- Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. The annotation consists in a linguistically motivated word segmentation; a morphological layer comprising lemmas, universal part-of-speech tags, and standardized morphological features; and a syntactic layer focusing on syntactic relations between predicates, arguments and modifiers. In this paper, we describe version 2 of the guidelines (UD v2), discuss the major changes from UD v1 to UD v2, and give an overview of the currently available treebanks for 90 languages. 9 authors · Apr 22, 2020
- 75 Languages, 1 Model: Parsing Universal Dependencies Universally We present UDify, a multilingual multi-task model capable of accurately predicting universal part-of-speech, morphological features, lemmas, and dependency trees simultaneously for all 124 Universal Dependencies treebanks across 75 languages. By leveraging a multilingual BERT self-attention model pretrained on 104 languages, we found that fine-tuning it on all datasets concatenated together with simple softmax classifiers for each UD task can result in state-of-the-art UPOS, UFeats, Lemmas, UAS, and LAS scores, without requiring any recurrent or language-specific components. We evaluate UDify for multilingual learning, showing that low-resource languages benefit the most from cross-linguistic annotations. We also evaluate for zero-shot learning, with results suggesting that multilingual training provides strong UD predictions even for languages that neither UDify nor BERT have ever been trained on. Code for UDify is available at https://github.com/hyperparticle/udify. 2 authors · Apr 3, 2019
1 MaiBaam: A Multi-Dialectal Bavarian Universal Dependency Treebank Despite the success of the Universal Dependencies (UD) project exemplified by its impressive language breadth, there is still a lack in `within-language breadth': most treebanks focus on standard languages. Even for German, the language with the most annotations in UD, so far no treebank exists for one of its language varieties spoken by over 10M people: Bavarian. To contribute to closing this gap, we present the first multi-dialect Bavarian treebank (MaiBaam) manually annotated with part-of-speech and syntactic dependency information in UD, covering multiple text genres (wiki, fiction, grammar examples, social, non-fiction). We highlight the morphosyntactic differences between the closely-related Bavarian and German and showcase the rich variability of speakers' orthographies. Our corpus includes 15k tokens, covering dialects from all Bavarian-speaking areas spanning three countries. We provide baseline parsing and POS tagging results, which are lower than results obtained on German and vary substantially between different graph-based parsers. To support further research on Bavarian syntax, we make our dataset, language-specific guidelines and code publicly available. 5 authors · Mar 15, 2024 1
- Thai Universal Dependency Treebank Automatic dependency parsing of Thai sentences has been underexplored, as evidenced by the lack of large Thai dependency treebanks with complete dependency structures and the lack of a published systematic evaluation of state-of-the-art models, especially transformer-based parsers. In this work, we address these problems by introducing Thai Universal Dependency Treebank (TUD), a new largest Thai treebank consisting of 3,627 trees annotated in accordance with the Universal Dependencies (UD) framework. We then benchmark dependency parsing models that incorporate pretrained transformers as encoders and train them on Thai-PUD and our TUD. The evaluation results show that most of our models can outperform other models reported in previous papers and provide insight into the optimal choices of components to include in Thai dependency parsers. The new treebank and every model's full prediction generated in our experiment are made available on a GitHub repository for further study. 7 authors · May 13, 2024
1 MaiBaam Annotation Guidelines This document provides the annotation guidelines for MaiBaam, a Bavarian corpus annotated with part-of-speech (POS) tags and syntactic dependencies. MaiBaam belongs to the Universal Dependencies (UD) project, and our annotations elaborate on the general and German UD version 2 guidelines. In this document, we detail how to preprocess and tokenize Bavarian data, provide an overview of the POS tags and dependencies we use, explain annotation decisions that would also apply to closely related languages like German, and lastly we introduce and motivate decisions that are specific to Bavarian grammar. 4 authors · Mar 9, 2024 1
- Cross-lingual Transfer Learning for Javanese Dependency Parsing While structure learning achieves remarkable performance in high-resource languages, the situation differs for under-represented languages due to the scarcity of annotated data. This study focuses on assessing the efficacy of transfer learning in enhancing dependency parsing for Javanese, a language spoken by 80 million individuals but characterized by limited representation in natural language processing. We utilized the Universal Dependencies dataset consisting of dependency treebanks from more than 100 languages, including Javanese. We propose two learning strategies to train the model: transfer learning (TL) and hierarchical transfer learning (HTL). While TL only uses a source language to pre-train the model, the HTL method uses a source language and an intermediate language in the learning process. The results show that our best model uses the HTL method, which improves performance with an increase of 10% for both UAS and LAS evaluations compared to the baseline model. 3 authors · Jan 22, 2024
