new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 12

Video-Holmes: Can MLLM Think Like Holmes for Complex Video Reasoning?

Recent advances in CoT reasoning and RL post-training have been reported to enhance video reasoning capabilities of MLLMs. This progress naturally raises a question: can these models perform complex video reasoning in a manner comparable to human experts? However, existing video benchmarks primarily evaluate visual perception and grounding abilities, with questions that can be answered based on explicit prompts or isolated visual cues. Such benchmarks do not fully capture the intricacies of real-world reasoning, where humans must actively search for, integrate, and analyze multiple clues before reaching a conclusion. To address this issue, we present Video-Holmes, a benchmark inspired by the reasoning process of Sherlock Holmes, designed to evaluate the complex video reasoning capabilities of MLLMs. Video-Holmes consists of 1,837 questions derived from 270 manually annotated suspense short films, which spans seven carefully designed tasks. Each task is constructed by first identifying key events and causal relationships within films, and then designing questions that require models to actively locate and connect multiple relevant visual clues scattered across different video segments. Our comprehensive evaluation of state-of-the-art MLLMs reveals that, while these models generally excel at visual perception, they encounter substantial difficulties with integrating information and often miss critical clues. For example, the best-performing model, Gemini-2.5-Pro, achieves an accuracy of only 45%, with most models scoring below 40%. We aim that Video-Holmes can serve as a "Holmes-test" for multimodal reasoning, motivating models to reason more like humans and emphasizing the ongoing challenges in this field. The benchmark is released in https://github.com/TencentARC/Video-Holmes.

  • 6 authors
·
May 27 2

VideoReasonBench: Can MLLMs Perform Vision-Centric Complex Video Reasoning?

Recent studies have shown that long chain-of-thought (CoT) reasoning can significantly enhance the performance of large language models (LLMs) on complex tasks. However, this benefit is yet to be demonstrated in the domain of video understanding, since most existing benchmarks lack the reasoning depth required to demonstrate the advantages of extended CoT chains. While recent efforts have proposed benchmarks aimed at video reasoning, the tasks are often knowledge-driven and do not rely heavily on visual content. To bridge this gap, we introduce VideoReasonBench, a benchmark designed to evaluate vision-centric, complex video reasoning. To ensure visual richness and high reasoning complexity, each video in VideoReasonBench depicts a sequence of fine-grained operations on a latent state that is only visible in part of the video. The questions evaluate three escalating levels of video reasoning skills: recalling observed visual information, inferring the content of latent states, and predicting information beyond the video. Under such task setting, models have to precisely recall multiple operations in the video, and perform step-by-step reasoning to get correct final answers for these questions. Using VideoReasonBench, we comprehensively evaluate 18 state-of-the-art multimodal LLMs (MLLMs), finding that most perform poorly on complex video reasoning, e.g., GPT-4o achieves only 6.9% accuracy, while the thinking-enhanced Gemini-2.5-Pro significantly outperforms others with 56.0% accuracy. Our investigations on "test-time scaling" further reveal that extended thinking budget, while offering none or minimal benefits on existing video benchmarks, is essential for improving the performance on VideoReasonBench.

  • 10 authors
·
May 29 6

VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization

Applying Reinforcement Learning (RL) to Video Large Language Models (Video-LLMs) shows significant promise for complex video reasoning. However, popular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks (e.g., noise or high cost) and exhibit unstable improvements in the quality of long chain-of-thoughts (CoTs) and downstream performance.To address these limitations, we propose VerIPO, a Verifier-guided Iterative Policy Optimization method designed to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains. The core component is Rollout-Aware Verifier, positioned between the GRPO and Direct Preference Optimization (DPO) training phases to form the GRPO-Verifier-DPO training loop. This verifier leverages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the construction of high-quality contrastive data, including reflective and contextually consistent CoTs. These curated preference samples drive the efficient DPO stage (7x faster than GRPO), leading to marked improvements in reasoning chain quality, especially in terms of length and contextual consistency. This training loop benefits from GRPO's expansive search and DPO's targeted optimization. Experimental results demonstrate: 1) Significantly faster and more effective optimization compared to standard GRPO variants, yielding superior performance; 2) Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs, producing long and contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model with one iteration outperforms powerful LMMs (e.g., Kimi-VL) and long reasoning models (e.g., Video-R1), highlighting its effectiveness and stability.

  • 8 authors
·
May 25 6

SiLVR: A Simple Language-based Video Reasoning Framework

Recent advances in test-time optimization have led to remarkable reasoning capabilities in Large Language Models (LLMs), enabling them to solve highly complex problems in math and coding. However, the reasoning capabilities of multimodal LLMs (MLLMs) still significantly lag, especially for complex video-language tasks. To address this issue, we present SiLVR, a Simple Language-based Video Reasoning framework that decomposes complex video understanding into two stages. In the first stage, SiLVR transforms raw video into language-based representations using multisensory inputs, such as short clip captions and audio/speech subtitles. In the second stage, language descriptions are fed into a powerful reasoning LLM to solve complex video-language understanding tasks. To handle long-context multisensory inputs, we use an adaptive token reduction scheme, which dynamically determines the temporal granularity with which to sample the tokens. Our simple, modular, and training-free video reasoning framework achieves the best-reported results on Video-MME (long), Video-MMMU (comprehension), Video-MMLU, CGBench, and EgoLife. Furthermore, our empirical study focused on video reasoning capabilities shows that, despite not being explicitly trained on video, strong reasoning LLMs can effectively aggregate multisensory input information from video, speech, and audio for complex temporal, causal, long-context, and knowledge acquisition reasoning tasks in video. Code is available at https://github.com/CeeZh/SILVR.

  • 5 authors
·
May 30 2

SciVideoBench: Benchmarking Scientific Video Reasoning in Large Multimodal Models

Large Multimodal Models (LMMs) have achieved remarkable progress across various capabilities; however, complex video reasoning in the scientific domain remains a significant and challenging frontier. Current video benchmarks predominantly target general scenarios where perception/recognition is heavily relied on, while with relatively simple reasoning tasks, leading to saturation and thus failing to effectively evaluate advanced multimodal cognitive skills. To address this critical gap, we introduce SciVideoBench, a rigorous benchmark specifically designed to assess advanced video reasoning in scientific contexts. SciVideoBench consists of 1,000 carefully crafted multiple-choice questions derived from cutting-edge scientific experimental videos spanning over 25 specialized academic subjects and verified by a semi-automatic system. Each question demands sophisticated domain-specific knowledge, precise spatiotemporal perception, and intricate logical reasoning, effectively challenging models' higher-order cognitive abilities. Our evaluation highlights significant performance deficits in state-of-the-art proprietary and open-source LMMs, including Gemini 2.5 Pro and Qwen2.5-VL, indicating substantial room for advancement in video reasoning capabilities. Detailed analyses of critical factors such as reasoning complexity and visual grounding provide valuable insights and clear direction for future developments in LMMs, driving the evolution of truly capable multimodal AI co-scientists. We hope SciVideoBench could fit the interests of the community and help to push the boundary of cutting-edge AI for border science.

VCR-Bench: A Comprehensive Evaluation Framework for Video Chain-of-Thought Reasoning

The advancement of Chain-of-Thought (CoT) reasoning has significantly enhanced the capabilities of large language models (LLMs) and large vision-language models (LVLMs). However, a rigorous evaluation framework for video CoT reasoning remains absent. Current video benchmarks fail to adequately assess the reasoning process and expose whether failures stem from deficiencies in perception or reasoning capabilities. Therefore, we introduce VCR-Bench, a novel benchmark designed to comprehensively evaluate LVLMs' Video Chain-of-Thought Reasoning capabilities. VCR-Bench comprises 859 videos spanning a variety of video content and durations, along with 1,034 high-quality question-answer pairs. Each pair is manually annotated with a stepwise CoT rationale, where every step is tagged to indicate its association with the perception or reasoning capabilities. Furthermore, we design seven distinct task dimensions and propose the CoT score to assess the entire CoT process based on the stepwise tagged CoT rationals. Extensive experiments on VCR-Bench highlight substantial limitations in current LVLMs. Even the top-performing model, o1, only achieves a 62.8% CoT score and an 56.7% accuracy, while most models score below 40%. Experiments show most models score lower on perception than reasoning steps, revealing LVLMs' key bottleneck in temporal-spatial information processing for complex video reasoning. A robust positive correlation between the CoT score and accuracy confirms the validity of our evaluation framework and underscores the critical role of CoT reasoning in solving complex video reasoning tasks. We hope VCR-Bench to serve as a standardized evaluation framework and expose the actual drawbacks in complex video reasoning task.

  • 10 authors
·
Apr 10 2

VISA: Reasoning Video Object Segmentation via Large Language Models

Existing Video Object Segmentation (VOS) relies on explicit user instructions, such as categories, masks, or short phrases, restricting their ability to perform complex video segmentation requiring reasoning with world knowledge. In this paper, we introduce a new task, Reasoning Video Object Segmentation (ReasonVOS). This task aims to generate a sequence of segmentation masks in response to implicit text queries that require complex reasoning abilities based on world knowledge and video contexts, which is crucial for structured environment understanding and object-centric interactions, pivotal in the development of embodied AI. To tackle ReasonVOS, we introduce VISA (Video-based large language Instructed Segmentation Assistant), to leverage the world knowledge reasoning capabilities of multi-modal LLMs while possessing the ability to segment and track objects in videos with a mask decoder. Moreover, we establish a comprehensive benchmark consisting of 35,074 instruction-mask sequence pairs from 1,042 diverse videos, which incorporates complex world knowledge reasoning into segmentation tasks for instruction-tuning and evaluation purposes of ReasonVOS models. Experiments conducted on 8 datasets demonstrate the effectiveness of VISA in tackling complex reasoning segmentation and vanilla referring segmentation in both video and image domains. The code and dataset are available at https://github.com/cilinyan/VISA.

  • 8 authors
·
Jul 15, 2024

CVBench: Evaluating Cross-Video Synergies for Complex Multimodal Understanding and Reasoning

While multimodal large language models (MLLMs) exhibit strong performance on single-video tasks (e.g., video question answering), their ability across multiple videos remains critically underexplored. However, this capability is essential for real-world applications, including multi-camera surveillance and cross-video procedural learning. To bridge this gap, we present CVBench, the first comprehensive benchmark designed to assess cross-video relational reasoning rigorously. CVBench comprises 1,000 question-answer pairs spanning three hierarchical tiers: cross-video object association (identifying shared entities), cross-video event association (linking temporal or causal event chains), and cross-video complex reasoning (integrating commonsense and domain knowledge). Built from five domain-diverse video clusters (e.g., sports, life records), the benchmark challenges models to synthesise information across dynamic visual contexts. Extensive evaluation of 10+ leading MLLMs (including GPT-4o, Gemini-2.0-flash, Qwen2.5-VL) under zero-shot or chain-of-thought prompting paradigms. Key findings reveal stark performance gaps: even top models, such as GPT-4o, achieve only 60% accuracy on causal reasoning tasks, compared to the 91% accuracy of human performance. Crucially, our analysis reveals fundamental bottlenecks inherent in current MLLM architectures, notably deficient inter-video context retention and poor disambiguation of overlapping entities. CVBench establishes a rigorous framework for diagnosing and advancing multi-video reasoning, offering architectural insights for next-generation MLLMs. The data and evaluation code are available at https://github.com/Hokhim2/CVBench.

  • 12 authors
·
Aug 26

InterAct-Video: Reasoning-Rich Video QA for Urban Traffic

Traffic monitoring is crucial for urban mobility, road safety, and intelligent transportation systems (ITS). Deep learning has advanced video-based traffic monitoring through video question answering (VideoQA) models, enabling structured insight extraction from traffic videos. However, existing VideoQA models struggle with the complexity of real-world traffic scenes, where multiple concurrent events unfold across spatiotemporal dimensions. To address these challenges, this paper introduces InterAct VideoQA, a curated dataset designed to benchmark and enhance VideoQA models for traffic monitoring tasks. The InterAct VideoQA dataset comprises 8 hours of real-world traffic footage collected from diverse intersections, segmented into 10-second video clips, with over 25,000 question-answer (QA) pairs covering spatiotemporal dynamics, vehicle interactions, incident detection, and other critical traffic attributes. State-of-the-art VideoQA models are evaluated on InterAct VideoQA, exposing challenges in reasoning over fine-grained spatiotemporal dependencies within complex traffic scenarios. Additionally, fine-tuning these models on InterAct VideoQA yields notable performance improvements, demonstrating the necessity of domain-specific datasets for VideoQA. InterAct VideoQA is publicly available as a benchmark dataset to facilitate future research in real-world deployable VideoQA models for intelligent transportation systems. GitHub Repo: https://github.com/joe-rabbit/InterAct_VideoQA

  • 6 authors
·
Jul 19

Reinforcing Video Reasoning with Focused Thinking

Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at https://github.com/longmalongma/TW-GRPO.

