new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 6

Can Editing LLMs Inject Harm?

Knowledge editing techniques have been increasingly adopted to efficiently correct the false or outdated knowledge in Large Language Models (LLMs), due to the high cost of retraining from scratch. Meanwhile, one critical but under-explored question is: can knowledge editing be used to inject harm into LLMs? In this paper, we propose to reformulate knowledge editing as a new type of safety threat for LLMs, namely Editing Attack, and conduct a systematic investigation with a newly constructed dataset EditAttack. Specifically, we focus on two typical safety risks of Editing Attack including Misinformation Injection and Bias Injection. For the risk of misinformation injection, we first categorize it into commonsense misinformation injection and long-tail misinformation injection. Then, we find that editing attacks can inject both types of misinformation into LLMs, and the effectiveness is particularly high for commonsense misinformation injection. For the risk of bias injection, we discover that not only can biased sentences be injected into LLMs with high effectiveness, but also one single biased sentence injection can cause a high bias increase in general outputs of LLMs, which are even highly irrelevant to the injected sentence, indicating a catastrophic impact on the overall fairness of LLMs. Then, we further illustrate the high stealthiness of editing attacks, measured by their impact on the general knowledge and reasoning capacities of LLMs, and show the hardness of defending editing attacks with empirical evidence. Our discoveries demonstrate the emerging misuse risks of knowledge editing techniques on compromising the safety alignment of LLMs.

  • 15 authors
·
Jul 29, 2024

Disagreement as a way to study misinformation and its effects

Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.

  • 2 authors
·
Aug 15, 2024

CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge

Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).

  • 4 authors
·
Sep 3, 2021

Reinforcement Learning-based Counter-Misinformation Response Generation: A Case Study of COVID-19 Vaccine Misinformation

The spread of online misinformation threatens public health, democracy, and the broader society. While professional fact-checkers form the first line of defense by fact-checking popular false claims, they do not engage directly in conversations with misinformation spreaders. On the other hand, non-expert ordinary users act as eyes-on-the-ground who proactively counter misinformation -- recent research has shown that 96% counter-misinformation responses are made by ordinary users. However, research also found that 2/3 times, these responses are rude and lack evidence. This work seeks to create a counter-misinformation response generation model to empower users to effectively correct misinformation. This objective is challenging due to the absence of datasets containing ground-truth of ideal counter-misinformation responses, and the lack of models that can generate responses backed by communication theories. In this work, we create two novel datasets of misinformation and counter-misinformation response pairs from in-the-wild social media and crowdsourcing from college-educated students. We annotate the collected data to distinguish poor from ideal responses that are factual, polite, and refute misinformation. We propose MisinfoCorrect, a reinforcement learning-based framework that learns to generate counter-misinformation responses for an input misinformation post. The model rewards the generator to increase the politeness, factuality, and refutation attitude while retaining text fluency and relevancy. Quantitative and qualitative evaluation shows that our model outperforms several baselines by generating high-quality counter-responses. This work illustrates the promise of generative text models for social good -- here, to help create a safe and reliable information ecosystem. The code and data is accessible on https://github.com/claws-lab/MisinfoCorrect.

  • 3 authors
·
Mar 11, 2023

Combating Online Misinformation Videos: Characterization, Detection, and Future Directions

With information consumption via online video streaming becoming increasingly popular, misinformation video poses a new threat to the health of the online information ecosystem. Though previous studies have made much progress in detecting misinformation in text and image formats, video-based misinformation brings new and unique challenges to automatic detection systems: 1) high information heterogeneity brought by various modalities, 2) blurred distinction between misleading video manipulation and ubiquitous artistic video editing, and 3) new patterns of misinformation propagation due to the dominant role of recommendation systems on online video platforms. To facilitate research on this challenging task, we conduct this survey to present advances in misinformation video detection research. We first analyze and characterize the misinformation video from three levels including signals, semantics, and intents. Based on the characterization, we systematically review existing works for detection from features of various modalities to techniques for clue integration. We also introduce existing resources including representative datasets and widely used tools. Besides summarizing existing studies, we discuss related areas and outline open issues and future directions to encourage and guide more research on misinformation video detection. Our corresponding public repository is available at https://github.com/ICTMCG/Awesome-Misinfo-Video-Detection.