1 Decomposed Prompting: Unveiling Multilingual Linguistic Structure Knowledge in English-Centric Large Language Models Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge. 7 authors · Feb 28, 2024
- Brain Treebank: Large-scale intracranial recordings from naturalistic language stimuli We present the Brain Treebank, a large-scale dataset of electrophysiological neural responses, recorded from intracranial probes while 10 subjects watched one or more Hollywood movies. Subjects watched on average 2.6 Hollywood movies, for an average viewing time of 4.3 hours, and a total of 43 hours. The audio track for each movie was transcribed with manual corrections. Word onsets were manually annotated on spectrograms of the audio track for each movie. Each transcript was automatically parsed and manually corrected into the universal dependencies (UD) formalism, assigning a part of speech to every word and a dependency parse to every sentence. In total, subjects heard over 38,000 sentences (223,000 words), while they had on average 168 electrodes implanted. This is the largest dataset of intracranial recordings featuring grounded naturalistic language, one of the largest English UD treebanks in general, and one of only a few UD treebanks aligned to multimodal features. We hope that this dataset serves as a bridge between linguistic concepts, perception, and their neural representations. To that end, we present an analysis of which electrodes are sensitive to language features while also mapping out a rough time course of language processing across these electrodes. The Brain Treebank is available at https://BrainTreebank.dev/ 13 authors · Nov 13, 2024
- MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages In this paper, we present MasakhaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the UD (universal dependencies) guidelines. We conducted extensive POS baseline experiments using conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in UD. Evaluating on the MasakhaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with cross-lingual parameter-efficient fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems more effective for POS tagging in unseen languages. 44 authors · May 23, 2023
11 Building Foundations for Natural Language Processing of Historical Turkish: Resources and Models This paper introduces foundational resources and models for natural language processing (NLP) of historical Turkish, a domain that has remained underexplored in computational linguistics. We present the first named entity recognition (NER) dataset, HisTR and the first Universal Dependencies treebank, OTA-BOUN for a historical form of the Turkish language along with transformer-based models trained using these datasets for named entity recognition, dependency parsing, and part-of-speech tagging tasks. Additionally, we introduce Ottoman Text Corpus (OTC), a clean corpus of transliterated historical Turkish texts that spans a wide range of historical periods. Our experimental results show significant improvements in the computational analysis of historical Turkish, achieving promising results in tasks that require understanding of historical linguistic structures. They also highlight existing challenges, such as domain adaptation and language variations across time periods. All of the presented resources and models are made available at https://huggingface.co/bucolin to serve as a benchmark for future progress in historical Turkish NLP. 7 authors · Jan 8 3
1 eFontes. Part of Speech Tagging and Lemmatization of Medieval Latin Texts.A Cross-Genre Survey This study introduces the eFontes models for automatic linguistic annotation of Medieval Latin texts, focusing on lemmatization, part-of-speech tagging, and morphological feature determination. Using the Transformers library, these models were trained on Universal Dependencies (UD) corpora and the newly developed eFontes corpus of Polish Medieval Latin. The research evaluates the models' performance, addressing challenges such as orthographic variations and the integration of Latinized vernacular terms. The models achieved high accuracy rates: lemmatization at 92.60%, part-of-speech tagging at 83.29%, and morphological feature determination at 88.57%. The findings underscore the importance of high-quality annotated corpora and propose future enhancements, including extending the models to Named Entity Recognition. 4 authors · Jun 29, 2024
1 Semi-Supervised Neural System for Tagging, Parsing and Lematization This paper describes the ICS PAS system which took part in CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. The system consists of jointly trained tagger, lemmatizer, and dependency parser which are based on features extracted by a biLSTM network. The system uses both fully connected and dilated convolutional neural architectures. The novelty of our approach is the use of an additional loss function, which reduces the number of cycles in the predicted dependency graphs, and the use of self-training to increase the system performance. The proposed system, i.e. ICS PAS (Warszawa), ranked 3th/4th in the official evaluation obtaining the following overall results: 73.02 (LAS), 60.25 (MLAS) and 64.44 (BLEX). 2 authors · Apr 26, 2020