  • 9 authors
·
May 30

SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction

Video Object Segmentation (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames. Despite notable advances with recent efforts, current techniques still lag behind human capabilities in handling drastic visual variations, occlusions, and complex scene changes. This limitation arises from their reliance on appearance matching, neglecting the human-like conceptual understanding of objects that enables robust identification across temporal dynamics. Motivated by this gap, we propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. During inference, SeC forms a comprehensive semantic representation of the target based on processed frames, realizing robust segmentation of follow-up frames. Furthermore, SeC adaptively balances LVLM-based semantic reasoning with enhanced feature matching, dynamically adjusting computational efforts based on scene complexity. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware video object segmentation.

  • 10 authors
·
Jul 21 1

VideoRFT: Incentivizing Video Reasoning Capability in MLLMs via Reinforced Fine-Tuning

Reinforcement fine-tuning (RFT) has shown great promise in achieving humanlevel reasoning capabilities of Large Language Models (LLMs), and has recently been extended to MLLMs. Nevertheless, reasoning about videos, which is a fundamental aspect of human intelligence, remains a persistent challenge due to the complex logic, temporal and causal structures inherent in video data. To fill this gap, we propose VideoRFT, a novel approach that extends the RFT paradigm to cultivate human-like video reasoning capabilities in MLLMs. VideoRFT follows the standard two-stage scheme in RFT: supervised fine-tuning (SFT) with chain-of-thought (CoT) annotations, followed by reinforcement learning (RL) to improve generalization. A central challenge to achieve this in the video domain lies in the scarcity of large-scale, high-quality video CoT datasets. We address this by building a multi-expert-driven, cognition-inspired CoT curation pipeline. First, we devise a cognition-inspired prompting strategy to elicit a reasoning LLM to generate preliminary CoTs based solely on rich, structured, and literal representations of video content. Subsequently, these CoTs are revised by a MLLM conditioned on the actual video, ensuring visual consistency and reducing visual hallucinations. This pipeline results in two new datasets, i.e.VideoRFT-CoT-102K for SFT and VideoRFT-RL-310K for RL. To further strengthen the RL phase, we introduce a novel semantic-consistency reward that explicitly promotes the alignment between textual reasoning and visual evidence. This reward encourages the model to produce coherent, context-aware reasoning outputs grounded in visual input. Extensive experiments show that VideoRFT achieves state-of-the-art performance on six video reasoning benchmarks.

  • 5 authors
·
May 18

Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models

Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training

SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks

Large Language Models (LLMs) are experiencing rapid advancements in complex reasoning, exhibiting remarkable generalization in mathematics and programming. In contrast, while spatial intelligence is fundamental for Vision-Language Models (VLMs) in real-world interaction, the systematic evaluation of their complex reasoning ability within spatial contexts remains underexplored. To bridge this gap, we introduce SIRI-Bench, a benchmark designed to evaluate VLMs' spatial intelligence through video-based reasoning tasks. SIRI-Bench comprises nearly 1K video-question-answer triplets, where each problem is embedded in a realistic 3D scene and captured by video. By carefully designing questions and corresponding 3D scenes, our benchmark ensures that solving the questions requires both spatial comprehension for extracting information and high-level reasoning for deriving solutions, making it a challenging benchmark for evaluating VLMs. To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine. This engine, leveraging multiple specialized LLM agents, can generate realistic 3D scenes from abstract math problems, ensuring faithfulness to the original descriptions. Experimental results reveal that state-of-the-art VLMs struggle significantly on SIRI-Bench, underscoring the challenge of spatial reasoning. We hope that our study will bring researchers' attention to spatially grounded reasoning and advance VLMs in visual problem-solving.

  • 5 authors
·
Jun 17

VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection

The advancement of Large Vision Language Models (LVLMs) has significantly improved multimodal understanding, yet challenges remain in video reasoning tasks due to the scarcity of high-quality, large-scale datasets. Existing video question-answering (VideoQA) datasets often rely on costly manual annotations with insufficient granularity or automatic construction methods with redundant frame-by-frame analysis, limiting their scalability and effectiveness for complex reasoning. To address these challenges, we introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence, along with multimodal annotations of intermediate reasoning steps. Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o. We further develop video Chain-of-Thought (CoT) annotations to enrich reasoning processes, guiding GPT-4o in extracting logical relationships from QA pairs and video content. To exploit the potential of high-quality VideoQA pairs, we propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM. This framework adaptively selects core frames and performs CoT reasoning using multimodal evidence. Evaluated on our proposed benchmark with 14 tasks against 9 popular LVLMs, our method outperforms existing baselines on most tasks, demonstrating superior video reasoning capabilities. Our code and dataset will be released at: https://github.com/hshjerry/VideoEspresso

  • 10 authors
·
Nov 22, 2024 3

VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models

Despite recent advances in video understanding, the capabilities of Large Video Language Models (LVLMs) to perform video-based causal reasoning remains underexplored, largely due to the absence of relevant and dedicated benchmarks for evaluating causal reasoning in visually grounded and goal-driven settings. To fill this gap, we introduce a novel benchmark named Video-based long-form Causal Reasoning (VCRBench). We create VCRBench using procedural videos of simple everyday activities, where the steps are deliberately shuffled with each clip capturing a key causal event, to test whether LVLMs can identify, reason about, and correctly sequence the events needed to accomplish a specific goal. Moreover, the benchmark is carefully designed to prevent LVLMs from exploiting linguistic shortcuts, as seen in multiple-choice or binary QA formats, while also avoiding the challenges associated with evaluating open-ended QA. Our evaluation of state-of-the-art LVLMs on VCRBench suggests that these models struggle with video-based long-form causal reasoning, primarily due to their difficulty in modeling long-range causal dependencies directly from visual observations. As a simple step toward enabling such capabilities, we propose Recognition-Reasoning Decomposition (RRD), a modular approach that breaks video-based causal reasoning into two sub-tasks of video recognition and causal reasoning. Our experiments on VCRBench show that RRD significantly boosts accuracy on VCRBench, with gains of up to 25.2%. Finally, our thorough analysis reveals interesting insights, for instance, that LVLMs primarily rely on language knowledge for complex video-based long-form causal reasoning tasks.

  • 2 authors
·
May 13 2

ExpVid: A Benchmark for Experiment Video Understanding & Reasoning

Multimodal Large Language Models (MLLMs) hold promise for accelerating scientific discovery by interpreting complex experimental procedures. However, their true capabilities are poorly understood, as existing benchmarks neglect the fine-grained and long-horizon nature of authentic laboratory work, especially in wet-lab settings. To bridge this gap, we introduce ExpVid, the first benchmark designed to systematically evaluate MLLMs on scientific experiment videos. Curated from peer-reviewed video publications, ExpVid features a new three-level task hierarchy that mirrors the scientific process: (1) Fine-grained Perception of tools, materials, and actions; (2) Procedural Understanding of step order and completeness; and (3) Scientific Reasoning that connects the full experiment to its published conclusions. Our vision-centric annotation pipeline, combining automated generation with multi-disciplinary expert validation, ensures that tasks require visual grounding. We evaluate 19 leading MLLMs on ExpVid and find that while they excel at coarse-grained recognition, they struggle with disambiguating fine details, tracking state changes over time, and linking experimental procedures to scientific outcomes. Our results reveal a notable performance gap between proprietary and open-source models, particularly in high-order reasoning. ExpVid not only provides a diagnostic tool but also charts a roadmap for developing MLLMs capable of becoming trustworthy partners in scientific experimentation.

OpenGVLab OpenGVLab
·
Oct 13 2

VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation

Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.

  • 8 authors
·
Mar 18

EmbRACE-3K: Embodied Reasoning and Action in Complex Environments

Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.

  • 9 authors
·
Jul 14 5

VidEmo: Affective-Tree Reasoning for Emotion-Centric Video Foundation Models

Understanding and predicting emotion from videos has gathered significant attention in recent studies, driven by advancements in video large language models (VideoLLMs). While advanced methods have made progress in video emotion analysis, the intrinsic nature of emotions poses significant challenges. Emotions are characterized by dynamic and cues-dependent properties, making it difficult to understand complex and evolving emotional states with reasonable rationale. To tackle these challenges, we propose a novel affective cues-guided reasoning framework that unifies fundamental attribute perception, expression analysis, and high-level emotional understanding in a stage-wise manner. At the core of our approach is a family of video emotion foundation models (VidEmo), specifically designed for emotion reasoning and instruction-following. These models undergo a two-stage tuning process: first, curriculum emotion learning for injecting emotion knowledge, followed by affective-tree reinforcement learning for emotion reasoning. Moreover, we establish a foundational data infrastructure and introduce a emotion-centric fine-grained dataset (Emo-CFG) consisting of 2.1M diverse instruction-based samples. Emo-CFG includes explainable emotional question-answering, fine-grained captions, and associated rationales, providing essential resources for advancing emotion understanding tasks. Experimental results demonstrate that our approach achieves competitive performance, setting a new milestone across 15 face perception tasks.

Unleashing Hierarchical Reasoning: An LLM-Driven Framework for Training-Free Referring Video Object Segmentation

Referring Video Object Segmentation (RVOS) aims to segment an object of interest throughout a video based on a language description. The prominent challenge lies in aligning static text with dynamic visual content, particularly when objects exhibiting similar appearances with inconsistent motion and poses. However, current methods often rely on a holistic visual-language fusion that struggles with complex, compositional descriptions. In this paper, we propose PARSE-VOS, a novel, training-free framework powered by Large Language Models (LLMs), for a hierarchical, coarse-to-fine reasoning across text and video domains. Our approach begins by parsing the natural language query into structured semantic commands. Next, we introduce a spatio-temporal grounding module that generates all candidate trajectories for all potential target objects, guided by the parsed semantics. Finally, a hierarchical identification module select the correct target through a two-stage reasoning process: it first performs coarse-grained motion reasoning with an LLM to narrow down candidates; if ambiguity remains, a fine-grained pose verification stage is conditionally triggered to disambiguate. The final output is an accurate segmentation mask for the target object. PARSE-VOS achieved state-of-the-art performance on three major benchmarks: Ref-YouTube-VOS, Ref-DAVIS17, and MeViS.

  • 8 authors
·
Sep 6

VideoCAD: A Large-Scale Video Dataset for Learning UI Interactions and 3D Reasoning from CAD Software

Computer-Aided Design (CAD) is a time-consuming and complex process, requiring precise, long-horizon user interactions with intricate 3D interfaces. While recent advances in AI-driven user interface (UI) agents show promise, most existing datasets and methods focus on short, low-complexity tasks in mobile or web applications, failing to capture the demands of professional engineering tools. In this work, we introduce VideoCAD, the first attempt at engineering UI interaction learning for precision tasks. Specifically, VideoCAD is a large-scale synthetic dataset consisting of over 41K annotated video recordings of CAD operations, generated using an automated framework for collecting high-fidelity UI action data from human-made CAD designs. Compared to existing datasets, VideoCAD offers an order of magnitude higher complexity in UI interaction learning for real-world engineering tasks, having up to a 20x longer time horizon than other datasets. We show two important downstream applications of VideoCAD: learning UI interactions from professional precision 3D CAD tools and a visual question-answering (VQA) benchmark designed to evaluate multimodal large language models' (LLM) spatial reasoning and video understanding abilities. To learn the UI interactions, we propose VideoCADFormer - a state-of-the-art model in learning CAD interactions directly from video, which outperforms multiple behavior cloning baselines. Both VideoCADFormer and the VQA benchmark derived from VideoCAD reveal key challenges in the current state of video-based UI understanding, including the need for precise action grounding, multi-modal and spatial reasoning, and long-horizon dependencies.

  • 4 authors
·
May 30

Temporal Reasoning Transfer from Text to Video

Video Large Language Models (Video LLMs) have shown promising capabilities in video comprehension, yet they struggle with tracking temporal changes and reasoning about temporal relationships. While previous research attributed this limitation to the ineffective temporal encoding of visual inputs, our diagnostic study reveals that video representations contain sufficient information for even small probing classifiers to achieve perfect accuracy. Surprisingly, we find that the key bottleneck in Video LLMs' temporal reasoning capability stems from the underlying LLM's inherent difficulty with temporal concepts, as evidenced by poor performance on textual temporal question-answering tasks. Building on this discovery, we introduce the Textual Temporal reasoning Transfer (T3). T3 synthesizes diverse temporal reasoning tasks in pure text format from existing image-text datasets, addressing the scarcity of video samples with complex temporal scenarios. Remarkably, without using any video data, T3 enhances LongVA-7B's temporal understanding, yielding a 5.3 absolute accuracy improvement on the challenging TempCompass benchmark, which enables our model to outperform ShareGPT4Video-8B trained on 28,000 video samples. Additionally, the enhanced LongVA-7B model achieves competitive performance on comprehensive video benchmarks. For example, it achieves a 49.7 accuracy on the Temporal Reasoning task of Video-MME, surpassing powerful large-scale models such as InternVL-Chat-V1.5-20B and VILA1.5-40B. Further analysis reveals a strong correlation between textual and video temporal task performance, validating the efficacy of transferring temporal reasoning abilities from text to video domains.

