- Nucleosynthesis in Outflows from Black Hole-Neutron Star Merger Disks With Full GR$ν$RMHD Along with binary neutron star mergers, the in-spiral and merger of a black hole and a neutron star is a predicted site of r-process nucleosynthesis and associated kilonovae. For the right mass ratio, very large amounts of neutron rich material may become unbound from the post-merger accretion disk. We simulate a suite of four post-merger disks with full-transport general relativistic neutrino radiation magnetohydrodynamics. We find that the outflows from these disks are very close to the threshold conditions for robust r-process nucleosynthesis. For these conditions, the detailed properties of the outflow determine whether a full r-process can or cannot occur, implying that a wide range of observable phenomena are possible. We show that on average the disk outflow lanthanide fraction is suppressed relative to the solar isotopic pattern. In combination with the dynamical ejecta, these outflows imply a kilonova with both blue and red components. 6 authors · Dec 20, 2022
- Good Colour Maps: How to Design Them Many colour maps provided by vendors have highly uneven perceptual contrast over their range. It is not uncommon for colour maps to have perceptual flat spots that can hide a feature as large as one tenth of the total data range. Colour maps may also have perceptual discontinuities that induce the appearance of false features. Previous work in the design of perceptually uniform colour maps has mostly failed to recognise that CIELAB space is only designed to be perceptually uniform at very low spatial frequencies. The most important factor in designing a colour map is to ensure that the magnitude of the incremental change in perceptual lightness of the colours is uniform. The specific requirements for linear, diverging, rainbow and cyclic colour maps are developed in detail. To support this work two test images for evaluating colour maps are presented. The use of colour maps in combination with relief shading is considered and the conditions under which colour can enhance or disrupt relief shading are identified. Finally, a set of new basis colours for the construction of ternary images are presented. Unlike the RGB primaries these basis colours produce images whereby the salience of structures are consistent irrespective of the assignment of basis colours to data channels. 1 authors · Sep 11, 2015
1 UniRGB-IR: A Unified Framework for RGB-Infrared Semantic Tasks via Adapter Tuning Semantic analysis on visible (RGB) and infrared (IR) images has gained attention for its ability to be more accurate and robust under low-illumination and complex weather conditions. Due to the lack of pre-trained foundation models on the large-scale infrared image datasets, existing methods prefer to design task-specific frameworks and directly fine-tune them with pre-trained foundation models on their RGB-IR semantic relevance datasets, which results in poor scalability and limited generalization. In this work, we propose a general and efficient framework called UniRGB-IR to unify RGB-IR semantic tasks, in which a novel adapter is developed to efficiently introduce richer RGB-IR features into the pre-trained RGB-based foundation model. Specifically, our framework consists of a RGB-based foundation model, a Multi-modal Feature Pool (MFP) module and a Supplementary Feature Injector (SFI) module. The MFP and SFI modules cooperate with each other as an adapter to effectively complement the RGB-based features with the rich RGB-IR features. During training process, we freeze the entire foundation model to inherit prior knowledge and only optimize the proposed adapter. Furthermore, to verify the effectiveness of our framework, we utilize the vanilla vision transformer (ViT-Base) as the pre-trained foundation model to perform extensive experiments. Experimental results on various RGB-IR downstream tasks demonstrate that our method can achieve state-of-the-art performance. The source code and results are available at https://github.com/PoTsui99/UniRGB-IR.git. 6 authors · Apr 26, 2024