving only a score of 61.07%. Our work demonstrates the value of curating language-specific LLM benchmarks to aid in driving progress on Filipino NLP and increasing the inclusion of Philippine languages in LLM development.
Human Preferences for Constructive Interactions in Language Model Alignment
As large language models (LLMs) enter the mainstream, aligning them to foster constructive dialogue rather than exacerbate societal divisions is critical. Using an individualized and multicultural alignment dataset of over 7,500 conversations of individuals from 74 countries engaging with 21 LLMs, we examined how linguistic attributes linked to constructive interactions are reflected in human preference data used for training AI. We found that users consistently preferred well-reasoned and nuanced responses while rejecting those high in personal storytelling. However, users who believed that AI should reflect their values tended to place less preference on reasoning in LLM responses and more on curiosity. Encouragingly, we observed that users could set the tone for how constructive their conversation would be, as LLMs mirrored linguistic attributes, including toxicity, in user queries.
Don't Take the Premise for Granted: Evaluating the Premise Critique Ability of Large Language Models
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the Premise Critique Ability for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs' reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the Premise Critique Bench (PCBench), designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs. Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to detect than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs' proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems. The code is available at https://github.com/MLGroupJLU/Premise_Critique.
COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances
We present publicly available COPAL-ID, a novel Indonesian language common sense reasoning dataset. Unlike the previous Indonesian COPA dataset (XCOPA-ID), COPAL-ID incorporates Indonesian local and cultural nuances, and therefore, provides a more natural portrayal of day-to-day causal reasoning within the Indonesian cultural sphere. Professionally written by natives from scratch, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID. In addition, we present COPAL-ID in both standard Indonesian and in Jakartan Indonesian--a dialect commonly used in daily conversation. COPAL-ID poses a greater challenge for existing open-sourced and closed state-of-the-art multilingual language models, yet is trivially easy for humans. Our findings suggest that even the current best open-source, multilingual model struggles to perform well, achieving 65.47% accuracy on COPAL-ID, significantly lower than on the culturally-devoid XCOPA-ID (79.40%). Despite GPT-4's impressive score, it suffers the same performance degradation compared to its XCOPA-ID score, and it still falls short of human performance. This shows that these language models are still way behind in comprehending the local nuances of Indonesian.
Small But Funny: A Feedback-Driven Approach to Humor Distillation
The emergence of Large Language Models (LLMs) has brought to light promising language generation capabilities, particularly in performing tasks like complex reasoning and creative writing. Consequently, distillation through imitation of teacher responses has emerged as a popular technique to transfer knowledge from LLMs to more accessible, Small Language Models (SLMs). While this works well for simpler tasks, there is a substantial performance gap on tasks requiring intricate language comprehension and creativity, such as humor generation. We hypothesize that this gap may stem from the fact that creative tasks might be hard to learn by imitation alone and explore whether an approach, involving supplementary guidance from the teacher, could yield higher performance. To address this, we study the effect of assigning a dual role to the LLM - as a "teacher" generating data, as well as a "critic" evaluating the student's performance. Our experiments on humor generation reveal that the incorporation of feedback significantly narrows the performance gap between SLMs and their larger counterparts compared to merely relying on imitation. As a result, our research highlights the potential of using feedback as an additional dimension to data when transferring complex language abilities via distillation.
Icelandic Parallel Abstracts Corpus
We present a new Icelandic-English parallel corpus, the Icelandic Parallel Abstracts Corpus (IPAC), composed of abstracts from student theses and dissertations. The texts were collected from the Skemman repository which keeps records of all theses, dissertations and final projects from students at Icelandic universities. The corpus was aligned based on sentence-level BLEU scores, in both translation directions, from NMT models using Bleualign. The result is a corpus of 64k sentence pairs from over 6 thousand parallel abstracts.
Exploring AI-Generated Text in Student Writing: How Does AI Help?