  • 9 authors
·
Oct 8, 2024 4

SIV-Bench: A Video Benchmark for Social Interaction Understanding and Reasoning

The rich and multifaceted nature of human social interaction, encompassing multimodal cues, unobservable relations and mental states, and dynamical behavior, presents a formidable challenge for artificial intelligence. To advance research in this area, we introduce SIV-Bench, a novel video benchmark for rigorously evaluating the capabilities of Multimodal Large Language Models (MLLMs) across Social Scene Understanding (SSU), Social State Reasoning (SSR), and Social Dynamics Prediction (SDP). SIV-Bench features 2,792 video clips and 8,792 meticulously generated question-answer pairs derived from a human-LLM collaborative pipeline. It is originally collected from TikTok and YouTube, covering a wide range of video genres, presentation styles, and linguistic and cultural backgrounds. It also includes a dedicated setup for analyzing the impact of different textual cues-original on-screen text, added dialogue, or no text. Our comprehensive experiments on leading MLLMs reveal that while models adeptly handle SSU, they significantly struggle with SSR and SDP, where Relation Inference (RI) is an acute bottleneck, as further examined in our analysis. Our study also confirms the critical role of transcribed dialogue in aiding comprehension of complex social interactions. By systematically identifying current MLLMs' strengths and limitations, SIV-Bench offers crucial insights to steer the development of more socially intelligent AI. The dataset and code are available at https://kfq20.github.io/sivbench/.

  • 6 authors
·
Jun 5

VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding

Recent studies have demonstrated the effectiveness of Large Language Models (LLMs) as reasoning modules that can deconstruct complex tasks into more manageable sub-tasks, particularly when applied to visual reasoning tasks for images. In contrast, this paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of LLMs. Ours is a novel approach to extend the utility of LLMs in the context of video tasks, leveraging their capacity to generalize from minimal input and output demonstrations within a contextual framework. By presenting LLMs with pairs of instructions and their corresponding high-level programs, we harness their contextual learning capabilities to generate executable visual programs for video understanding. To enhance program's accuracy and robustness, we implement two important strategies. Firstly, we employ a feedback-generation approach, powered by GPT-3.5, to rectify errors in programs utilizing unsupported functions. Secondly, taking motivation from recent works on self refinement of LLM outputs, we introduce an iterative procedure for improving the quality of the in-context examples by aligning the initial outputs to the outputs that would have been generated had the LLM not been bound by the structure of the in-context examples. Our results on several video-specific tasks, including visual QA, video anticipation, pose estimation and multi-video QA illustrate the efficacy of these enhancements in improving the performance of visual programming approaches for video tasks. Our Codes and data will be publicly released.

  • 5 authors
·
Mar 21, 2024

Beyond Pixels: Introducing Geometric-Semantic World Priors for Video-based Embodied Models via Spatio-temporal Alignment

Achieving human-like reasoning in deep learning models for complex tasks in unknown environments remains a critical challenge in embodied intelligence. While advanced vision-language models (VLMs) excel in static scene understanding, their limitations in spatio-temporal reasoning and adaptation to dynamic, open-set tasks like task-oriented navigation and embodied question answering (EQA) persist due to inadequate modeling of fine-grained spatio-temporal cues and physical world comprehension. To address this, we propose VEME, a novel cross-modal alignment method that enhances generalization in unseen scenes by learning an ego-centric, experience-centered world model. Our framework integrates three key components: (1) a cross-modal alignment framework bridging objects, spatial representations, and visual semantics with spatio-temporal cues to enhance VLM in-context learning; (2) a dynamic, implicit cognitive map activated by world embedding to enable task-relevant geometric-semantic memory recall; and (3) an instruction-based navigation and reasoning framework leveraging embodied priors for long-term planning and efficient exploration. By embedding geometry-aware spatio-temporal episodic experiences, our method significantly improves reasoning and planning in dynamic environments. Experimental results on VSI-Bench and VLN-CE demonstrate 1%-3% accuracy and exploration efficiency improvement compared to traditional approaches.

  • 6 authors
·
Aug 29

Open-vocabulary Video Question Answering: A New Benchmark for Evaluating the Generalizability of Video Question Answering Models

Video Question Answering (VideoQA) is a challenging task that entails complex multi-modal reasoning. In contrast to multiple-choice VideoQA which aims to predict the answer given several options, the goal of open-ended VideoQA is to answer questions without restricting candidate answers. However, the majority of previous VideoQA models formulate open-ended VideoQA as a classification task to classify the video-question pairs into a fixed answer set, i.e., closed-vocabulary, which contains only frequent answers (e.g., top-1000 answers). This leads the model to be biased toward only frequent answers and fail to generalize on out-of-vocabulary answers. We hence propose a new benchmark, Open-vocabulary Video Question Answering (OVQA), to measure the generalizability of VideoQA models by considering rare and unseen answers. In addition, in order to improve the model's generalization power, we introduce a novel GNN-based soft verbalizer that enhances the prediction on rare and unseen answers by aggregating the information from their similar words. For evaluation, we introduce new baselines by modifying the existing (closed-vocabulary) open-ended VideoQA models and improve their performances by further taking into account rare and unseen answers. Our ablation studies and qualitative analyses demonstrate that our GNN-based soft verbalizer further improves the model performance, especially on rare and unseen answers. We hope that our benchmark OVQA can serve as a guide for evaluating the generalizability of VideoQA models and inspire future research. Code is available at https://github.com/mlvlab/OVQA.

  • 6 authors
·
Aug 18, 2023

End-to-End Referring Video Object Segmentation with Multimodal Transformers

The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this paper, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at https://github.com/mttr2021/MTTR

  • 3 authors
·
Nov 29, 2021

LeAdQA: LLM-Driven Context-Aware Temporal Grounding for Video Question Answering

Video Question Answering (VideoQA) requires identifying sparse critical moments in long videos and reasoning about their causal relationships to answer semantically complex questions. While recent advances in multimodal learning have improved alignment and fusion, current approaches remain limited by two prevalent but fundamentally flawed strategies: (1) task-agnostic sampling indiscriminately processes all frames, overwhelming key events with irrelevant content; and (2) heuristic retrieval captures superficial patterns but misses causal-temporal structures needed for complex reasoning. To address these challenges, we introduce LeAdQA, an innovative approach that bridges these gaps through synergizing causal-aware query refinement with fine-grained visual grounding. Our method first leverages LLMs to reformulate question-option pairs, resolving causal ambiguities and sharpening temporal focus. These refined queries subsequently direct a temporal grounding model to precisely retrieve the most salient segments, complemented by an adaptive fusion mechanism dynamically integrating the evidence to maximize relevance. The integrated visual-textual cues are then processed by an MLLM to generate accurate, contextually-grounded answers. Experiments on NExT-QA, IntentQA, and NExT-GQA demonstrate that our method's precise visual grounding substantially enhances the understanding of video-question relationships, achieving state-of-the-art (SOTA) performance on complex reasoning tasks while maintaining computational efficiency.

  • 7 authors
·
Jul 19

VidChain: Chain-of-Tasks with Metric-based Direct Preference Optimization for Dense Video Captioning

Despite the advancements of Video Large Language Models (VideoLLMs) in various tasks, they struggle with fine-grained temporal understanding, such as Dense Video Captioning (DVC). DVC is a complicated task of describing all events within a video while also temporally localizing them, which integrates multiple fine-grained tasks, including video segmentation, video captioning, and temporal video grounding. Previous VideoLLMs attempt to solve DVC in a single step, failing to utilize their reasoning capability. Moreover, previous training objectives for VideoLLMs do not fully reflect the evaluation metrics, therefore not providing supervision directly aligned to target tasks. To address such a problem, we propose a novel framework named VidChain comprised of Chain-of-Tasks (CoTasks) and Metric-based Direct Preference Optimization (M-DPO). CoTasks decompose a complex task into a sequence of sub-tasks, allowing VideoLLMs to leverage their reasoning capabilities more effectively. M-DPO aligns a VideoLLM with evaluation metrics, providing fine-grained supervision to each task that is well-aligned with metrics. Applied to two different VideoLLMs, VidChain consistently improves their fine-grained video understanding, thereby outperforming previous VideoLLMs on two different DVC benchmarks and also on the temporal video grounding task. Code is available at https://github.com/mlvlab/VidChain.

  • 5 authors
·
Jan 12

VideoAds for Fast-Paced Video Understanding: Where Opensource Foundation Models Beat GPT-4o & Gemini-1.5 Pro

Advertisement videos serve as a rich and valuable source of purpose-driven information, encompassing high-quality visual, textual, and contextual cues designed to engage viewers. They are often more complex than general videos of similar duration due to their structured narratives and rapid scene transitions, posing significant challenges to multi-modal large language models (MLLMs). In this work, we introduce VideoAds, the first dataset tailored for benchmarking the performance of MLLMs on advertisement videos. VideoAds comprises well-curated advertisement videos with complex temporal structures, accompanied by manually annotated diverse questions across three core tasks: visual finding, video summary, and visual reasoning. We propose a quantitative measure to compare VideoAds against existing benchmarks in terms of video complexity. Through extensive experiments, we find that Qwen2.5-VL-72B, an opensource MLLM, achieves 73.35\% accuracy on VideoAds, outperforming GPT-4o (66.82\%) and Gemini-1.5 Pro (69.66\%); the two proprietary models especially fall behind the opensource model in video summarization and reasoning, but perform the best in visual finding. Notably, human experts easily achieve a remarkable accuracy of 94.27\%. These results underscore the necessity of advancing MLLMs' temporal modeling capabilities and highlight VideoAds as a potentially pivotal benchmark for future research in understanding video that requires high FPS sampling. The dataset and evaluation code will be publicly available at https://videoadsbenchmark.netlify.app.

  • 6 authors
·
Apr 12

Plug-and-Play 1.x-Bit KV Cache Quantization for Video Large Language Models

Video large language models (VideoLLMs) have demonstrated the capability to process longer video inputs and enable complex reasoning and analysis. However, due to the thousands of visual tokens from the video frames, key-value (KV) cache can significantly increase memory requirements, becoming a bottleneck for inference speed and memory usage. KV cache quantization is a widely used approach to address this problem. In this paper, we find that 2-bit KV quantization of VideoLLMs can hardly hurt the model performance, while the limit of KV cache quantization in even lower bits has not been investigated. To bridge this gap, we introduce VidKV, a plug-and-play KV cache quantization method to compress the KV cache to lower than 2 bits. Specifically, (1) for key, we propose a mixed-precision quantization strategy in the channel dimension, where we perform 2-bit quantization for anomalous channels and 1-bit quantization combined with FFT for normal channels; (2) for value, we implement 1.58-bit quantization while selectively filtering semantically salient visual tokens for targeted preservation, for a better trade-off between precision and model performance. Importantly, our findings suggest that the value cache of VideoLLMs should be quantized in a per-channel fashion instead of the per-token fashion proposed by prior KV cache quantization works for LLMs. Empirically, extensive results with LLaVA-OV-7B and Qwen2.5-VL-7B on six benchmarks show that VidKV effectively compresses the KV cache to 1.5-bit and 1.58-bit precision with almost no performance drop compared to the FP16 counterparts.

  • 5 authors
·
Mar 20 3

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

  • 8 authors
·
Jun 2

Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1

Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.

  • 7 authors
·
Mar 31 3

Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models

Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.

VideoSSR: Video Self-Supervised Reinforcement Learning

Reinforcement Learning with Verifiable Rewards (RLVR) has substantially advanced the video understanding capabilities of Multimodal Large Language Models (MLLMs). However, the rapid progress of MLLMs is outpacing the complexity of existing video datasets, while the manual annotation of new, high-quality data remains prohibitively expensive. This work investigates a pivotal question: Can the rich, intrinsic information within videos be harnessed to self-generate high-quality, verifiable training data? To investigate this, we introduce three self-supervised pretext tasks: Anomaly Grounding, Object Counting, and Temporal Jigsaw. We construct the Video Intrinsic Understanding Benchmark (VIUBench) to validate their difficulty, revealing that current state-of-the-art MLLMs struggle significantly on these tasks. Building upon these pretext tasks, we develop the VideoSSR-30K dataset and propose VideoSSR, a novel video self-supervised reinforcement learning framework for RLVR. Extensive experiments across 17 benchmarks, spanning four major video domains (General Video QA, Long Video QA, Temporal Grounding, and Complex Reasoning), demonstrate that VideoSSR consistently enhances model performance, yielding an average improvement of over 5\%. These results establish VideoSSR as a potent foundational framework for developing more advanced video understanding in MLLMs. The code is available at https://github.com/lcqysl/VideoSSR.