- POTATO: exPlainable infOrmation exTrAcTion framewOrk We present POTATO, a task- and languageindependent framework for human-in-the-loop (HITL) learning of rule-based text classifiers using graph-based features. POTATO handles any type of directed graph and supports parsing text into Abstract Meaning Representations (AMR), Universal Dependencies (UD), and 4lang semantic graphs. A streamlit-based user interface allows users to build rule systems from graph patterns, provides real-time evaluation based on ground truth data, and suggests rules by ranking graph features using interpretable machine learning models. Users can also provide patterns over graphs using regular expressions, and POTATO can recommend refinements of such rules. POTATO is applied in projects across domains and languages, including classification tasks on German legal text and English social media data. All components of our system are written in Python, can be installed via pip, and are released under an MIT License on GitHub. 4 authors · Jan 31, 2022
2 MultiBLiMP 1.0: A Massively Multilingual Benchmark of Linguistic Minimal Pairs We introduce MultiBLiMP 1.0, a massively multilingual benchmark of linguistic minimal pairs, covering 101 languages, 6 linguistic phenomena and containing more than 125,000 minimal pairs. Our minimal pairs are created using a fully automated pipeline, leveraging the large-scale linguistic resources of Universal Dependencies and UniMorph. MultiBLiMP 1.0 evaluates abilities of LLMs at an unprecedented multilingual scale, and highlights the shortcomings of the current state-of-the-art in modelling low-resource languages. 3 authors · Apr 3
2 Composable Sparse Fine-Tuning for Cross-Lingual Transfer Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both these desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at https://github.com/cambridgeltl/composable-sft. 4 authors · Oct 14, 2021
- The UD-NewsCrawl Treebank: Reflections and Challenges from a Large-scale Tagalog Syntactic Annotation Project This paper presents UD-NewsCrawl, the largest Tagalog treebank to date, containing 15.6k trees manually annotated according to the Universal Dependencies framework. We detail our treebank development process, including data collection, pre-processing, manual annotation, and quality assurance procedures. We provide baseline evaluations using multiple transformer-based models to assess the performance of state-of-the-art dependency parsers on Tagalog. We also highlight challenges in the syntactic analysis of Tagalog given its distinctive grammatical properties, and discuss its implications for the annotation of this treebank. We anticipate that UD-NewsCrawl and our baseline model implementations will serve as valuable resources for advancing computational linguistics research in underrepresented languages like Tagalog. 3 authors · May 26
- ParaShoot: A Hebrew Question Answering Dataset NLP research in Hebrew has largely focused on morphology and syntax, where rich annotated datasets in the spirit of Universal Dependencies are available. Semantic datasets, however, are in short supply, hindering crucial advances in the development of NLP technology in Hebrew. In this work, we present ParaShoot, the first question answering dataset in modern Hebrew. The dataset follows the format and crowdsourcing methodology of SQuAD, and contains approximately 3000 annotated examples, similar to other question-answering datasets in low-resource languages. We provide the first baseline results using recently-released BERT-style models for Hebrew, showing that there is significant room for improvement on this task. 2 authors · Sep 23, 2021
- Killkan: The Automatic Speech Recognition Dataset for Kichwa with Morphosyntactic Information This paper presents Killkan, the first dataset for automatic speech recognition (ASR) in the Kichwa language, an indigenous language of Ecuador. Kichwa is an extremely low-resource endangered language, and there have been no resources before Killkan for Kichwa to be incorporated in applications of natural language processing. The dataset contains approximately 4 hours of audio with transcription, translation into Spanish, and morphosyntactic annotation in the format of Universal Dependencies. The audio data was retrieved from a publicly available radio program in Kichwa. This paper also provides corpus-linguistic analyses of the dataset with a special focus on the agglutinative morphology of Kichwa and frequent code-switching with Spanish. The experiments show that the dataset makes it possible to develop the first ASR system for Kichwa with reliable quality despite its small dataset size. This dataset, the ASR model, and the code used to develop them will be publicly available. Thus, our study positively showcases resource building and its applications for low-resource languages and their community. 4 authors · Apr 23, 2024
21 Universal Reasoner: A Single, Composable Plug-and-Play Reasoner for Frozen LLMs Large Language Models (LLMs) have demonstrated remarkable general capabilities, but enhancing skills such as reasoning often demands substantial computational resources and may compromise their generalization. While Parameter-Efficient Fine-Tuning (PEFT) methods offer a more resource-conscious alternative, they typically requires retraining for each LLM backbone due to architectural dependencies. To address these challenges, here we propose Universal Reasoner (UniR) - a single, lightweight, composable, and plug-and-play reasoning module that can be used with any frozen LLM to endow it with specialized reasoning capabilities. Specifically, UniR decomposes the reward into a standalone reasoning module that is trained independently using predefined rewards, effectively translating trajectory-level signals into token-level guidance. Once