  • 6 authors
·
Feb 6, 2023

Empirically evaluating commonsense intelligence in large language models with large-scale human judgments

Commonsense intelligence in machines is often assessed by static benchmarks that compare a model's output against human-prescribed correct labels. An important, albeit implicit, assumption of these labels is that they accurately capture what any human would think, effectively treating human common sense as homogeneous. However, recent empirical work has shown that humans vary enormously in what they consider commonsensical; thus what appears self-evident to one benchmark designer may not be so to another. Here, we propose a novel method for evaluating common sense in artificial intelligence (AI), specifically in large language models (LLMs), that incorporates empirically observed heterogeneity among humans by measuring the correspondence between a model's judgment and that of a human population. We first find that, when treated as independent survey respondents, most LLMs remain below the human median in their individual commonsense competence. Second, when used as simulators of a hypothetical population, LLMs correlate with real humans only modestly in the extent to which they agree on the same set of statements. In both cases, smaller, open-weight models are surprisingly more competitive than larger, proprietary frontier models. Our evaluation framework, which ties commonsense intelligence to its cultural basis, contributes to the growing call for adapting AI models to human collectivities that possess different, often incompatible, social stocks of knowledge.

AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild

The prevalence and harms of online misinformation is a perennial concern for internet platforms, institutions and society at large. Over time, information shared online has become more media-heavy and misinformation has readily adapted to these new modalities. The rise of generative AI-based tools, which provide widely-accessible methods for synthesizing realistic audio, images, video and human-like text, have amplified these concerns. Despite intense interest on the part of the public and significant press coverage, quantitative information on the prevalence and modality of media-based misinformation remains scarce. Here, we present the results of a two-year study using human raters to annotate online media-based misinformation, mostly focusing on images, based on claims assessed in a large sample of publicly-accessible fact checks with the ClaimReview markup. We present an image typology, designed to capture aspects of the image and manipulation relevant to the image's role in the misinformation claim. We visualize the distribution of these types over time. We show the the rise of generative AI-based content in misinformation claims, and that it's commonality is a relatively recent phenomenon, occurring significantly after heavy press coverage. We also show "simple" methods dominated historically, particularly context manipulations, and continued to hold a majority as of the end of data collection in November 2023. The dataset, Annotated Misinformation, Media-Based (AMMeBa), is publicly-available, and we hope that these data will serve as both a means of evaluating mitigation methods in a realistic setting and as a first-of-its-kind census of the types and modalities of online misinformation.

  • 11 authors
·
May 19, 2024

A Survey on the Role of Crowds in Combating Online Misinformation: Annotators, Evaluators, and Creators

Online misinformation poses a global risk with significant real-world consequences. To combat misinformation, current research relies on professionals like journalists and fact-checkers for annotating and debunking misinformation, and develops automated machine learning methods for detecting misinformation. Complementary to these approaches, recent research has increasingly concentrated on utilizing the power of ordinary social media users, a.k.a. "crowd", who act as eyes-on-the-ground proactively questioning and countering misinformation. Notably, recent studies show that 96% of counter-misinformation responses originate from them. Acknowledging their prominent role, we present the first systematic and comprehensive survey of research papers that actively leverage the crowds to combat misinformation. We first identify 88 papers related to crowd-based efforts, following a meticulous annotation process adhering to the PRISMA framework. We then present key statistics related to misinformation, counter-misinformation, and crowd input in different formats and topics. Upon holistic analysis of the papers, we introduce a novel taxonomy of the roles played by the crowds: (i)annotators who actively identify misinformation; (ii)evaluators who assess counter-misinformation effectiveness; (iii)creators who create counter-misinformation. This taxonomy explores the crowd's capabilities in misinformation detection, identifies prerequisites for effective counter-misinformation, and analyzes crowd-generated counter-misinformation. Then, we delve into (i)distinguishing individual, collaborative, and machine-assisted labeling for annotators; (ii)analyzing the effectiveness of counter-misinformation through surveys, interviews, and in-lab experiments for evaluators; and (iii)characterizing creation patterns and creator profiles for creators. Finally, we outline potential future research in this field.

  • 6 authors
·
Oct 3, 2023

ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models

Large language models (LLMs) such as ChatGPT and GPT-4 have made significant progress in NLP. However, their ability to memorize, represent, and leverage commonsense knowledge has been a well-known pain point for LLMs. It remains unclear that: (1) Can GPTs effectively answer commonsense questions? (2) Are GPTs knowledgeable in commonsense? (3) Are GPTs aware of the underlying commonsense knowledge for answering a specific question? (4) Can GPTs effectively leverage commonsense for answering questions? To evaluate the above commonsense problems, we conduct a series of experiments to evaluate ChatGPT's commonsense abilities, and the experimental results show that: (1) GPTs can achieve good QA accuracy in commonsense tasks, while they still struggle with certain types of knowledge. (2) ChatGPT is knowledgeable, and can accurately generate most of the commonsense knowledge using knowledge prompts. (3) Despite its knowledge, ChatGPT is an inexperienced commonsense problem solver, which cannot precisely identify the needed commonsense knowledge for answering a specific question, i.e., ChatGPT does not precisely know what commonsense knowledge is required to answer a question. The above findings raise the need to investigate better mechanisms for utilizing commonsense knowledge in LLMs, such as instruction following, better commonsense guidance, etc.