VLog: Video-Language Models by Generative Retrieval of Narration Vocabulary

Human daily activities can be concisely narrated as sequences of routine events (e.g., turning off an alarm) in video streams, forming an event vocabulary. Motivated by this, we introduce VLog, a novel video understanding framework that define video narrations as vocabulary, going beyond the typical subword vocabularies in existing generative video-language models. Built on the lightweight language model GPT-2, VLog feature three key innovations: (i) A generative retrieval model, marrying language model's complex reasoning capabilities with contrastive retrieval's efficient similarity search. (ii) A hierarchical vocabulary derived from large-scale video narrations using our narration pair encoding algorithm, enabling efficient indexing of specific events (e.g., cutting a tomato) by identifying broader scenarios (e.g., kitchen) with expressive postfixes (e.g., by the left hand). (iii) A vocabulary update strategy leveraging generative models to extend the vocabulary for novel events encountered during inference. To validate our approach, we introduce VidCap-Eval, a development set requiring concise narrations with reasoning relationships (e.g., before and after). Experiments on EgoSchema, COIN, and HiREST further demonstrate the effectiveness of VLog, highlighting its ability to generate concise, contextually accurate, and efficient narrations, offering a novel perspective on video understanding. Codes are released at https://github.com/showlab/VLog.

  • 2 authors
·
Mar 12 2

VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding

Building on the advances of language models, Large Multimodal Models (LMMs) have contributed significant improvements in video understanding. While the current video LMMs utilize advanced Large Language Models (LLMs), they rely on either image or video encoders to process visual inputs, each of which has its own limitations. Image encoders excel at capturing rich spatial details from frame sequences but lack explicit temporal context, which can be important in videos with intricate action sequences. On the other hand, video encoders provide temporal context but are often limited by computational constraints that lead to processing only sparse frames at lower resolutions, resulting in reduced contextual and spatial understanding. To this end, we introduce VideoGPT+, which combines the complementary benefits of the image encoder (for detailed spatial understanding) and the video encoder (for global temporal context modeling). The model processes videos by dividing them into smaller segments and applies an adaptive pooling strategy on features extracted by both image and video encoders. Our architecture showcases improved performance across multiple video benchmarks, including VCGBench, MVBench and Zero-shot question-answering. Further, we develop 112K video-instruction set using a novel semi-automatic annotation pipeline which further improves the model performance. Additionally, to comprehensively evaluate video LMMs, we present VCGBench-Diverse, covering 18 broad video categories such as lifestyle, sports, science, gaming, and surveillance videos. This benchmark with 4,354 question-answer pairs evaluates the generalization of existing LMMs on dense video captioning, spatial and temporal understanding, and complex reasoning, ensuring comprehensive assessment across diverse video types and dynamics. Code: https://github.com/mbzuai-oryx/VideoGPT-plus.

  • 4 authors
·
Jun 13, 2024

One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos

We introduce VideoLISA, a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos. Leveraging the reasoning capabilities and world knowledge of large language models, and augmented by the Segment Anything Model, VideoLISA generates temporally consistent segmentation masks in videos based on language instructions. Existing image-based methods, such as LISA, struggle with video tasks due to the additional temporal dimension, which requires temporal dynamic understanding and consistent segmentation across frames. VideoLISA addresses these challenges by integrating a Sparse Dense Sampling strategy into the video-LLM, which balances temporal context and spatial detail within computational constraints. Additionally, we propose a One-Token-Seg-All approach using a specially designed <TRK> token, enabling the model to segment and track objects across multiple frames. Extensive evaluations on diverse benchmarks, including our newly introduced ReasonVOS benchmark, demonstrate VideoLISA's superior performance in video object segmentation tasks involving complex reasoning, temporal understanding, and object tracking. While optimized for videos, VideoLISA also shows promising generalization to image segmentation, revealing its potential as a unified foundation model for language-instructed object segmentation. Code and model will be available at: https://github.com/showlab/VideoLISA.

  • 9 authors
·
Sep 29, 2024 3

Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering

Audio-Visual Question Answering (AVQA) is a complex multi-modal reasoning task, demanding intelligent systems to accurately respond to natural language queries based on audio-video input pairs. Nevertheless, prevalent AVQA approaches are prone to overlearning dataset biases, resulting in poor robustness. Furthermore, current datasets may not provide a precise diagnostic for these methods. To tackle these challenges, firstly, we propose a novel dataset, MUSIC-AVQA-R, crafted in two steps: rephrasing questions within the test split of a public dataset (MUSIC-AVQA) and subsequently introducing distribution shifts to split questions. The former leads to a large, diverse test space, while the latter results in a comprehensive robustness evaluation on rare, frequent, and overall questions. Secondly, we propose a robust architecture that utilizes a multifaceted cycle collaborative debiasing strategy to overcome bias learning. Experimental results show that this architecture achieves state-of-the-art performance on MUSIC-AVQA-R, notably obtaining a significant improvement of 9.32%. Extensive ablation experiments are conducted on the two datasets mentioned to analyze the component effectiveness within the debiasing strategy. Additionally, we highlight the limited robustness of existing multi-modal QA methods through the evaluation on our dataset. We also conduct experiments combining various baselines with our proposed strategy on two datasets to verify its plug-and-play capability. Our dataset and code are available at https://github.com/reml-group/MUSIC-AVQA-R.

  • 8 authors
·
Apr 18, 2024

AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn

Recent research on Large Language Models (LLMs) has led to remarkable advancements in general NLP AI assistants. Some studies have further explored the use of LLMs for planning and invoking models or APIs to address more general multi-modal user queries. Despite this progress, complex visual-based tasks still remain challenging due to the diverse nature of visual tasks. This diversity is reflected in two aspects: 1) Reasoning paths. For many real-life applications, it is hard to accurately decompose a query simply by examining the query itself. Planning based on the specific visual content and the results of each step is usually required. 2) Flexible inputs and intermediate results. Input forms could be flexible for in-the-wild cases, and involves not only a single image or video but a mixture of videos and images, e.g., a user-view image with some reference videos. Besides, a complex reasoning process will also generate diverse multimodal intermediate results, e.g., video narrations, segmented video clips, etc. To address such general cases, we propose a multi-modal AI assistant, AssistGPT, with an interleaved code and language reasoning approach called Plan, Execute, Inspect, and Learn (PEIL) to integrate LLMs with various tools. Specifically, the Planner is capable of using natural language to plan which tool in Executor should do next based on the current reasoning progress. Inspector is an efficient memory manager to assist the Planner to feed proper visual information into a specific tool. Finally, since the entire reasoning process is complex and flexible, a Learner is designed to enable the model to autonomously explore and discover the optimal solution. We conducted experiments on A-OKVQA and NExT-QA benchmarks, achieving state-of-the-art results. Moreover, showcases demonstrate the ability of our system to handle questions far more complex than those found in the benchmarks.

  • 7 authors
·
Jun 14, 2023 2

Scaling RL to Long Videos

We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 52K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In experiments, LongVILA-R1-7B achieves strong performance on long video QA benchmarks such as VideoMME. It also outperforms Video-R1-7B and even matches Gemini-1.5-Pro across temporal reasoning, goal and purpose reasoning, spatial reasoning, and plot reasoning on our LongVideo-Reason-eval benchmark. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. LongVILA-R1 demonstrates consistent performance gains as the number of input video frames scales. LongVILA-R1 marks a firm step towards long video reasoning in VLMs. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames / around 256k tokens).

  • 14 authors
·
Jul 10 3

Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark

Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io

VideoMathQA: Benchmarking Mathematical Reasoning via Multimodal Understanding in Videos

Mathematical reasoning in real-world video settings presents a fundamentally different challenge than in static images or text. It requires interpreting fine-grained visual information, accurately reading handwritten or digital text, and integrating spoken cues, often dispersed non-linearly over time. In such multimodal contexts, success hinges not just on perception, but on selectively identifying and integrating the right contextual details from a rich and noisy stream of content. To this end, we introduce VideoMathQA, a benchmark designed to evaluate whether models can perform such temporally extended cross-modal reasoning on videos. The benchmark spans 10 diverse mathematical domains, covering videos ranging from 10 seconds to over 1 hour. It requires models to interpret structured visual content, understand instructional narratives, and jointly ground concepts across visual, audio, and textual modalities. We employ graduate-level experts to ensure high quality, totaling over 920 man-hours of annotation. To reflect real-world scenarios, questions are designed around three core reasoning challenges: direct problem solving, where answers are grounded in the presented question; conceptual transfer, which requires applying learned methods to new problems; and deep instructional comprehension, involving multi-step reasoning over extended explanations and partially worked-out solutions. Each question includes multi-step reasoning annotations, enabling fine-grained diagnosis of model capabilities. Through this benchmark, we highlight the limitations of existing approaches and establish a systematic evaluation framework for models that must reason, rather than merely perceive, across temporally extended and modality-rich mathematical problem settings. Our benchmark and evaluation code are available at: https://mbzuai-oryx.github.io/VideoMathQA

V-STaR: Benchmarking Video-LLMs on Video Spatio-Temporal Reasoning

Human processes video reasoning in a sequential spatio-temporal reasoning logic, we first identify the relevant frames ("when") and then analyse the spatial relationships ("where") between key objects, and finally leverage these relationships to draw inferences ("what"). However, can Video Large Language Models (Video-LLMs) also "reason through a sequential spatio-temporal logic" in videos? Existing Video-LLM benchmarks primarily focus on assessing object presence, neglecting relational reasoning. Consequently, it is difficult to measure whether a model truly comprehends object interactions (actions/events) in videos or merely relies on pre-trained "memory" of co-occurrences as biases in generating answers. In this work, we introduce a Video Spatio-Temporal Reasoning (V-STaR) benchmark to address these shortcomings. The key idea is to decompose video understanding into a Reverse Spatio-Temporal Reasoning (RSTR) task that simultaneously evaluates what objects are present, when events occur, and where they are located while capturing the underlying Chain-of-thought (CoT) logic. To support this evaluation, we construct a dataset to elicit the spatial-temporal reasoning process of Video-LLMs. It contains coarse-to-fine CoT questions generated by a semi-automated GPT-4-powered pipeline, embedding explicit reasoning chains to mimic human cognition. Experiments from 14 Video-LLMs on our V-STaR reveal significant gaps between current Video-LLMs and the needs for robust and consistent spatio-temporal reasoning.

  • 6 authors
·
Mar 14 2

Thinking With Videos: Multimodal Tool-Augmented Reinforcement Learning for Long Video Reasoning

The video reasoning ability of multimodal large language models (MLLMs) is crucial for downstream tasks like video question answering and temporal grounding. While recent approaches have explored text-based chain-of-thought (CoT) reasoning for MLLMs, these methods often suffer from limited cross-modal interaction and increased hallucination, especially with longer videos or reasoning chains. To address these challenges, we propose Video Intelligence via Tool-Augmented Learning (VITAL), a novel end-to-end agentic video reasoning framework. With a visual toolbox, the model can densely sample new video frames on demand and generate multimodal CoT for precise long video reasoning. We observe that temporal grounding and question answering are mutually beneficial for video understanding tasks. Therefore, we construct two high-quality multi-task video reasoning datasets MTVR-CoT-72k for supervised fine-tuning and MTVR-RL-110k for reinforcement learning. Moreover, we propose a Difficulty-aware Group Relative Policy Optimization algorithm (DGRPO) to mitigate difficulty imbalance in multi-task reinforcement learning. Extensive experiments on 11 challenging video understanding benchmarks demonstrate the advanced reasoning ability of VITAL, outperforming existing methods in video question answering and temporal grounding tasks, especially in long video scenarios. All code, data and model weight will be made publicly available.

  • 10 authors
·
Aug 6

Select Less, Reason More: Prioritizing Evidence Purity for Video Reasoning

Long-form video reasoning remains a major challenge for Video Large Language Models (Video LLMs), as static uniform frame sampling leads to information dilution and obscures critical evidence. Furthermore, existing pixel-space video reasoning agents, which are designed to actively interact with the video to acquire new visual information, remain suboptimal due to their lack of rigorous reward mechanisms to enforce evidence purity and their inability to perform temporal information supplementation beyond pre-sampled frames. To address this critical gap, we propose a novel evidence-prioritized adaptive framework built upon our core philosophy: "Select Less, Reason More." Our core contribution is the evidence-aware reinforcement learning (EARL) framework, which transforms the model into an active interrogator of evidence. EARL is precisely engineered to dynamically select the most relevant frames and, crucially, to perform localized re-sampling around the selected key frames to access fine-grained temporal detail. Extensive experiments on five demanding video reasoning benchmarks demonstrate that our EARL-trained model achieves new state-of-the-art among open-source Video LLMs, simultaneously learning an effective and high-purity visual evidence selection policy. Impressively, our 7B model achieves 59.8% on LongVideoBench, 69.0% on MVBench and 64.9% on VideoMME. These results highlight the importance of prioritizing evidence purity and the effectiveness of our framework.

  • 4 authors
·
Oct 17

Video-MTR: Reinforced Multi-Turn Reasoning for Long Video Understanding

Long-form video understanding, characterized by long-range temporal dependencies and multiple events, remains a challenge. Existing methods often rely on static reasoning or external visual-language models (VLMs), which face issues like complexity and sub-optimal performance due to the lack of end-to-end training. In this paper, we propose Video-MTR, a reinforced multi-turn reasoning framework designed to enable iterative key video segment selection and question comprehension. Unlike traditional video reasoning pipeline, which generate predictions in a single turn, Video-MTR performs reasoning in multiple turns, selecting video segments progressively based on the evolving understanding of previously processed segments and the current question. This iterative process allows for a more refined and contextually aware analysis of the video. To ensure intermediate reasoning process, we introduce a novel gated bi-level reward system, combining trajectory-level rewards based on answer correctness and turn-level rewards emphasizing frame-query relevance. This system optimizes both video segment selection and question comprehension, eliminating the need for external VLMs and allowing end-to-end training. Extensive experiments on benchmarks like VideoMME, MLVU, and EgoSchema demonstrate that Video-MTR outperforms existing methods in both accuracy and efficiency, advancing the state-of-the-art in long video understanding.