English as foreign language_EFL_students' use of text generated from artificial intelligence_AI_natural language generation_NLG_tools may improve their writing quality. However, it remains unclear to what extent AI-generated text in these students' writing might lead to higher-quality writing. We explored 23 Hong Kong secondary school students' attempts to write stories comprising their own words and AI-generated text. Human experts scored the stories for dimensions of content, language and organization. We analyzed the basic organization and structure and syntactic complexity of the stories' AI-generated text and performed multiple linear regression and cluster analyses. The results show the number of human words and the number of AI-generated words contribute significantly to scores. Besides, students can be grouped into competent and less competent writers who use more AI-generated text or less AI-generated text compared to their peers. Comparisons of clusters reveal some benefit of AI-generated text in improving the quality of both high-scoring students' and low-scoring students' writing. The findings can inform pedagogical strategies to use AI-generated text for EFL students' writing and to address digital divides. This study contributes designs of NLG tools and writing activities to implement AI-generated text in schools.
Sources of Hallucination by Large Language Models on Inference Tasks
Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two biases originating from pretraining which predict much of their behavior, and show that these are major sources of hallucination in generative LLMs. First, memorization at the level of sentences: we show that, regardless of the premise, models falsely label NLI test samples as entailing when the hypothesis is attested in training data, and that entities are used as ``indices'' to access the memorized data. Second, statistical patterns of usage learned at the level of corpora: we further show a similar effect when the premise predicate is less frequent than that of the hypothesis in the training data, a bias following from previous studies. We demonstrate that LLMs perform significantly worse on NLI test samples which do not conform to these biases than those which do, and we offer these as valuable controls for future LLM evaluation.
A Survey of Confidence Estimation and Calibration in Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, they can be unreliable due to factual errors in their generations. Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations. There has been a lot of recent research aiming to address this, but there has been no comprehensive overview to organize it and outline the main lessons learned. The present survey aims to bridge this gap. In particular, we outline the challenges and we summarize recent technical advancements for LLM confidence estimation and calibration. We further discuss their applications and suggest promising directions for future work.
How does the pre-training objective affect what large language models learn about linguistic properties?
Several pre-training objectives, such as masked language modeling (MLM), have been proposed to pre-train language models (e.g. BERT) with the aim of learning better language representations. However, to the best of our knowledge, no previous work so far has investigated how different pre-training objectives affect what BERT learns about linguistics properties. We hypothesize that linguistically motivated objectives such as MLM should help BERT to acquire better linguistic knowledge compared to other non-linguistically motivated objectives that are not intuitive or hard for humans to guess the association between the input and the label to be predicted. To this end, we pre-train BERT with two linguistically motivated objectives and three non-linguistically motivated ones. We then probe for linguistic characteristics encoded in the representation of the resulting models. We find strong evidence that there are only small differences in probing performance between the representations learned by the two different types of objectives. These surprising results question the dominant narrative of linguistically informed pre-training.
From Tarzan to Tolkien: Controlling the Language Proficiency Level of LLMs for Content Generation
We study the problem of controlling the difficulty level of text generated by Large Language Models (LLMs) for contexts where end-users are not fully proficient, such as language learners. Using a novel framework, we evaluate the effectiveness of several key approaches for this task, including few-shot prompting, supervised finetuning, and reinforcement learning (RL), utilising both GPT-4 and open source alternatives like LLama2-7B and Mistral-7B. Our findings reveal a large performance gap between GPT-4 and the open source models when using prompt-based strategies. However, we show how to bridge this gap with a careful combination of finetuning and RL alignment. Our best model, CALM (CEFR-Aligned Language Model), surpasses the performance of GPT-4 and other strategies, at only a fraction of the cost. We further validate the quality of our results through a small-scale human study.
Benchmarking Linguistic Diversity of Large Language Models
The development and evaluation of Large Language Models (LLMs) has primarily focused on their task-solving capabilities, with recent models even surpassing human performance in some areas. However, this focus often neglects whether machine-generated language matches the human level of diversity, in terms of vocabulary choice, syntactic construction, and expression of meaning, raising questions about whether the fundamentals of language generation have been fully addressed. This paper emphasizes the importance of examining the preservation of human linguistic richness by language models, given the concerning surge in online content produced or aided by LLMs. We propose a comprehensive framework for evaluating LLMs from various linguistic diversity perspectives including lexical, syntactic, and semantic dimensions. Using this framework, we benchmark several state-of-the-art LLMs across all diversity dimensions, and conduct an in-depth case study for syntactic diversity. Finally, we analyze how different development and deployment choices impact the linguistic diversity of LLM outputs.