  • 6 authors
·
Mar 28, 2023

Snowman: A Million-scale Chinese Commonsense Knowledge Graph Distilled from Foundation Model

Constructing commonsense knowledge graphs (CKGs) has attracted wide research attention due to its significant importance in cognitive intelligence. Nevertheless, existing CKGs are typically oriented to English, limiting the research in non-English languages. Meanwhile, the emergence of foundation models like ChatGPT and GPT-4 has shown promising intelligence with the help of reinforcement learning from human feedback. Under the background, in this paper, we utilize foundation models to construct a Chinese CKG, named Snowman. Specifically, we distill different types of commonsense head items from ChatGPT, and continue to use it to collect tail items with respect to the head items and pre-defined relations. Based on the preliminary analysis, we find the negative commonsense knowledge distilled by ChatGPT achieves lower human acceptance compared to other knowledge. Therefore, we design a simple yet effective self-instruct filtering strategy to filter out invalid negative commonsense. Overall, the constructed Snowman covers more than ten million Chinese commonsense triples, making it the largest Chinese CKG. Moreover, human studies show the acceptance of Snowman achieves 90.6\%, indicating the high-quality triples distilled by the cutting-edge foundation model. We also conduct experiments on commonsense knowledge models to show the usability and effectiveness of our Snowman.

  • 7 authors
·
Jun 16, 2023

The COVID-19 Infodemic: Can the Crowd Judge Recent Misinformation Objectively?

Misinformation is an ever increasing problem that is difficult to solve for the research community and has a negative impact on the society at large. Very recently, the problem has been addressed with a crowdsourcing-based approach to scale up labeling efforts: to assess the truthfulness of a statement, instead of relying on a few experts, a crowd of (non-expert) judges is exploited. We follow the same approach to study whether crowdsourcing is an effective and reliable method to assess statements truthfulness during a pandemic. We specifically target statements related to the COVID-19 health emergency, that is still ongoing at the time of the study and has arguably caused an increase of the amount of misinformation that is spreading online (a phenomenon for which the term "infodemic" has been used). By doing so, we are able to address (mis)information that is both related to a sensitive and personal issue like health and very recent as compared to when the judgment is done: two issues that have not been analyzed in related work. In our experiment, crowd workers are asked to assess the truthfulness of statements, as well as to provide evidence for the assessments as a URL and a text justification. Besides showing that the crowd is able to accurately judge the truthfulness of the statements, we also report results on many different aspects, including: agreement among workers, the effect of different aggregation functions, of scales transformations, and of workers background / bias. We also analyze workers behavior, in terms of queries submitted, URLs found / selected, text justifications, and other behavioral data like clicks and mouse actions collected by means of an ad hoc logger.

  • 8 authors
·
Aug 13, 2020

SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection

Misinformation is a prevalent societal issue due to its potential high risks. Out-of-context (OOC) misinformation, where authentic images are repurposed with false text, is one of the easiest and most effective ways to mislead audiences. Current methods focus on assessing image-text consistency but lack convincing explanations for their judgments, which is essential for debunking misinformation. While Multimodal Large Language Models (MLLMs) have rich knowledge and innate capability for visual reasoning and explanation generation, they still lack sophistication in understanding and discovering the subtle crossmodal differences. In this paper, we introduce SNIFFER, a novel multimodal large language model specifically engineered for OOC misinformation detection and explanation. SNIFFER employs two-stage instruction tuning on InstructBLIP. The first stage refines the model's concept alignment of generic objects with news-domain entities and the second stage leverages language-only GPT-4 generated OOC-specific instruction data to fine-tune the model's discriminatory powers. Enhanced by external tools and retrieval, SNIFFER not only detects inconsistencies between text and image but also utilizes external knowledge for contextual verification. Our experiments show that SNIFFER surpasses the original MLLM by over 40% and outperforms state-of-the-art methods in detection accuracy. SNIFFER also provides accurate and persuasive explanations as validated by quantitative and human evaluations.