  • 4 authors
·
Aug 28 2

Video-RTS: Rethinking Reinforcement Learning and Test-Time Scaling for Efficient and Enhanced Video Reasoning

Despite advances in reinforcement learning (RL)-based video reasoning with large language models (LLMs), data collection and finetuning remain significant challenges. These methods often rely on large-scale supervised fine-tuning (SFT) with extensive video data and long Chain-of-Thought (CoT) annotations, making them costly and hard to scale. To address this, we present Video-RTS, a new approach to improve video reasoning capability with drastically improved data efficiency by combining data-efficient RL with a video-adaptive test-time scaling (TTS) strategy. Based on observations about the data scaling of RL samples, we skip the resource-intensive SFT step and employ efficient pure-RL training with output-based rewards, requiring no additional annotations or extensive fine-tuning. Furthermore, to utilize computational resources more efficiently, we introduce a sparse-to-dense video TTS strategy that improves inference by iteratively adding frames based on output consistency. We validate our approach on multiple video reasoning benchmarks, showing that Video-RTS surpasses existing video reasoning models by an average of 2.4% in accuracy using only 3.6% training samples. For example, Video-RTS achieves a 4.2% improvement on Video-Holmes, a recent and challenging video reasoning benchmark, and a 2.6% improvement on MMVU. Notably, our pure RL training and adaptive video TTS offer complementary strengths, enabling Video-RTS's strong reasoning performance.

STAIR: Spatial-Temporal Reasoning with Auditable Intermediate Results for Video Question Answering

Recently we have witnessed the rapid development of video question answering models. However, most models can only handle simple videos in terms of temporal reasoning, and their performance tends to drop when answering temporal-reasoning questions on long and informative videos. To tackle this problem we propose STAIR, a Spatial-Temporal Reasoning model with Auditable Intermediate Results for video question answering. STAIR is a neural module network, which contains a program generator to decompose a given question into a hierarchical combination of several sub-tasks, and a set of lightweight neural modules to complete each of these sub-tasks. Though neural module networks are already widely studied on image-text tasks, applying them to videos is a non-trivial task, as reasoning on videos requires different abilities. In this paper, we define a set of basic video-text sub-tasks for video question answering and design a set of lightweight modules to complete them. Different from most prior works, modules of STAIR return intermediate outputs specific to their intentions instead of always returning attention maps, which makes it easier to interpret and collaborate with pre-trained models. We also introduce intermediate supervision to make these intermediate outputs more accurate. We conduct extensive experiments on several video question answering datasets under various settings to show STAIR's performance, explainability, compatibility with pre-trained models, and applicability when program annotations are not available. Code: https://github.com/yellow-binary-tree/STAIR

  • 4 authors
·
Jan 8, 2024

FrameThinker: Learning to Think with Long Videos via Multi-Turn Frame Spotlighting

While Large Vision-Language Models (LVLMs) have achieved substantial progress in video understanding, their application to long video reasoning is hindered by uniform frame sampling and static textual reasoning, which are inefficient and struggle to handle visually intensive video tasks. To overcome these challenges, in this paper, we introduce the concept of thinking with long videos and propose a novel framework FrameThinker. Within this framework, LVLMs are able to iteratively interrogate video content. Developing such video reasoning capabilities in LVLMs presents notable challenges, particularly in adapting the model to new video actions (e.g. select frame), and designing reward functions to guide LVLMs to adopt the newly introduced action. To solve these challenges, we propose a two-phase training strategy, first employing Supervised Fine-Tuning (SFT) to instill fundamental action capabilities, followed by Reinforcement Learning (RL) to optimize a strategic decision-making policy. Notably, in this RL phase, we conduct an in-depth and comprehensive exploration of the reward design for each action and format reward. Extensive experiments on reasoning benchmarks like Video-Holmes, LongVideo-Reason, and long-video understanding benchmarks such as LongVideoBench, MLVU, VideoMME, and LVBench, demonstrate that FrameThinker achieves a significant average improvement of +10.4% over baselines while drastically reducing the number of processed frames. Most notably, our 7B model, FrameThinker establishes a new state-of-the-art on LongVideo-Reason, achieving 76.1% accuracy using an average of only 20.6 frames. This not only outperforms the competitive LongVILA-R1 (72.0%) but does so with over 20x fewer frames (vs. 512), demonstrating unparalleled efficiency and effectiveness.

  • 6 authors
·
Sep 29 3

Video Reasoning without Training

Video reasoning using Large Multimodal Models (LMMs) relies on costly reinforcement learning (RL) and verbose chain-of-thought, resulting in substantial computational overhead during both training and inference. Moreover, the mechanisms that control the thinking process in these reasoning models are very limited. In this paper, using entropy of the model's output as a signal, we discover that the high-quality models go through a series of micro-explorations and micro-exploitations which keep the reasoning process grounded (i.e., avoid excessive randomness while the model is exploring or thinking through an answer). We further observe that once this "thinking" process is over, more accurate models demonstrate a better convergence by reducing the entropy significantly via a final exploitation phase (i.e., a more certain convergence towards a solution trajectory). We then use these novel, theoretically-grounded insights to tune the model's behavior directly at inference, without using any RL or supervised fine-tuning. Specifically, during inference, our proposed approach called V-Reason (Video-Reason) adapts the value cache of the LMM via a few optimization steps on a small, trainable controller using an entropy-based objective, i.e., no supervision from any dataset or RL is necessary. This tuning improves the model's micro-exploration and exploitation behavior during inference. Our experiments show that our proposed method achieves significant improvements over the base instruction-tuned models across several video reasoning datasets, narrowing the gap with RL-trained models to within 0.6% average accuracy without any training, while offering massive efficiency benefits: output tokens are reduced by 58.6% compared to the RL model.

qualcomm Qualcomm
·
Oct 19 2

Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence

Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.

ByteDance ByteDance
·
Oct 23 3

VideoAgent2: Enhancing the LLM-Based Agent System for Long-Form Video Understanding by Uncertainty-Aware CoT

Long video understanding has emerged as an increasingly important yet challenging task in computer vision. Agent-based approaches are gaining popularity for processing long videos, as they can handle extended sequences and integrate various tools to capture fine-grained information. However, existing methods still face several challenges: (1) they often rely solely on the reasoning ability of large language models (LLMs) without dedicated mechanisms to enhance reasoning in long video scenarios; and (2) they remain vulnerable to errors or noise from external tools. To address these issues, we propose a specialized chain-of-thought (CoT) process tailored for long video analysis. Our proposed CoT with plan-adjust mode enables the LLM to incrementally plan and adapt its information-gathering strategy. We further incorporate heuristic uncertainty estimation of both the LLM and external tools to guide the CoT process. This allows the LLM to assess the reliability of newly collected information, refine its collection strategy, and make more robust decisions when synthesizing final answers. Empirical experiments show that our uncertainty-aware CoT effectively mitigates noise from external tools, leading to more reliable outputs. We implement our approach in a system called VideoAgent2, which also includes additional modules such as general context acquisition and specialized tool design. Evaluation on three dedicated long video benchmarks (and their subsets) demonstrates that VideoAgent2 outperforms the previous state-of-the-art agent-based method, VideoAgent, by an average of 13.1% and achieves leading performance among all zero-shot approaches

  • 7 authors
·
Apr 6

Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding

Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.

  • 7 authors
·
May 23 2

LOVE-R1: Advancing Long Video Understanding with an Adaptive Zoom-in Mechanism via Multi-Step Reasoning

Long video understanding is still challenging for recent Large Video-Language Models (LVLMs) due to the conflict between long-form temporal understanding and detailed spatial perception. LVLMs with a uniform frame sampling mechanism, which samples frames with an equal frame size and fixed sampling rate, inevitably sacrifice either temporal clues or spatial details, resulting in suboptimal solutions. To mitigate this dilemma, we propose LOVE-R1, a model that can adaptively zoom in on a video clip. The model is first provided with densely sampled frames but in a small resolution. If some spatial details are needed, the model can zoom in on a clip of interest with a large frame resolution based on its reasoning until key visual information is obtained. The whole process is implemented as a multi-step reasoning process. To train the reasoning ability, we first finetune the model on our collected 38k high-quality CoT data and enhance it with decoupled reinforcement finetuning. As outcome rewards can not provide fine-grained process supervision, we decouple multi-step reasoning into multiple single-step reasoning and optimize the internal zoom-in ability explicitly. Experiments on long video understanding benchmarks show that our model with the slow-fast adaptive frame sampling mechanism achieves a great trade-off between sampling density and frame resolutions, and LOVE-R1 outperforms our baseline Qwen2.5-VL by an average of 3.1% points across 4 common long video understanding benchmarks.

AlibabaTongyiLab TongyiLab
·
Sep 29 2

Conan: Progressive Learning to Reason Like a Detective over Multi-Scale Visual Evidence

Video reasoning, which requires multi-step deduction across frames, remains a major challenge for multimodal large language models (MLLMs). While reinforcement learning (RL)-based methods enhance reasoning capabilities, they often rely on text-only chains that yield ungrounded or hallucinated conclusions. Conversely, frame-retrieval approaches introduce visual grounding but still struggle with inaccurate evidence localization. To address these challenges, we present Conan, a framework for evidence-grounded multi-step video reasoning. Conan identifies contextual and evidence frames, reasons over cross-frame clues, and adaptively decides when to conclude or explore further. To achieve this, we (1) construct Conan-91K, a large-scale dataset of automatically generated reasoning traces that includes frame identification, evidence reasoning, and action decision, and (2) design a multi-stage progressive cold-start strategy combined with an Identification-Reasoning-Action (AIR) RLVR training framework to jointly enhance multi-step visual reasoning. Extensive experiments on six multi-step reasoning benchmarks demonstrate that Conan surpasses the baseline Qwen2.5-VL-7B-Instruct by an average of over 10% in accuracy, achieving state-of-the-art performance. Furthermore, Conan generalizes effectively to long-video understanding tasks, validating its strong scalability and robustness.

VideoMind: An Omni-Modal Video Dataset with Intent Grounding for Deep-Cognitive Video Understanding

This paper introduces VideoMind, a video-centric omni-modal dataset designed for deep video content cognition and enhanced multi-modal feature representation. The dataset comprises 103K video samples (3K reserved for testing), each paired with audio and systematically detailed textual descriptions. Specifically, every video and its audio is described across three hierarchical layers (factual, abstract, and intent), progressing from surface to depth. It contains over 22 million words, averaging ~225 words per sample. VideoMind's key distinction from existing datasets is its provision of intent expressions, which require contextual integration across the entire video and are not directly observable. These deep-cognitive expressions are generated using a Chain-of-Thought (COT) approach, prompting the mLLM through step-by-step reasoning. Each description includes annotations for subject, place, time, event, action, and intent, supporting downstream recognition tasks. Crucially, we establish a gold-standard benchmark with 3,000 manually validated samples for evaluating deep-cognitive video understanding. We design hybrid-cognitive retrieval experiments, scored by multi-level retrieval metrics, to appropriately assess deep video comprehension. Evaluation results for models (e.g., InternVideo, VAST, UMT-L) are released. VideoMind serves as a powerful benchmark for fine-grained cross-modal alignment and advances fields requiring in-depth video understanding, such as emotion and intent recognition. The data is publicly available on GitHub, HuggingFace, and OpenDataLab, https://github.com/cdx-cindy/VideoMind.