MonoByte: A Pool of Monolingual Byte-level Language Models
The zero-shot cross-lingual ability of models pretrained on multilingual and even monolingual corpora has spurred many hypotheses to explain this intriguing empirical result. However, due to the costs of pretraining, most research uses public models whose pretraining methodology, such as the choice of tokenization, corpus size, and computational budget, might differ drastically. When researchers pretrain their own models, they often do so under a constrained budget, and the resulting models might underperform significantly compared to SOTA models. These experimental differences led to various inconsistent conclusions about the nature of the cross-lingual ability of these models. To help further research on the topic, we released 10 monolingual byte-level models rigorously pretrained under the same configuration with a large compute budget (equivalent to 420 days on a V100) and corpora that are 4 times larger than the original BERT's. Because they are tokenizer-free, the problem of unseen token embeddings is eliminated, thus allowing researchers to try a wider range of cross-lingual experiments in languages with different scripts. Additionally, we release two models pretrained on non-natural language texts that can be used in sanity-check experiments. Experiments on QA and NLI tasks show that our monolingual models achieve competitive performance to the multilingual one, and hence can be served to strengthen our understanding of cross-lingual transferability in language models.
Evaluating Multilingual Long-Context Models for Retrieval and Reasoning
Recent large language models (LLMs) demonstrate impressive capabilities in handling long contexts, some exhibiting near-perfect recall on synthetic retrieval tasks. However, these evaluations have mainly focused on English text and involved a single target sentence within lengthy contexts. Our work investigates how LLM performance generalizes to multilingual settings with multiple hidden target sentences. We create a new dataset -- mLongRR -- to comprehensively evaluate several multilingual long-context LLMs on retrieval and reasoning tasks across five languages: English, Vietnamese, Indonesian, Swahili, and Somali. These languages share the Latin script but belong to distinct language families and resource levels. Our analysis reveals a significant performance gap between languages. The best-performing models such as Gemini-1.5 and GPT-4o, achieve around 96% accuracy in English to around 36% in Somali with a single target sentence. However, this accuracy drops to 40% in English and 0% in Somali when dealing with three target sentences. Our findings highlight the challenges long-context LLMs face when processing longer contexts, an increase in the number of target sentences, or languages of lower resource levels.
metabench -- A Sparse Benchmark to Measure General Ability in Large Language Models
Large Language Models (LLMs) vary in their abilities on a range of tasks. Initiatives such as the Open LLM Leaderboard aim to quantify these differences with several large benchmarks (sets of test items to which an LLM can respond either correctly or incorrectly). However, high correlations within and between benchmark scores suggest that (1) there exists a small set of common underlying abilities that these benchmarks measure, and (2) items tap into redundant information and the benchmarks may thus be considerably compressed. We use data from n > 5000 LLMs to identify the most informative items of six benchmarks, ARC, GSM8K, HellaSwag, MMLU, TruthfulQA and WinoGrande (with d=28,632 items in total). From them we distill a sparse benchmark, metabench, that has less than 3% of the original size of all six benchmarks combined. This new sparse benchmark goes beyond point scores by yielding estimators of the underlying benchmark-specific abilities. We show that these estimators (1) can be used to reconstruct each original individual benchmark score with, on average, 1.5% root mean square error (RMSE), (2) reconstruct the original total score with 0.8% RMSE, and (3) have a single underlying common factor whose Spearman correlation with the total score is r = 0.93.
Towards Better Inclusivity: A Diverse Tweet Corpus of English Varieties
The prevalence of social media presents a growing opportunity to collect and analyse examples of English varieties. Whilst usage of these varieties was - and, in many cases, still is - used only in spoken contexts or hard-to-access private messages, social media sites like Twitter provide a platform for users to communicate informally in a scrapeable format. Notably, Indian English (Hinglish), Singaporean English (Singlish), and African-American English (AAE) can be commonly found online. These varieties pose a challenge to existing natural language processing (NLP) tools as they often differ orthographically and syntactically from standard English for which the majority of these tools are built. NLP models trained on standard English texts produced biased outcomes for users of underrepresented varieties. Some research has aimed to overcome the inherent biases caused by unrepresentative data through techniques like data augmentation or adjusting training models. We aim to address the issue of bias at its root - the data itself. We curate a dataset of tweets from countries with high proportions of underserved English variety speakers, and propose an annotation framework of six categorical classifications along a pseudo-spectrum that measures the degree of standard English and that thereby indirectly aims to surface the manifestations of English varieties in these tweets. Following best annotation practices, our growing corpus features 170,800 tweets taken from 7 countries, labeled by annotators who are from those countries and can communicate in regionally-dominant varieties of English. Our corpus highlights the accuracy discrepancies in pre-trained language identifiers between western English and non-western (i.e., less standard) English varieties. We hope to contribute to the growing literature identifying and reducing the implicit demographic discrepancies in NLP.
TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages
Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA---a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology---the set of linguistic features each language expresses---such that we expect models performing well on this set to generalize across a large number of the world's languages. We present a quantitative analysis of the data quality and example-level qualitative linguistic analyses of observed language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don't know the answer yet, and the data is collected directly in each language without the use of translation.
LLMs in Education: Novel Perspectives, Challenges, and Opportunities
The role of large language models (LLMs) in education is an increasing area of interest today, considering the new opportunities they offer for teaching, learning, and assessment. This cutting-edge tutorial provides an overview of the educational applications of NLP and the impact that the recent advances in LLMs have had on this field. We will discuss the key challenges and opportunities presented by LLMs, grounding them in the context of four major educational applications: reading, writing, and speaking skills, and intelligent tutoring systems (ITS). This COLING 2025 tutorial is designed for researchers and practitioners interested in the educational applications of NLP and the role LLMs have to play in this area. It is the first of its kind to address this timely topic.
Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology
Gender stereotypes are manifest in most of the world's languages and are consequently propagated or amplified by NLP systems. Although research has focused on mitigating gender stereotypes in English, the approaches that are commonly employed produce ungrammatical sentences in morphologically rich languages. We present a novel approach for converting between masculine-inflected and feminine-inflected sentences in such languages. For Spanish and Hebrew, our approach achieves F1 scores of 82% and 73% at the level of tags and accuracies of 90% and 87% at the level of forms. By evaluating our approach using four different languages, we show that, on average, it reduces gender stereotyping by a factor of 2.5 without any sacrifice to grammaticality.
Efficient Language Adaptive Pre-training: Extending State-of-the-Art Large Language Models for Polish
This study explores the potential of fine-tuning foundational English Large Language Models (LLMs) for generating Polish text. The first step involves Language Adaptive Pre-training (LAPT) on a high-quality dataset of 3.11 GB, consisting of 276 million Polish tokens. The LAPT is followed by additional fine-tuning aimed at solving nine KLEJ challenges. Our trained model Curie-7B-v1 not only generates Polish text with the lowest perplexity of 3.02 among decoder-based Polish models but also closely rivals the performance of the best Polish encoder-decoder models with a less than 2% gap on 8 out of 9 tasks. Curie-7B-v1 used approximately 2-3% of a typical dataset size to learn Polish. The LAPT was completed in less than five days using a consumer GPU, highlighting the method's efficiency. The proficiency of the model in Polish was significantly enhanced, demonstrating the viability of this approach for adding new languages to existing LLMs by training just 1.2% of its parameters. To contribute to the community's collaborative progress, the model has been released as open-source.
Structural Priming Demonstrates Abstract Grammatical Representations in Multilingual Language Models
Abstract grammatical knowledge - of parts of speech and grammatical patterns - is key to the capacity for linguistic generalization in humans. But how abstract is grammatical knowledge in large language models? In the human literature, compelling evidence for grammatical abstraction comes from structural priming. A sentence that shares the same grammatical structure as a preceding sentence is processed and produced more readily. Because confounds exist when using stimuli in a single language, evidence of abstraction is even more compelling from crosslingual structural priming, where use of a syntactic structure in one language primes an analogous structure in another language. We measure crosslingual structural priming in large language models, comparing model behavior to human experimental results from eight crosslingual experiments covering six languages, and four monolingual structural priming experiments in three non-English languages. We find evidence for abstract monolingual and crosslingual grammatical representations in the models that function similarly to those found in humans. These results demonstrate that grammatical representations in multilingual language models are not only similar across languages, but they can causally influence text produced in different languages.