  • 4 authors
·
Mar 5, 2024

NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commonsense VQA Tasks

Commonsense visual-question answering often hinges on knowledge that is missing from the image or the question. Small vision-language models (sVLMs) such as ViLT, VisualBERT and FLAVA therefore lag behind their larger generative counterparts. To study the effect of careful commonsense knowledge integration on sVLMs, we present an end-to-end framework (NLKI) that (i) retrieves natural language facts, (ii) prompts an LLM to craft natural language explanations, and (iii) feeds both signals to sVLMs respectively across two commonsense VQA datasets (CRIC, AOKVQA) and a visual-entailment dataset (e-SNLI-VE). Facts retrieved using a fine-tuned ColBERTv2 and an object information-enriched prompt yield explanations that largely cut down hallucinations, while lifting the end-to-end answer accuracy by up to 7% (across 3 datasets), making FLAVA and other models in NLKI match or exceed medium-sized VLMs such as Qwen-2 VL-2B and SmolVLM-2.5B. As these benchmarks contain 10-25% label noise, additional finetuning using noise-robust losses (such as symmetric cross entropy and generalised cross entropy) adds another 2.5% in CRIC, and 5.5% in AOKVQA. Our findings expose when LLM-based commonsense knowledge beats retrieval from commonsense knowledge bases, how noise-aware training stabilises small models in the context of external knowledge augmentation, and why parameter-efficient commonsense reasoning is now within reach for 250M models.

  • 4 authors
·
Aug 27

CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering

The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pretraining the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false-negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our codes, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.

  • 7 authors
·
May 24, 2023

Commonsense-Focused Dialogues for Response Generation: An Empirical Study

Smooth and effective communication requires the ability to perform latent or explicit commonsense inference. Prior commonsense reasoning benchmarks (such as SocialIQA and CommonsenseQA) mainly focus on the discriminative task of choosing the right answer from a set of candidates, and do not involve interactive language generation as in dialogue. Moreover, existing dialogue datasets do not explicitly focus on exhibiting commonsense as a facet. In this paper, we present an empirical study of commonsense in dialogue response generation. We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet, a commonsense knowledge graph. Furthermore, building on social contexts/situations in SocialIQA, we collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting. We evaluate response generation models trained using these datasets and find that models trained on both extracted and our collected data produce responses that consistently exhibit more commonsense than baselines. Finally we propose an approach for automatic evaluation of commonsense that relies on features derived from ConceptNet and pre-trained language and dialog models, and show reasonable correlation with human evaluation of responses' commonsense quality. We are releasing a subset of our collected data, Commonsense-Dialogues, containing about 11K dialogs.

  • 8 authors
·
Sep 14, 2021

Detecting Fallacies in Climate Misinformation: A Technocognitive Approach to Identifying Misleading Argumentation

Misinformation about climate change is a complex societal issue requiring holistic, interdisciplinary solutions at the intersection between technology and psychology. One proposed solution is a "technocognitive" approach, involving the synthesis of psychological and computer science research. Psychological research has identified that interventions in response to misinformation require both fact-based (e.g., factual explanations) and technique-based (e.g., explanations of misleading techniques) content. However, little progress has been made on documenting and detecting fallacies in climate misinformation. In this study, we apply a previously developed critical thinking methodology for deconstructing climate misinformation, in order to develop a dataset mapping different types of climate misinformation to reasoning fallacies. This dataset is used to train a model to detect fallacies in climate misinformation. Our study shows F1 scores that are 2.5 to 3.5 better than previous works. The fallacies that are easiest to detect include fake experts and anecdotal arguments, while fallacies that require background knowledge, such as oversimplification, misrepresentation, and slothful induction, are relatively more difficult to detect. This research lays the groundwork for development of solutions where automatically detected climate misinformation can be countered with generative technique-based corrections.

  • 4 authors
·
May 13, 2024

CoLoTa: A Dataset for Entity-based Commonsense Reasoning over Long-Tail Knowledge

The rise of Large Language Models (LLMs) has redefined the AI landscape, particularly due to their ability to encode factual and commonsense knowledge, and their outstanding performance in tasks requiring reasoning. Despite these advances, hallucinations and reasoning errors remain a significant barrier to their deployment in high-stakes settings. In this work, we observe that even the most prominent LLMs, such as OpenAI-o1, suffer from high rates of reasoning errors and hallucinations on tasks requiring commonsense reasoning over obscure, long-tail entities. To investigate this limitation, we present a new dataset for Commonsense reasoning over Long-Tail entities (CoLoTa), that consists of 3,300 queries from question answering and claim verification tasks and covers a diverse range of commonsense reasoning skills. We remark that CoLoTa can also serve as a Knowledge Graph Question Answering (KGQA) dataset since the support of knowledge required to answer its queries is present in the Wikidata knowledge graph. However, as opposed to existing KGQA benchmarks that merely focus on factoid questions, our CoLoTa queries also require commonsense reasoning. Our experiments with strong LLM-based KGQA methodologies indicate their severe inability to answer queries involving commonsense reasoning. Hence, we propose CoLoTa as a novel benchmark for assessing both (i) LLM commonsense reasoning capabilities and their robustness to hallucinations on long-tail entities and (ii) the commonsense reasoning capabilities of KGQA methods.