  • 6 authors
·
Jul 24

Map the Flow: Revealing Hidden Pathways of Information in VideoLLMs

Video Large Language Models (VideoLLMs) extend the capabilities of vision-language models to spatiotemporal inputs, enabling tasks such as video question answering (VideoQA). Despite recent advances in VideoLLMs, their internal mechanisms on where and how they extract and propagate video and textual information remain less explored. In this study, we investigate the internal information flow of VideoLLMs using mechanistic interpretability techniques. Our analysis reveals consistent patterns across diverse VideoQA tasks: (1) temporal reasoning in VideoLLMs initiates with active cross-frame interactions in early-to-middle layers, (2) followed by progressive video-language integration in middle layers. This is facilitated by alignment between video representations and linguistic embeddings containing temporal concepts. (3) Upon completion of this integration, the model is ready to generate correct answers in middle-to-late layers. (4) Based on our analysis, we show that VideoLLMs can retain their VideoQA performance by selecting these effective information pathways while suppressing a substantial amount of attention edges, e.g., 58% in LLaVA-NeXT-7B-Video-FT. These findings provide a blueprint on how VideoLLMs perform temporal reasoning and offer practical insights for improving model interpretability and downstream generalization. Our project page with the source code is available at https://map-the-flow.github.io

  • 3 authors
·
Oct 15 1

SeViCES: Unifying Semantic-Visual Evidence Consensus for Long Video Understanding

Long video understanding remains challenging due to its complex, diverse, and temporally scattered content. Although video large language models (Video-LLMs) can process videos lasting tens of minutes, applying them to truly long sequences is computationally prohibitive and often leads to unfocused or inconsistent reasoning. A promising solution is to select only the most informative frames, yet existing approaches typically ignore temporal dependencies or rely on unimodal evidence, limiting their ability to provide complete and query-relevant context. We propose a Semantic-Visual Consensus Evidence Selection (SeViCES) framework for effective and reliable long video understanding. SeViCES is training-free and model-agnostic, and introduces two key components. The Semantic-Visual Consensus Frame Selection (SVCFS) module selects frames through (1) a temporal-aware semantic branch that leverages LLM reasoning over captions, and (2) a cluster-guided visual branch that aligns embeddings with semantic scores via mutual information. The Answer Consensus Refinement (ACR) module further resolves inconsistencies between semantic- and visual-based predictions by fusing evidence and constraining the answer space. Extensive experiments on long video understanding benchmarks show that SeViCES consistently outperforms state-of-the-art methods in both accuracy and robustness, demonstrating the importance of consensus-driven evidence selection for Video-LLMs.

  • 5 authors
·
Oct 23

VideoVista: A Versatile Benchmark for Video Understanding and Reasoning

Despite significant breakthroughs in video analysis driven by the rapid development of large multimodal models (LMMs), there remains a lack of a versatile evaluation benchmark to comprehensively assess these models' performance in video understanding and reasoning. To address this, we present VideoVista, a video QA benchmark that integrates challenges across diverse content categories, durations, and abilities. Specifically, VideoVista comprises 25,000 questions derived from 3,400 videos spanning 14 categories (e.g., Howto, Film, and Entertainment) with durations ranging from a few seconds to over 10 minutes. Besides, it encompasses 19 types of understanding tasks (e.g., anomaly detection, interaction understanding) and 8 reasoning tasks (e.g., logical reasoning, causal reasoning). To achieve this, we present an automatic data construction framework, leveraging powerful GPT-4o alongside advanced analysis tools (e.g., video splitting, object segmenting, and tracking). We also utilize this framework to construct training data to enhance the capabilities of video-related LMMs (Video-LMMs). Through a comprehensive and quantitative evaluation of cutting-edge models, we reveal that: 1) Video-LMMs face difficulties in fine-grained video tasks involving temporal location, object tracking, and anomaly detection; 2) Video-LMMs present inferior logical and relation reasoning abilities; 3) Open-source Video-LMMs' performance is significantly lower than GPT-4o and Gemini-1.5, lagging by 20 points. This highlights the crucial role VideoVista will play in advancing LMMs that can accurately understand videos and perform precise reasoning.

  • 6 authors
·
Jun 17, 2024 1

MMR-V: What's Left Unsaid? A Benchmark for Multimodal Deep Reasoning in Videos

The sequential structure of videos poses a challenge to the ability of multimodal large language models (MLLMs) to locate multi-frame evidence and conduct multimodal reasoning. However, existing video benchmarks mainly focus on understanding tasks, which only require models to match frames mentioned in the question (hereafter referred to as "question frame") and perceive a few adjacent frames. To address this gap, we propose MMR-V: A Benchmark for Multimodal Deep Reasoning in Videos. The benchmark is characterized by the following features. (1) Long-range, multi-frame reasoning: Models are required to infer and analyze evidence frames that may be far from the question frame. (2) Beyond perception: Questions cannot be answered through direct perception alone but require reasoning over hidden information. (3) Reliability: All tasks are manually annotated, referencing extensive real-world user understanding to align with common perceptions. (4) Confusability: Carefully designed distractor annotation strategies to reduce model shortcuts. MMR-V consists of 317 videos and 1,257 tasks. Our experiments reveal that current models still struggle with multi-modal reasoning; even the best-performing model, o4-mini, achieves only 52.5% accuracy. Additionally, current reasoning enhancement strategies (Chain-of-Thought and scaling test-time compute) bring limited gains. Further analysis indicates that the CoT demanded for multi-modal reasoning differs from it in textual reasoning, which partly explains the limited performance gains. We hope that MMR-V can inspire further research into enhancing multi-modal reasoning capabilities.

  • 9 authors
·
Jun 4 2

CREMA: Multimodal Compositional Video Reasoning via Efficient Modular Adaptation and Fusion

Despite impressive advancements in multimodal compositional reasoning approaches, they are still limited in their flexibility and efficiency by processing fixed modality inputs while updating a lot of model parameters. This paper tackles these critical challenges and proposes CREMA, an efficient and modular modality-fusion framework for injecting any new modality into video reasoning. We first augment multiple informative modalities (such as optical flow, 3D point cloud, audio) from given videos without extra human annotation by leveraging existing pre-trained models. Next, we introduce a query transformer with multiple parameter-efficient modules associated with each accessible modality. It projects diverse modality features to the LLM token embedding space, allowing the model to integrate different data types for response generation. Furthermore, we propose a fusion module designed to compress multimodal queries, maintaining computational efficiency in the LLM while combining additional modalities. We validate our method on video-3D, video-audio, and video-language reasoning tasks and achieve better/equivalent performance against strong multimodal LLMs, including BLIP-2, 3D-LLM, and SeViLA while using 96% fewer trainable parameters. We provide extensive analyses of CREMA, including the impact of each modality on reasoning domains, the design of the fusion module, and example visualizations.

  • 3 authors
·
Feb 8, 2024

OmniVideoBench: Towards Audio-Visual Understanding Evaluation for Omni MLLMs

Recent advances in multimodal large language models (MLLMs) have demonstrated substantial potential in video understanding. However, existing benchmarks fail to comprehensively evaluate synergistic reasoning capabilities across audio and visual modalities, often neglecting either one of the modalities or integrating them in a logically inconsistent manner. To bridge this gap, we introduce OmniVideoBench, a large-scale and rigorously designed benchmark dedicated to assessing synergistic audio-visual understanding, with a strong emphasis on modality complementarity and logical consistency. Specifically, OmniVideoBench comprises 1000 high-quality question-answer(QA) pairs, each annotated with step-by-step reasoning traces, derived from 628 diverse videos ranging from several seconds to 30 minutes, and manually verified to guarantee complete correctness and uniqueness. Moreover, OmniVideoBench encompasses 13 carefully designed question types, covering temporal reasoning, spatial localization, counting, causal inference, summarization, and beyond, thereby capturing the essential challenges of video understanding. Evaluation of multiple MLLMs on OmniVideoBench reveals a pronounced gap between model performance and human reasoning, with open-source models lagging significantly behind their closed-source counterparts, underscoring the inherent difficulty of genuine audio-visual reasoning. We will release OmniVideoBench to foster the development of MLLMs with stronger and more generalizable reasoning capabilities.

NJU-LINK NJU-LINK Lab
·
Oct 12 2

Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models

Video Large Language Models (Video-LLMs) have demonstrated remarkable capabilities in coarse-grained video understanding, however, they struggle with fine-grained temporal grounding. In this paper, we introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner. We identify that current Video-LLMs have limitations for fine-grained video understanding since they lack effective temporal modeling and timestamp representation. In light of this, we sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge to represent timestamps. To optimize the training of Grounded-VideoLLM, we employ a multi-stage training scheme, beginning with simple video-captioning tasks and progressively introducing video temporal grounding tasks of increasing complexity. To further enhance Grounded-VideoLLM's temporal reasoning capability, we also curate a grounded VideoQA dataset by an automatic annotation pipeline. Extensive experiments demonstrate that Grounded-VideoLLM not only excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA, but also shows great potential as a versatile video assistant for general video understanding.

  • 9 authors
·
Oct 4, 2024 2

LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding

Large multimodal models (LMMs) are processing increasingly longer and richer inputs. Albeit the progress, few public benchmark is available to measure such development. To mitigate this gap, we introduce LongVideoBench, a question-answering benchmark that features video-language interleaved inputs up to an hour long. Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes, designed to comprehensively evaluate LMMs on long-term multimodal understanding. To achieve this, we interpret the primary challenge as to accurately retrieve and reason over detailed multimodal information from long inputs. As such, we formulate a novel video question-answering task termed referring reasoning. Specifically, as part of the question, it contains a referring query that references related video contexts, called referred context. The model is then required to reason over relevant video details from the referred context. Following the paradigm of referring reasoning, we curate 6,678 human-annotated multiple-choice questions in 17 fine-grained categories, establishing one of the most comprehensive benchmarks for long-form video understanding. Evaluations suggest that the LongVideoBench presents significant challenges even for the most advanced proprietary models (e.g. GPT-4o, Gemini-1.5-Pro, GPT-4-Turbo), while their open-source counterparts show an even larger performance gap. In addition, our results indicate that model performance on the benchmark improves only when they are capable of processing more frames, positioning LongVideoBench as a valuable benchmark for evaluating future-generation long-context LMMs.

  • 4 authors
·
Jul 22, 2024 4

An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM

Stimulated by the sophisticated reasoning capabilities of recent Large Language Models (LLMs), a variety of strategies for bridging video modality have been devised. A prominent strategy involves Video Language Models (VideoLMs), which train a learnable interface with video data to connect advanced vision encoders with LLMs. Recently, an alternative strategy has surfaced, employing readily available foundation models, such as VideoLMs and LLMs, across multiple stages for modality bridging. In this study, we introduce a simple yet novel strategy where only a single Vision Language Model (VLM) is utilized. Our starting point is the plain insight that a video comprises a series of images, or frames, interwoven with temporal information. The essence of video comprehension lies in adeptly managing the temporal aspects along with the spatial details of each frame. Initially, we transform a video into a single composite image by arranging multiple frames in a grid layout. The resulting single image is termed as an image grid. This format, while maintaining the appearance of a solitary image, effectively retains temporal information within the grid structure. Therefore, the image grid approach enables direct application of a single high-performance VLM without necessitating any video-data training. Our extensive experimental analysis across ten zero-shot video question answering benchmarks, including five open-ended and five multiple-choice benchmarks, reveals that the proposed Image Grid Vision Language Model (IG-VLM) surpasses the existing methods in nine out of ten benchmarks.

  • 4 authors
·
Mar 27, 2024

Adaptive Fast-and-Slow Visual Program Reasoning for Long-Form VideoQA

Large language models (LLMs) have shown promise in generating program workflows for visual tasks. However, previous approaches often rely on closed-source models, lack systematic reasoning, and struggle with long-form video question answering (videoQA). To address these challenges, we introduce the FS-VisPR framework, an adaptive visual program reasoning approach that balances fast reasoning for simple queries with slow reasoning for difficult ones. First, we design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to support long-form video tasks. Then, we construct a diverse and high-quality fast-slow reasoning dataset with a strong LLM to align open-source language models' ability to generate visual program workflows as FS-LLM. Next, we design a fast-slow reasoning framework with FS-LLM: Simple queries are directly solved by VideoLLMs, while difficult ones invoke visual program reasoning, motivated by human-like reasoning processes. During this process, low-confidence fast-thinking answers will trigger a second-stage slow-reasoning process, and a fallback mechanism to fast reasoning is activated if the program execution fails. Moreover, we improve visual programs through parameter search during both training and inference. By adjusting the parameters of the visual modules within the program, multiple variants are generated: during training, programs that yield correct answers are selected, while during inference, the program with the highest confidence result is applied. Experiments show that FS-VisPR improves both efficiency and reliability in visual program workflows. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B on VideoMME.

  • 8 authors
·
Sep 22

ImplicitQA: Going beyond frames towards Implicit Video Reasoning

Video QA has made significant strides by leveraging multimodal learning to align visual and textual modalities. However, current benchmarks overwhelmingly focus on questions answerable through explicit visual content - actions, objects & events directly observable within individual frames or short clips. In contrast, creative and cinematic videos - such as movies, TV shows, and narrative-driven content - employ storytelling techniques that deliberately omit certain depictions, requiring viewers to infer motives, causality, and relationships across discontinuous frames. Humans naturally excel at such implicit reasoning, seamlessly integrating information across time and context to construct coherent narratives. Current VideoQA systems and benchmarks fail to capture this essential dimension of human-like understanding. To bridge this gap, we present ImplicitQA, a novel benchmark specifically designed to test models on implicit reasoning. It comprises 1K meticulously annotated QA pairs derived from 320+ high-quality creative video clips, systematically categorized into key reasoning dimensions: lateral and vertical spatial reasoning, depth and proximity, viewpoint and visibility, motion and trajectory, causal and motivational reasoning, social interactions, physical context, and inferred counting. These annotations are deliberately challenging, crafted by authors ensuring high-quality. Our extensive evaluations on leading VideoQA models reveals performance degradation, underscoring their reliance on surface-level visual cues and highlighting the difficulty of implicit reasoning. Performance variations across models further illustrate the complexity and diversity of the challenges presented by ImplicitQA. By releasing both the dataset and our data collection framework, we aim to stimulate further research and development in the community. https://huggingface.co/datasets/ucf-crcv/ImplicitQA.

