- Incivility in Open Source Projects: A Comprehensive Annotated Dataset of Locked GitHub Issue Threads In the dynamic landscape of open source software (OSS) development, understanding and addressing incivility within issue discussions is crucial for fostering healthy and productive collaborations. This paper presents a curated dataset of 404 locked GitHub issue discussion threads and 5961 individual comments, collected from 213 OSS projects. We annotated the comments with various categories of incivility using Tone Bearing Discussion Features (TBDFs), and, for each issue thread, we annotated the triggers, targets, and consequences of incivility. We observed that Bitter frustration, Impatience, and Mocking are the most prevalent TBDFs exhibited in our dataset. The most common triggers, targets, and consequences of incivility include Failed use of tool/code or error messages, People, and Discontinued further discussion, respectively. This dataset can serve as a valuable resource for analyzing incivility in OSS and improving automated tools to detect and mitigate such behavior. 5 authors · Feb 6, 2024
- Measuring and Forecasting Conversation Incivility: the Role of Antisocial and Prosocial Behaviors This paper focuses on the task of measuring and forecasting incivility in conversations following replies to hate speech. Identifying replies that steer conversations away from hatred and elicit civil follow-up conversations sheds light into effective strategies to engage with hate speech and proactively avoid further escalation. We propose new metrics that take into account various dimensions of antisocial and prosocial behaviors to measure the conversation incivility following replies to hate speech. Our best metric aligns with human perceptions better than prior work. Additionally, we present analyses on a) the language of antisocial and prosocial posts, b) the relationship between antisocial or prosocial posts and user interactions, and c) the language of replies to hate speech that elicit follow-up conversations with different incivility levels. We show that forecasting the incivility level of conversations following a reply to hate speech is a challenging task. We also present qualitative analyses to identify the most common errors made by our best model. 4 authors · Dec 3, 2024
- Detecting and Characterizing Political Incivility on Social Media Researchers of political communication study the impact and perceptions of political incivility on social media. Yet, so far, relatively few works attempted to automatically detect and characterize political incivility. In our work, we study political incivility in Twitter, presenting several research contributions. First, we present state-of-the-art incivility detection results using a large dataset, which we collected and labeled via crowd sourcing. Importantly, we distinguish between uncivil political speech that is impolite and intolerant anti-democratic discourse. Applying political incivility detection at large-scale, we derive insights regarding the prevalence of this phenomenon across users, and explore the network characteristics of users who are susceptible to disseminating uncivil political content online. Finally, we propose an approach for modeling social context information about the tweet author alongside the tweet content, showing that this leads to significantly improved performance on the task of political incivility detection. This result holds promise for related tasks, such as hate speech and stance detection. 4 authors · May 24, 2023
- Benchmarking LLMs in Political Content Text-Annotation: Proof-of-Concept with Toxicity and Incivility Data This article benchmarked the ability of OpenAI's GPTs and a number of open-source LLMs to perform annotation tasks on political content. We used a novel protest event dataset comprising more than three million digital interactions and created a gold standard that includes ground-truth labels annotated by human coders about toxicity and incivility on social media. We included in our benchmark Google's Perspective algorithm, which, along with GPTs, was employed throughout their respective APIs while the open-source LLMs were deployed locally. The findings show that Perspective API using a laxer threshold, GPT-4o, and Nous Hermes 2 Mixtral outperform other LLM's zero-shot classification annotations. In addition, Nous Hermes 2 and Mistral OpenOrca, with a smaller number of parameters, are able to perform the task with high performance, being attractive options that could offer good trade-offs between performance, implementing costs and computing time. Ancillary findings using experiments setting different temperature levels show that although GPTs tend to show not only excellent computing time but also overall good levels of reliability, only open-source LLMs ensure full reproducibility in the annotation. 1 authors · Sep 15, 2024
- TextClass Benchmark: A Continuous Elo Rating of LLMs in Social Sciences The TextClass Benchmark project is an ongoing, continuous benchmarking process that aims to provide a comprehensive, fair, and dynamic evaluation of LLMs and transformers for text classification tasks. This evaluation spans various domains and languages in social sciences disciplines engaged in NLP and text-as-data approach. The leaderboards present performance metrics and relative ranking using a tailored Elo rating system. With each leaderboard cycle, novel models are added, fixed test sets can be replaced for unseen, equivalent data to test generalisation power, ratings are updated, and a Meta-Elo leaderboard combines and weights domain-specific leaderboards. This article presents the rationale and motivation behind the project, explains the Elo rating system in detail, and estimates Meta-Elo across different classification tasks in social science disciplines. We also present a snapshot of the first cycle of classification tasks on incivility data in Chinese, English, German and Russian. This ongoing benchmarking process includes not only additional languages such as Arabic, Hindi, and Spanish but also a classification of policy agenda topics, misinformation, among others. 1 authors · Nov 30, 2024
2 Shedding Light on Software Engineering-specific Metaphors and Idioms Use of figurative language, such as metaphors and idioms, is common in our daily-life communications, and it can also be found in Software Engineering (SE) channels, such as comments on GitHub. Automatically interpreting figurative language is a challenging task, even with modern Large Language Models (LLMs), as it often involves subtle nuances. This is particularly true in the SE domain, where figurative language is frequently used to convey technical concepts, often bearing developer affect (e.g., `spaghetti code'). Surprisingly, there is a lack of studies on how figurative language in SE communications impacts the performance of automatic tools that focus on understanding developer communications, e.g., bug prioritization, incivility detection. Furthermore, it is an open question to what extent state-of-the-art LLMs interpret figurative expressions in domain-specific communication such as software engineering. To address this gap, we study the prevalence and impact of figurative language in SE communication channels. This study contributes to understanding the role of figurative language in SE, the potential of LLMs in interpreting them, and its impact on automated SE communication analysis. Our results demonstrate the effectiveness of fine-tuning LLMs with figurative language in SE and its potential impact on automated tasks that involve affect. We found that, among three state-of-the-art LLMs, the best improved fine-tuned versions have an average improvement of 6.66% on a GitHub emotion classification dataset, 7.07% on a GitHub incivility classification dataset, and 3.71% on a Bugzilla bug report prioritization dataset. 3 authors · Dec 15, 2023