  • 3 authors
·
Apr 19

The State of Human-centered NLP Technology for Fact-checking

Misinformation threatens modern society by promoting distrust in science, changing narratives in public health, heightening social polarization, and disrupting democratic elections and financial markets, among a myriad of other societal harms. To address this, a growing cadre of professional fact-checkers and journalists provide high-quality investigations into purported facts. However, these largely manual efforts have struggled to match the enormous scale of the problem. In response, a growing body of Natural Language Processing (NLP) technologies have been proposed for more scalable fact-checking. Despite tremendous growth in such research, however, practical adoption of NLP technologies for fact-checking still remains in its infancy today. In this work, we review the capabilities and limitations of the current NLP technologies for fact-checking. Our particular focus is to further chart the design space for how these technologies can be harnessed and refined in order to better meet the needs of human fact-checkers. To do so, we review key aspects of NLP-based fact-checking: task formulation, dataset construction, modeling, and human-centered strategies, such as explainable models and human-in-the-loop approaches. Next, we review the efficacy of applying NLP-based fact-checking tools to assist human fact-checkers. We recommend that future research include collaboration with fact-checker stakeholders early on in NLP research, as well as incorporation of human-centered design practices in model development, in order to further guide technology development for human use and practical adoption. Finally, we advocate for more research on benchmark development supporting extrinsic evaluation of human-centered fact-checking technologies.

  • 4 authors
·
Jan 8, 2023

Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments

The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.

  • 6 authors
·
Jun 14, 2024

I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation

Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.

  • 10 authors
·
Dec 18, 2022

WinoGrande: An Adversarial Winograd Schema Challenge at Scale

The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense. To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4-79.1%, which are 15-35% below human performance of 94.0%, depending on the amount of the training data allowed. Furthermore, we establish new state-of-the-art results on five related benchmarks - WSC (90.1%), DPR (93.1%), COPA (90.6%), KnowRef (85.6%), and Winogender (97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.

  • 4 authors
·
Jul 24, 2019

Symbolic Knowledge Distillation: from General Language Models to Commonsense Models

The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.

  • 9 authors
·
Oct 14, 2021

MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset

Misinformation is becoming increasingly prevalent on social media and in news articles. It has become so widespread that we require algorithmic assistance utilising machine learning to detect such content. Training these machine learning models require datasets of sufficient scale, diversity and quality. However, datasets in the field of automatic misinformation detection are predominantly monolingual, include a limited amount of modalities and are not of sufficient scale and quality. Addressing this, we develop a data collection and linking system (MuMiN-trawl), to build a public misinformation graph dataset (MuMiN), containing rich social media data (tweets, replies, users, images, articles, hashtags) spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade. The dataset is made available as a heterogeneous graph via a Python package (mumin). We provide baseline results for two node classification tasks related to the veracity of a claim involving social media, and demonstrate that these are challenging tasks, with the highest macro-average F1-score being 62.55% and 61.45% for the two tasks, respectively. The MuMiN ecosystem is available at https://mumin-dataset.github.io/, including the data, documentation, tutorials and leaderboards.

  • 2 authors
·
Feb 23, 2022

A Drop of Ink Makes a Million Think: The Spread of False Information in Large Language Models

Large language models (LLMs) have gained increasing prominence in artificial intelligence, making a profound impact on society and various industries like business and science. However, the presence of false information on the internet and in text corpus poses a significant risk to the reliability and safety of LLMs, underscoring the urgent need to understand the mechanisms of how false information influences the behaviors of LLMs. In this paper, we dive into this problem and investigate how false information spreads in LLMs and affects related responses. Specifically, in our series of experiments, we investigate different factors that can influence the spread of information in LLMs by comparing three degrees of information relevance (direct, indirect, and peripheral), four information source styles (Twitter, web blogs, news reports, and research papers) and two common knowledge injection paradigms (in-context injection and learning-based injection). The experimental results show that (1)False information will spread and contaminate related memories in LLMs via a semantic diffusion process, i.e., false information has global detrimental effects beyond its direct impact. (2)Current LLMs are susceptible to authority bias, i.e., LLMs are more likely to follow false information presented in trustworthy styles such as news reports and research papers, which usually cause deeper and wider pollution of information. (3)Current LLMs are more sensitive to false information through in-context injection than through learning-based injection, which severely challenges the reliability and safety of LLMs even when all training data are trusty and correct. The above findings raise the need for new false information defense algorithms to address the global impact of false information, and new alignment algorithms to unbiasedly lead LLMs to follow essential human values rather than superficial patterns.