  • 8 authors
·
Jun 26

Cinéaste: A Fine-grained Contextual Movie Question Answering Benchmark

While recent advancements in vision-language models have improved video understanding, diagnosing their capacity for deep, narrative comprehension remains a challenge. Existing benchmarks often test short-clip recognition or use template-based questions, leaving a critical gap in evaluating fine-grained reasoning over long-form narrative content. To address these gaps, we introduce Cinacute{easte}, a comprehensive benchmark for long-form movie understanding. Our dataset comprises 3,119 multiple-choice question-answer pairs derived from 1,805 scenes across 200 diverse movies, spanning five novel fine-grained contextual reasoning categories. We use GPT-4o to generate diverse, context-rich questions by integrating visual descriptions, captions, scene titles, and summaries, which require deep narrative understanding. To ensure high-quality evaluation, our pipeline incorporates a two-stage filtering process: Context-Independence filtering ensures questions require video context, while Contextual Veracity filtering validates factual consistency against the movie content, mitigating hallucinations. Experiments show that existing MLLMs struggle on Cinacute{easte}; our analysis reveals that long-range temporal reasoning is a primary bottleneck, with the top open-source model achieving only 63.15\% accuracy. This underscores significant challenges in fine-grained contextual understanding and the need for advancements in long-form movie comprehension.

  • 4 authors
·
Sep 17

Reinforcing Video Reasoning Segmentation to Think Before It Segments

Video reasoning segmentation (VRS) endeavors to delineate referred objects in videos guided by implicit instructions that encapsulate human intent and temporal logic. Previous approaches leverage large vision language models (LVLMs) to encode object semantics into <SEG> tokens for mask prediction. However, this paradigm suffers from limited interpretability during inference and suboptimal performance due to inadequate spatiotemporal reasoning. Drawing inspiration from seminal breakthroughs in reinforcement learning, we introduce Veason-R1, a specialized LVLM for VRS that emphasizes structured reasoning in segmentation. Veason-R1 is trained through Group Relative Policy Optimization (GRPO) augmented with Chain-of-Thought (CoT) initialization. To begin with, we curate high-quality CoT training data to instill structured reasoning trajectories, bridging video-level semantics and frame-level spatial grounding, yielding the supervised fine-tuned model Veason-SFT. Subsequently, GRPO fine-tuning encourages efficient exploration of the reasoning space by optimizing reasoning chains. To this end, we incorporate a holistic reward mechanism that synergistically enhances spatial alignment and temporal consistency, bolstering keyframe localization and fine-grained grounding. Comprehensive empirical evaluations demonstrate that Veason-R1 achieves state-of-the-art performance on multiple benchmarks, surpassing prior art by significant margins (e.g., +1.3 J &F in ReVOS and +10.0 J &F in ReasonVOS), while exhibiting robustness to hallucinations (+8.8 R). Our code and model weights will be available at Veason-R1.

  • 6 authors
·
Aug 15

ACQUIRED: A Dataset for Answering Counterfactual Questions In Real-Life Videos

Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It involves predicting the outcomes of hypothetical circumstances based on vision and language inputs, which enables AI models to learn from failures and explore hypothetical scenarios. Despite its importance, there are only a few datasets targeting the counterfactual reasoning abilities of multimodal models. Among them, they only cover reasoning over synthetic environments or specific types of events (e.g. traffic collisions), making them hard to reliably benchmark the model generalization ability in diverse real-world scenarios and reasoning dimensions. To overcome these limitations, we develop a video question answering dataset, ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints, which ensures a focus on real-world diversity. In addition, each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal, which can comprehensively evaluate the model counterfactual abilities along multiple aspects. We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap (>13%) between models and humans. The findings suggest that multimodal counterfactual reasoning remains an open challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future research in this direction.

  • 8 authors
·
Nov 2, 2023

ARC-Hunyuan-Video-7B: Structured Video Comprehension of Real-World Shorts

Real-world user-generated short videos, especially those distributed on platforms such as WeChat Channel and TikTok, dominate the mobile internet. However, current large multimodal models lack essential temporally-structured, detailed, and in-depth video comprehension capabilities, which are the cornerstone of effective video search and recommendation, as well as emerging video applications. Understanding real-world shorts is actually challenging due to their complex visual elements, high information density in both visuals and audio, and fast pacing that focuses on emotional expression and viewpoint delivery. This requires advanced reasoning to effectively integrate multimodal information, including visual, audio, and text. In this work, we introduce ARC-Hunyuan-Video, a multimodal model that processes visual, audio, and textual signals from raw video inputs end-to-end for structured comprehension. The model is capable of multi-granularity timestamped video captioning and summarization, open-ended video question answering, temporal video grounding, and video reasoning. Leveraging high-quality data from an automated annotation pipeline, our compact 7B-parameter model is trained through a comprehensive regimen: pre-training, instruction fine-tuning, cold start, reinforcement learning (RL) post-training, and final instruction fine-tuning. Quantitative evaluations on our introduced benchmark ShortVid-Bench and qualitative comparisons demonstrate its strong performance in real-world video comprehension, and it supports zero-shot or fine-tuning with a few samples for diverse downstream applications. The real-world production deployment of our model has yielded tangible and measurable improvements in user engagement and satisfaction, a success supported by its remarkable efficiency, with stress tests indicating an inference time of just 10 seconds for a one-minute video on H20 GPU.

ResidualViT for Efficient Temporally Dense Video Encoding

Several video understanding tasks, such as natural language temporal video grounding, temporal activity localization, and audio description generation, require "temporally dense" reasoning over frames sampled at high temporal resolution. However, computing frame-level features for these tasks is computationally expensive given the temporal resolution requirements. In this paper, we make three contributions to reduce the cost of computing features for temporally dense tasks. First, we introduce a vision transformer (ViT) architecture, dubbed ResidualViT, that leverages the large temporal redundancy in videos to efficiently compute temporally dense frame-level features. Our architecture incorporates (i) learnable residual connections that ensure temporal consistency across consecutive frames and (ii) a token reduction module that enhances processing speed by selectively discarding temporally redundant information while reusing weights of a pretrained foundation model. Second, we propose a lightweight distillation strategy to approximate the frame-level features of the original foundation model. Finally, we evaluate our approach across four tasks and five datasets, in both zero-shot and fully supervised settings, demonstrating significant reductions in computational cost (up to 60%) and improvements in inference speed (up to 2.5x faster), all while closely approximating the accuracy of the original foundation model.

  • 5 authors
·
Sep 16

MORSE-500: A Programmatically Controllable Video Benchmark to Stress-Test Multimodal Reasoning

Despite rapid advances in vision-language models (VLMs), current benchmarks for multimodal reasoning fall short in three key dimensions. First, they overwhelmingly rely on static images, failing to capture the temporal complexity of real-world environments. Second, they narrowly focus on mathematical problem-solving, neglecting the broader spectrum of reasoning skills -- including abstract, physical, planning, spatial, and temporal capabilities -- required for robust multimodal intelligence. Third, many benchmarks quickly saturate, offering limited headroom for diagnosing failure modes or measuring continued progress. We introduce MORSE-500 (Multimodal Reasoning Stress-test Environment), a video benchmark composed of 500 fully scripted clips with embedded questions spanning six complementary reasoning categories. Each instance is programmatically generated using deterministic Python scripts (via Manim, Matplotlib, MoviePy), generative video models, and curated real footage. This script-driven design allows fine-grained control over visual complexity, distractor density, and temporal dynamics -- enabling difficulty to be scaled systematically as models improve. Unlike static benchmarks that become obsolete once saturated, MORSE-500 is built to evolve: its controllable generation pipeline supports the creation of arbitrarily challenging new instances, making it ideally suited for stress-testing next-generation models. Initial experiments with state-of-the-art systems -- including various Gemini 2.5 Pro and OpenAI o3 which represent the strongest available at the time, alongside strong open-source models -- reveal substantial performance gaps across all categories, with particularly large deficits in abstract and planning tasks. We release the full dataset, generation scripts, and evaluation harness to support transparent, reproducible, and forward-looking multimodal reasoning research.

Black Swan: Abductive and Defeasible Video Reasoning in Unpredictable Events

The commonsense reasoning capabilities of vision-language models (VLMs), especially in abductive reasoning and defeasible reasoning, remain poorly understood. Most benchmarks focus on typical visual scenarios, making it difficult to discern whether model performance stems from keen perception and reasoning skills, or reliance on pure statistical recall. We argue that by focusing on atypical events in videos, clearer insights can be gained on the core capabilities of VLMs. Explaining and understanding such out-of-distribution events requires models to extend beyond basic pattern recognition and regurgitation of their prior knowledge. To this end, we introduce BlackSwanSuite, a benchmark for evaluating VLMs' ability to reason about unexpected events through abductive and defeasible tasks. Our tasks artificially limit the amount of visual information provided to models while questioning them about hidden unexpected events, or provide new visual information that could change an existing hypothesis about the event. We curate a comprehensive benchmark suite comprising over 3,800 MCQ, 4,900 generative and 6,700 yes/no tasks, spanning 1,655 videos. After extensively evaluating various state-of-the-art VLMs, including GPT-4o and Gemini 1.5 Pro, as well as open-source VLMs such as LLaVA-Video, we find significant performance gaps of up to 32% from humans on these tasks. Our findings reveal key limitations in current VLMs, emphasizing the need for enhanced model architectures and training strategies.

  • 6 authors
·
Dec 7, 2024

VideoChat-A1: Thinking with Long Videos by Chain-of-Shot Reasoning

The recent advance in video understanding has been driven by multimodal large language models (MLLMs). But these MLLMs are good at analyzing short videos, while suffering from difficulties in understanding videos with a longer context. To address this difficulty, several agent paradigms have recently been proposed, using MLLMs as agents for retrieving extra contextual knowledge in a long video. However, most existing agents ignore the key fact that a long video is composed with multiple shots, i.e., to answer the user question from a long video, it is critical to deeply understand its relevant shots like human. Without such insight, these agents often mistakenly find redundant even noisy temporal context, restricting their capacity for long video understanding. To fill this gap, we propose VideoChat-A1, a novel long video agent paradigm. Different from the previous works, our VideoChat-A1 can deeply think with long videos, via a distinct chain-of-shot reasoning paradigm. More specifically, it can progressively select the relevant shots of user question, and look into these shots in a coarse-to-fine partition. By multi-modal reasoning along the shot chain, VideoChat-A1 can effectively mimic step-by-step human thinking process, allowing to interactively discover preferable temporal context for thoughtful understanding in long videos. Extensive experiments show that, our VideoChat-A1 achieves the state-of-the-art performance on the mainstream long video QA benchmarks, e.g., it achieves 77.0 on VideoMME and 70.1 on EgoSchema, outperforming its strong baselines (e.g., Intern2.5VL-8B and InternVideo2.5-8B), by up to 10.8\% and 6.2\%. Compared to leading close-source GPT-4o and Gemini 1.5 Pro, VideoChat-A1 offers competitive accuracy, but with 7\% input frames and 12\% inference time on average.

  • 7 authors
·
Jun 6

TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning

Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.

  • 8 authors
·
Nov 7

Video SimpleQA: Towards Factuality Evaluation in Large Video Language Models

Recent advancements in Large Video Language Models (LVLMs) have highlighted their potential for multi-modal understanding, yet evaluating their factual grounding in video contexts remains a critical unsolved challenge. To address this gap, we introduce Video SimpleQA, the first comprehensive benchmark tailored for factuality evaluation of LVLMs. Our work distinguishes from existing video benchmarks through the following key features: 1) Knowledge required: demanding integration of external knowledge beyond the explicit narrative; 2) Fact-seeking question: targeting objective, undisputed events or relationships, avoiding subjective interpretation; 3) Definitive & short-form answer: Answers are crafted as unambiguous and definitively correct in a short format, enabling automated evaluation through LLM-as-a-judge frameworks with minimal scoring variance; 4) External-source verified: All annotations undergo rigorous validation against authoritative external references to ensure the reliability; 5) Temporal reasoning required: The annotated question types encompass both static single-frame understanding and dynamic temporal reasoning, explicitly evaluating LVLMs factuality under the long-context dependencies. We extensively evaluate 41 state-of-the-art LVLMs and summarize key findings as follows: 1) Current LVLMs exhibit notable deficiencies in factual adherence, particularly for open-source models. The best-performing model Gemini-1.5-Pro achieves merely an F-score of 54.4%; 2) Test-time compute paradigms show insignificant performance gains, revealing fundamental constraints for enhancing factuality through post-hoc computation; 3) Retrieval-Augmented Generation demonstrates consistent improvements at the cost of additional inference time overhead, presenting a critical efficiency-performance trade-off.