  • 7 authors
·
May 8, 2023

CR-LT-KGQA: A Knowledge Graph Question Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge

Knowledge graph question answering (KGQA) is a well-established field that seeks to provide factual answers to natural language (NL) questions by leveraging knowledge graphs (KGs). However, existing KGQA datasets suffer from two significant limitations: (1) no existing KGQA dataset requires commonsense reasoning to arrive at an answer and (2) existing KGQA datasets focus on popular entities for which large language models (LLMs) can directly answer without hallucinating and without leveraging the KG. In this work, we seek a novel KGQA dataset that supports commonsense reasoning and focuses on long-tail entities (e.g., non-mainstream and recent entities) where LLMs frequently hallucinate, and thus create the need for novel methodologies that leverage the KG for factual and attributable commonsense inference. We create a novel Commonsense Reasoning (CR) and Long-Tail (LT) KGQA dataset with two subtasks -- question answering and claim verification -- that address both limitations (1) and (2). We construct CR-LT-KGQA by building extensions to existing reasoning datasets StrategyQA and CREAK over Wikidata. While existing KGQA methods are not applicable due to their lack of commonsense inference support, baseline evaluation of LLMs on CR-LT KGQA demonstrate a high rate of hallucination. Thus, CR-LT KGQA poses significant challenges for hallucination-prone LLMs, hence paving the way for future commonsense KGQA research to provide accurate and factual answers for long-tail entities in the era of LLMs.

  • 3 authors
·
Mar 2, 2024

Commonsense-T2I Challenge: Can Text-to-Image Generation Models Understand Commonsense?

We present a novel task and benchmark for evaluating the ability of text-to-image(T2I) generation models to produce images that fit commonsense in real life, which we call Commonsense-T2I. Given two adversarial text prompts containing an identical set of action words with minor differences, such as "a lightbulb without electricity" v.s. "a lightbulb with electricity", we evaluate whether T2I models can conduct visual-commonsense reasoning, e.g. produce images that fit "the lightbulb is unlit" vs. "the lightbulb is lit" correspondingly. Commonsense-T2I presents an adversarial challenge, providing pairwise text prompts along with expected outputs. The dataset is carefully hand-curated by experts and annotated with fine-grained labels, such as commonsense type and likelihood of the expected outputs, to assist analyzing model behavior. We benchmark a variety of state-of-the-art (sota) T2I models and surprisingly find that, there is still a large gap between image synthesis and real life photos--even the DALL-E 3 model could only achieve 48.92% on Commonsense-T2I, and the stable diffusion XL model only achieves 24.92% accuracy. Our experiments show that GPT-enriched prompts cannot solve this challenge, and we include a detailed analysis about possible reasons for such deficiency. We aim for Commonsense-T2I to serve as a high-quality evaluation benchmark for T2I commonsense checking, fostering advancements in real life image generation.

  • 5 authors
·
Jun 11, 2024 1

Ethical and social risks of harm from Language Models

This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.

  • 23 authors
·
Dec 8, 2021

SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection

Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.

  • 8 authors
·
Nov 30, 2023

Generating Grounded Responses to Counter Misinformation via Learning Efficient Fine-Grained Critiques

Fake news and misinformation poses a significant threat to society, making efficient mitigation essential. However, manual fact-checking is costly and lacks scalability. Large Language Models (LLMs) offer promise in automating counter-response generation to mitigate misinformation, but a critical challenge lies in their tendency to hallucinate non-factual information. Existing models mainly rely on LLM self-feedback to reduce hallucination, but this approach is computationally expensive. In this paper, we propose MisMitiFact, Misinformation Mitigation grounded in Facts, an efficient framework for generating fact-grounded counter-responses at scale. MisMitiFact generates simple critique feedback to refine LLM outputs, ensuring responses are grounded in evidence. We develop lightweight, fine-grained critique models trained on data sourced from readily available fact-checking sites to identify and correct errors in key elements such as numerals, entities, and topics in LLM generations. Experiments show that MisMitiFact generates counter-responses of comparable quality to LLMs' self-feedback while using significantly smaller critique models. Importantly, it achieves ~5x increase in feedback generation throughput, making it highly suitable for cost-effective, large-scale misinformation mitigation. Code and LLM prompt templates are at https://github.com/xxfwin/MisMitiFact.

  • 3 authors
·
Jun 6

The Role of the Crowd in Countering Misinformation: A Case Study of the COVID-19 Infodemic

Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, such as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.