  • 11 authors
·
Mar 24 1

Video-Bench: A Comprehensive Benchmark and Toolkit for Evaluating Video-based Large Language Models

Video-based large language models (Video-LLMs) have been recently introduced, targeting both fundamental improvements in perception and comprehension, and a diverse range of user inquiries. In pursuit of the ultimate goal of achieving artificial general intelligence, a truly intelligent Video-LLM model should not only see and understand the surroundings, but also possess human-level commonsense, and make well-informed decisions for the users. To guide the development of such a model, the establishment of a robust and comprehensive evaluation system becomes crucial. To this end, this paper proposes Video-Bench, a new comprehensive benchmark along with a toolkit specifically designed for evaluating Video-LLMs. The benchmark comprises 10 meticulously crafted tasks, evaluating the capabilities of Video-LLMs across three distinct levels: Video-exclusive Understanding, Prior Knowledge-based Question-Answering, and Comprehension and Decision-making. In addition, we introduce an automatic toolkit tailored to process model outputs for various tasks, facilitating the calculation of metrics and generating convenient final scores. We evaluate 8 representative Video-LLMs using Video-Bench. The findings reveal that current Video-LLMs still fall considerably short of achieving human-like comprehension and analysis of real-world videos, offering valuable insights for future research directions. The benchmark and toolkit are available at: https://github.com/PKU-YuanGroup/Video-Bench.

  • 8 authors
·
Nov 27, 2023

Unifying Specialized Visual Encoders for Video Language Models

The recent advent of Large Language Models (LLMs) has ushered sophisticated reasoning capabilities into the realm of video through Video Large Language Models (VideoLLMs). However, VideoLLMs currently rely on a single vision encoder for all of their visual processing, which limits the amount and type of visual information that can be conveyed to the LLM. Our method, MERV, Multi-Encoder Representation of Videos, instead leverages multiple frozen visual encoders to create a unified representation of a video, providing the VideoLLM with a comprehensive set of specialized visual knowledge. Spatio-temporally aligning the features from each encoder allows us to tackle a wider range of open-ended and multiple-choice video understanding questions and outperform prior state-of-the-art works. MERV is up to 3.7% better in accuracy than Video-LLaVA across the standard suite video understanding benchmarks, while also having a better Video-ChatGPT score. We also improve upon SeViLA, the previous best on zero-shot Perception Test accuracy, by 2.2%. MERV introduces minimal extra parameters and trains faster than equivalent single-encoder methods while parallelizing the visual processing. Finally, we provide qualitative evidence that MERV successfully captures domain knowledge from each of its encoders. Our results offer promising directions in utilizing multiple vision encoders for comprehensive video understanding.

  • 6 authors
·
Jan 2 2

CG-Bench: Clue-grounded Question Answering Benchmark for Long Video Understanding

Most existing video understanding benchmarks for multimodal large language models (MLLMs) focus only on short videos. The limited number of benchmarks for long video understanding often rely solely on multiple-choice questions (MCQs). However, because of the inherent limitation of MCQ-based evaluation and the increasing reasoning ability of MLLMs, models can give the current answer purely by combining short video understanding with elimination, without genuinely understanding the video content. To address this gap, we introduce CG-Bench, a novel benchmark designed for clue-grounded question answering in long videos. CG-Bench emphasizes the model's ability to retrieve relevant clues for questions, enhancing evaluation credibility. It features 1,219 manually curated videos categorized by a granular system with 14 primary categories, 171 secondary categories, and 638 tertiary categories, making it the largest benchmark for long video analysis. The benchmark includes 12,129 QA pairs in three major question types: perception, reasoning, and hallucination. Compensating the drawbacks of pure MCQ-based evaluation, we design two novel clue-based evaluation methods: clue-grounded white box and black box evaluations, to assess whether the model generates answers based on the correct understanding of the video. We evaluate multiple closed-source and open-source MLLMs on CG-Bench. Results indicate that current models significantly underperform in understanding long videos compared to short ones, and a significant gap exists between open-source and commercial models. We hope CG-Bench can advance the development of more trustworthy and capable MLLMs for long video understanding. All annotations and video data are released at https://cg-bench.github.io/leaderboard/.

  • 9 authors
·
Dec 16, 2024

TVBench: Redesigning Video-Language Evaluation

Large language models have demonstrated impressive performance when integrated with vision models even enabling video understanding. However, evaluating these video models presents its own unique challenges, for which several benchmarks have been proposed. In this paper, we show that the currently most used video-language benchmarks can be solved without requiring much temporal reasoning. We identified three main issues in existing datasets: (i) static information from single frames is often sufficient to solve the tasks (ii) the text of the questions and candidate answers is overly informative, allowing models to answer correctly without relying on any visual input (iii) world knowledge alone can answer many of the questions, making the benchmarks a test of knowledge replication rather than visual reasoning. In addition, we found that open-ended question-answering benchmarks for video understanding suffer from similar issues while the automatic evaluation process with LLMs is unreliable, making it an unsuitable alternative. As a solution, we propose TVBench, a novel open-source video multiple-choice question-answering benchmark, and demonstrate through extensive evaluations that it requires a high level of temporal understanding. Surprisingly, we find that most recent state-of-the-art video-language models perform similarly to random performance on TVBench, with only Gemini-Pro and Tarsier clearly surpassing this baseline.

  • 5 authors
·
Oct 10, 2024 2

Understand, Think, and Answer: Advancing Visual Reasoning with Large Multimodal Models

Large Multimodal Models (LMMs) have recently demonstrated remarkable visual understanding performance on both vision-language and vision-centric tasks. However, they often fall short in integrating advanced, task-specific capabilities for compositional reasoning, which hinders their progress toward truly competent general vision models. To address this, we present a unified visual reasoning mechanism that enables LMMs to solve complicated compositional problems by leveraging their intrinsic capabilities (e.g. grounding and visual understanding capabilities). Different from the previous shortcut learning mechanism, our approach introduces a human-like understanding-thinking-answering process, allowing the model to complete all steps in a single pass forwarding without the need for multiple inferences or external tools. This design bridges the gap between foundational visual capabilities and general question answering, encouraging LMMs to generate faithful and traceable responses for complex visual reasoning. Meanwhile, we curate 334K visual instruction samples covering both general scenes and text-rich scenes and involving multiple foundational visual capabilities. Our trained model, Griffon-R, has the ability of end-to-end automatic understanding, self-thinking, and reasoning answers. Comprehensive experiments show that Griffon-R not only achieves advancing performance on complex visual reasoning benchmarks including VSR and CLEVR, but also enhances multimodal capabilities across various benchmarks like MMBench and ScienceQA. Data, models, and codes will be release at https://github.com/jefferyZhan/Griffon/tree/master/Griffon-R soon.

  • 7 authors
·
May 27

Thinking with Video: Video Generation as a Promising Multimodal Reasoning Paradigm

"Thinking with Text" and "Thinking with Images" paradigm significantly improve the reasoning ability of large language models (LLMs) and Vision Language Models (VLMs). However, these paradigms have inherent limitations. (1) Images capture only single moments and fail to represent dynamic processes or continuous changes, and (2) The separation of text and vision as distinct modalities, hindering unified multimodal understanding and generation. To overcome these limitations, we introduce "Thinking with Video", a new paradigm that leverages video generation models, such as Sora-2, to bridge visual and textual reasoning in a unified temporal framework. To support this exploration, we developed the Video Thinking Benchmark (VideoThinkBench). VideoThinkBench encompasses two task categories: (1) vision-centric tasks (e.g., Eyeballing Puzzles), and (2) text-centric tasks (e.g., subsets of GSM8K, MMMU). Our evaluation establishes Sora-2 as a capable reasoner. On vision-centric tasks, Sora-2 is generally comparable to state-of-the-art (SOTA) VLMs, and even surpasses VLMs on several tasks, such as Eyeballing Games. On text-centric tasks, Sora-2 achieves 92% accuracy on MATH, and 75.53% accuracy on MMMU. Furthermore, we systematically analyse the source of these abilities. We also find that self-consistency and in-context learning can improve Sora-2's performance. In summary, our findings demonstrate that the video generation model is the potential unified multimodal understanding and generation model, positions "thinking with video" as a unified multimodal reasoning paradigm.

OpenMOSS-Team OpenMOSS
·
Nov 6 3

Vamos: Versatile Action Models for Video Understanding

What makes good video representations for video understanding, such as anticipating future activities, or answering video-conditioned questions? While earlier approaches focus on end-to-end learning directly from video pixels, we propose to revisit text-based representations, such as discrete action labels, or free-form video captions, which are interpretable and can be directly consumed by large language models (LLMs). Intuitively, different video understanding tasks may require representations that are complementary and at different granularities. To this end, we propose versatile action models (Vamos), a learning framework powered by a large language model as the "reasoner", and can flexibly leverage visual embeddings, action labels, and free-form descriptions extracted from videos as its input. We evaluate Vamos on four complementary video understanding benchmarks, Ego4D, Next-QA, IntentQA, and EgoSchema, on its capability to model temporal dynamics, encode visual history, and perform reasoning. Surprisingly, we observe that text-based representations consistently achieve competitive performance on all benchmarks, and that visual embeddings provide marginal or no performance improvement, demonstrating the effectiveness of text-based video representation in the LLM era. We perform extensive ablation study and qualitative analysis to support our observations, and achieve state-of-the-art performance on three benchmarks.

  • 6 authors
·
Nov 22, 2023

Movie Facts and Fibs (MF^2): A Benchmark for Long Movie Understanding

Despite recent progress in vision-language models (VLMs), holistic understanding of long-form video content remains a significant challenge, partly due to limitations in current benchmarks. Many focus on peripheral, ``needle-in-a-haystack'' details, encouraging context-insensitive retrieval over deep comprehension. Others rely on large-scale, semi-automatically generated questions (often produced by language models themselves) that are easier for models to answer but fail to reflect genuine understanding. In this paper, we introduce MF^2, a new benchmark for evaluating whether models can comprehend, consolidate, and recall key narrative information from full-length movies (50-170 minutes long). MF^2 includes over 50 full-length, open-licensed movies, each paired with manually constructed sets of claim pairs -- one true (fact) and one plausible but false (fib), totalling over 850 pairs. These claims target core narrative elements such as character motivations and emotions, causal chains, and event order, and refer to memorable moments that humans can recall without rewatching the movie. Instead of multiple-choice formats, we adopt a binary claim evaluation protocol: for each pair, models must correctly identify both the true and false claims. This reduces biases like answer ordering and enables a more precise assessment of reasoning. Our experiments demonstrate that both open-weight and closed state-of-the-art models fall well short of human performance, underscoring the relative ease of the task for humans and their superior ability to retain and reason over critical narrative information -- an ability current VLMs lack.

  • 31 authors
·
Jun 6

Flattery in Motion: Benchmarking and Analyzing Sycophancy in Video-LLMs

As video large language models (Video-LLMs) become increasingly integrated into real-world applications that demand grounded multimodal reasoning, ensuring their factual consistency and reliability is of critical importance. However, sycophancy, the tendency of these models to align with user input even when it contradicts the visual evidence, undermines their trustworthiness in such contexts. Current sycophancy research has largely overlooked its specific manifestations in the video-language domain, resulting in a notable absence of systematic benchmarks and targeted evaluations to understand how Video-LLMs respond under misleading user input. To fill this gap, we propose VISE (Video-LLM Sycophancy Benchmarking and Evaluation), the first benchmark designed to evaluate sycophantic behavior in state-of-the-art Video-LLMs across diverse question formats, prompt biases, and visual reasoning tasks. Specifically, VISE pioneeringly brings linguistic perspectives on sycophancy into the video domain, enabling fine-grained analysis across multiple sycophancy types and interaction patterns. Furthermore, we propose two potential training-free mitigation strategies, revealing potential paths for reducing sycophantic bias: (i) enhancing visual grounding through interpretable key-frame selection and (ii) steering model behavior away from sycophancy via targeted, inference-time intervention on its internal neural representations. Our code is available at https://github.com/William030422/Video-Sycophancy.

  • 8 authors
·
Jun 8

LongVLM: Efficient Long Video Understanding via Large Language Models

Empowered by Large Language Models (LLMs), recent advancements in Video-based LLMs (VideoLLMs) have driven progress in various video understanding tasks. These models encode video representations through pooling or query aggregation over a vast number of visual tokens, making computational and memory costs affordable. Despite successfully providing an overall comprehension of video content, existing VideoLLMs still face challenges in achieving detailed understanding due to overlooking local information in long-term videos. To tackle this challenge, we introduce LongVLM, a simple yet powerful VideoLLM for long video understanding, building upon the observation that long videos often consist of sequential key events, complex actions, and camera movements. Our approach proposes to decompose long videos into multiple short-term segments and encode local features for each segment via a hierarchical token merging module. These features are concatenated in temporal order to maintain the storyline across sequential short-term segments. Additionally, we propose to integrate global semantics into each local feature to enhance context understanding. In this way, we encode video representations that incorporate both local and global information, enabling the LLM to generate comprehensive responses for long-term videos. Experimental results on the VideoChatGPT benchmark and zero-shot video question-answering datasets demonstrate the superior capabilities of our model over the previous state-of-the-art methods. Qualitative examples show that our model produces more precise responses for long video understanding. Code is available at https://github.com/ziplab/LongVLM.

  • 5 authors
·
Apr 4, 2024