  • 5 authors
·
Nov 11, 2020

Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset

Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively proposed with the goal of reasoning unseen assertions from external resources. In this task, CSKBs are grounded to a large-scale eventuality (activity, state, and event) graph to discriminate whether novel triples from the eventuality graph are plausible or not. However, existing evaluations on the population task are either not accurate (automatic evaluation with randomly sampled negative examples) or of small scale (human annotation). In this paper, we benchmark the CSKB population task with a new large-scale dataset by first aligning four popular CSKBs, and then presenting a high-quality human-annotated evaluation set to probe neural models' commonsense reasoning ability. We also propose a novel inductive commonsense reasoning model that reasons over graphs. Experimental results show that generalizing commonsense reasoning on unseen assertions is inherently a hard task. Models achieving high accuracy during training perform poorly on the evaluation set, with a large gap between human performance. We will make the data publicly available for future contributions. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.

  • 7 authors
·
Sep 15, 2021

Do Language Models Know When They're Hallucinating References?

State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references.

  • 4 authors
·
May 29, 2023

LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions

Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.

ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs

In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.

  • 7 authors
·
Mar 12, 2024

Large Language Models Are Also Good Prototypical Commonsense Reasoners

Commonsense reasoning is a pivotal skill for large language models, yet it presents persistent challenges in specific tasks requiring this competence. Traditional fine-tuning approaches can be resource-intensive and potentially compromise a model's generalization capacity. Furthermore, state-of-the-art language models like GPT-3.5 and Claude are primarily accessible through API calls, which makes fine-tuning models challenging. To address these challenges, we draw inspiration from the outputs of large models for tailored tasks and semi-automatically developed a set of novel prompts from several perspectives, including task-relevance, supportive evidence generation (e.g. chain-of-thought and knowledge), diverse path decoding to aid the model. Experimental results on ProtoQA dataset demonstrate that with better designed prompts we can achieve the new state-of-art(SOTA) on the ProtoQA leaderboard, improving the Max Answer@1 score by 8%, Max Incorrect@1 score by 4% (breakthrough 50% for the first time) compared to the previous SOTA model and achieved an improvement on StrategyQA and CommonsenseQA2.0 (3% and 1%, respectively). Furthermore, with the generated Chain-of-Thought and knowledge, we can improve the interpretability of the model while also surpassing the previous SOTA models. We hope that our work can provide insight for the NLP community to develop better prompts and explore the potential of large language models for more complex reasoning tasks.

  • 5 authors
·
Sep 22, 2023

FACTIFY3M: A Benchmark for Multimodal Fact Verification with Explainability through 5W Question-Answering

Combating disinformation is one of the burning societal crises -- about 67% of the American population believes that disinformation produces a lot of uncertainty, and 10% of them knowingly propagate disinformation. Evidence shows that disinformation can manipulate democratic processes and public opinion, causing disruption in the share market, panic and anxiety in society, and even death during crises. Therefore, disinformation should be identified promptly and, if possible, mitigated. With approximately 3.2 billion images and 720,000 hours of video shared online daily on social media platforms, scalable detection of multimodal disinformation requires efficient fact verification. Despite progress in automatic text-based fact verification (e.g., FEVER, LIAR), the research community lacks substantial effort in multimodal fact verification. To address this gap, we introduce FACTIFY 3M, a dataset of 3 million samples that pushes the boundaries of the domain of fact verification via a multimodal fake news dataset, in addition to offering explainability through the concept of 5W question-answering. Salient features of the dataset include: (i) textual claims, (ii) ChatGPT-generated paraphrased claims, (iii) associated images, (iv) stable diffusion-generated additional images (i.e., visual paraphrases), (v) pixel-level image heatmap to foster image-text explainability of the claim, (vi) 5W QA pairs, and (vii) adversarial fake news stories.

  • 18 authors
·
May 22, 2023

The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale

Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.

  • 7 authors
·
Aug 2, 2021

Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation

The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.

  • 6 authors
·
Mar 22, 2024

Belief in the Machine: Investigating Epistemological Blind Spots of Language Models

As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.

  • 7 authors
·
Oct 28, 2024

Detecting Corpus-Level Knowledge Inconsistencies in Wikipedia with Large Language Models

Wikipedia is the largest open knowledge corpus, widely used worldwide and serving as a key resource for training large language models (LLMs) and retrieval-augmented generation (RAG) systems. Ensuring its accuracy is therefore critical. But how accurate is Wikipedia, and how can we improve it? We focus on inconsistencies, a specific type of factual inaccuracy, and introduce the task of corpus-level inconsistency detection. We present CLAIRE, an agentic system that combines LLM reasoning with retrieval to surface potentially inconsistent claims along with contextual evidence for human review. In a user study with experienced Wikipedia editors, 87.5% reported higher confidence when using CLAIRE, and participants identified 64.7% more inconsistencies in the same amount of time. Combining CLAIRE with human annotation, we contribute WIKICOLLIDE, the first benchmark of real Wikipedia inconsistencies. Using random sampling with CLAIRE-assisted analysis, we find that at least 3.3% of English Wikipedia facts contradict another fact, with inconsistencies propagating into 7.3% of FEVEROUS and 4.0% of AmbigQA examples. Benchmarking strong baselines on this dataset reveals substantial headroom: the best fully automated system achieves an AUROC of only 75.1%. Our results show that contradictions are a measurable component of Wikipedia and that LLM-based systems like CLAIRE can provide a practical tool to help editors improve knowledge consistency at scale.

Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S

Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world.

  • 3 authors
·
Oct 21, 2024

VaxGuard: A Multi-Generator, Multi-Type, and Multi-Role Dataset for Detecting LLM-Generated Vaccine Misinformation

Recent advancements in Large Language Models (LLMs) have significantly improved text generation capabilities. However, they also present challenges, particularly in generating vaccine-related misinformation, which poses risks to public health. Despite research on human-authored misinformation, a notable gap remains in understanding how LLMs contribute to vaccine misinformation and how best to detect it. Existing benchmarks often overlook vaccine-specific misinformation and the diverse roles of misinformation spreaders. This paper introduces VaxGuard, a novel dataset designed to address these challenges. VaxGuard includes vaccine-related misinformation generated by multiple LLMs and provides a comprehensive framework for detecting misinformation across various roles. Our findings show that GPT-3.5 and GPT-4o consistently outperform other LLMs in detecting misinformation, especially when dealing with subtle or emotionally charged narratives. On the other hand, PHI3 and Mistral show lower performance, struggling with precision and recall in fear-driven contexts. Additionally, detection performance tends to decline as input text length increases, indicating the need for improved methods to handle larger content. These results highlight the importance of role-specific detection strategies and suggest that VaxGuard can serve as a key resource for improving the detection of LLM-generated vaccine misinformation.

  • 7 authors
·
Mar 12

What the HellaSwag? On the Validity of Common-Sense Reasoning Benchmarks

Common-sense reasoning is a key language model capability because it encapsulates not just specific factual knowledge but rather general language and world understanding. Measuring common-sense reasoning, therefore, is crucial for language models of different sizes and applications. One of the most widely used benchmarks for evaluating such capabilities is HellaSwag; however, in this paper, we show that it has severe construct validity issues. These issues range from basic ungrammaticality and numerous typos to misleading prompts or equally correct options. Furthermore, we show that if models are evaluated only on answer texts, or with "Lorem ipsum dolor..." instead of the question, more than 65% of model predictions remain the same, and this cannot be attributed merely to contamination. Since benchmark scores are an essential part of model selection in both research and commercial applications, these validity issues can have severe consequences. In particular, knowing that taking benchmark scores at face value is ubiquitous, inadequate evaluation leads to ill-informed decisions about models. In this paper, we thoroughly investigate critical validity issues posed by HellaSwag and illustrate them with various evaluations using generative language models of different sizes. We argue that this benchmark does not accurately measure common-sense reasoning and, therefore, should not be used for evaluation in its current state. Based on the results of our study, we propose requirements that should be met by future common-sense reasoning benchmarks. In addition, we release GoldenSwag, a corrected subset of HellaSwag, which, to our belief, facilitates acceptable common-sense reasoning evaluation.

  • 4 authors
·
Apr 10

Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals

Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.

  • 3 authors
·
Jul 12, 2021

Machine Bullshit: Characterizing the Emergent Disregard for Truth in Large Language Models

Bullshit, as conceptualized by philosopher Harry Frankfurt, refers to statements made without regard to their truth value. While previous work has explored large language model (LLM) hallucination and sycophancy, we propose machine bullshit as an overarching conceptual framework that can allow researchers to characterize the broader phenomenon of emergent loss of truthfulness in LLMs and shed light on its underlying mechanisms. We introduce the Bullshit Index, a novel metric quantifying LLMs' indifference to truth, and propose a complementary taxonomy analyzing four qualitative forms of bullshit: empty rhetoric, paltering, weasel words, and unverified claims. We conduct empirical evaluations on the Marketplace dataset, the Political Neutrality dataset, and our new BullshitEval benchmark (2,400 scenarios spanning 100 AI assistants) explicitly designed to evaluate machine bullshit. Our results demonstrate that model fine-tuning with reinforcement learning from human feedback (RLHF) significantly exacerbates bullshit and inference-time chain-of-thought (CoT) prompting notably amplify specific bullshit forms, particularly empty rhetoric and paltering. We also observe prevalent machine bullshit in political contexts, with weasel words as the dominant strategy. Our findings highlight systematic challenges in AI alignment and provide new insights toward more truthful LLM behavior.

  • 6 authors
·
Jul 10 2

Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification

Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factual, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for six different LLMs and three languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.

  • 12 authors
·
Mar 7, 2024