trained, UniR can be combined with any frozen LLM at inference time by simply adding its output logits to those of the LLM backbone. This additive structure naturally enables modular composition: multiple UniR modules trained for different tasks can be jointly applied by summing their logits, enabling complex reasoning via composition. Experimental results on mathematical reasoning and machine translation tasks show that UniR significantly outperforms existing baseline fine-tuning methods using the Llama3.2 model. Furthermore, UniR demonstrates strong weak-to-strong generalization: reasoning modules trained on smaller models effectively guide much larger LLMs. This makes UniR a cost-efficient, adaptable, and robust solution for enhancing reasoning in LLMs without compromising their core capabilities. Code is open-sourced at https://github.com/hangeol/UniR 5 authors · May 25 2
- Fast-UMI: A Scalable and Hardware-Independent Universal Manipulation Interface Collecting real-world manipulation trajectory data involving robotic arms is essential for developing general-purpose action policies in robotic manipulation, yet such data remains scarce. Existing methods face limitations such as high costs, labor intensity, hardware dependencies, and complex setup requirements involving SLAM algorithms. In this work, we introduce Fast-UMI, an interface-mediated manipulation system comprising two key components: a handheld device operated by humans for data collection and a robot-mounted device used during policy inference. Our approach employs a decoupled design compatible with a wide range of grippers while maintaining consistent observation perspectives, allowing models trained on handheld-collected data to be directly applied to real robots. By directly obtaining the end-effector pose using existing commercial hardware products, we eliminate the need for complex SLAM deployment and calibration, streamlining data processing. Fast-UMI provides supporting software tools for efficient robot learning data collection and conversion, facilitating rapid, plug-and-play functionality. This system offers an efficient and user-friendly tool for robotic learning data acquisition. 14 authors · Sep 28, 2024
- Attention is all you need for Videos: Self-attention based Video Summarization using Universal Transformers Video Captioning and Summarization have become very popular in the recent years due to advancements in Sequence Modelling, with the resurgence of Long-Short Term Memory networks (LSTMs) and introduction of Gated Recurrent Units (GRUs). Existing architectures extract spatio-temporal features using CNNs and utilize either GRUs or LSTMs to model dependencies with soft attention layers. These attention layers do help in attending to the most prominent features and improve upon the recurrent units, however, these models suffer from the inherent drawbacks of the recurrent units themselves. The introduction of the Transformer model has driven the Sequence Modelling field into a new direction. In this project, we implement a Transformer-based model for Video captioning, utilizing 3D CNN architectures like C3D and Two-stream I3D for video extraction. We also apply certain dimensionality reduction techniques so as to keep the overall size of the model within limits. We finally present our results on the MSVD and ActivityNet datasets for Single and Dense video captioning tasks respectively. 3 authors · Jun 6, 2019
2 Timer-XL: Long-Context Transformers for Unified Time Series Forecasting We present Timer-XL, a generative Transformer for unified time series forecasting. To uniformly predict 1D and 2D time series, we generalize next token prediction, predominantly adopted for causal generation of 1D sequences, to multivariate next token prediction. The proposed paradigm uniformly formulates various forecasting scenarios as a long-context generation problem. We opt for the generative Transformer, which can capture global-range and causal dependencies while providing contextual flexibility, to implement unified forecasting on univariate series characterized by non-stationarity, multivariate time series with complicated dynamics and correlations, and covariate-informed contexts that include both endogenous and exogenous variables. Technically, we propose a universal TimeAttention to facilitate generative Transformers on time series, which can effectively capture fine-grained intra- and inter-series dependencies of flattened time series tokens (patches) and is further strengthened by position embeddings in both temporal and variable dimensions. Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach. As a large time series model, it demonstrates notable model transferability by large-scale pre-training, as well as contextual flexibility in token lengths, positioning it as a one-for-all forecaster. 5 authors · Oct 7, 2024
- WirelessGPT: A Generative Pre-trained Multi-task Learning Framework for Wireless Communication This paper introduces WirelessGPT, a pioneering foundation model specifically designed for multi-task learning in wireless communication and sensing. Specifically, WirelessGPT leverages large-scale wireless channel datasets for unsupervised pretraining and extracting universal channel representations, which captures complex spatiotemporal dependencies. In fact,this task-agnostic design adapts WirelessGPT seamlessly to a wide range of downstream tasks, using a unified representation with minimal fine-tuning. By unifying communication and sensing functionalities, WirelessGPT addresses the limitations of task-specific models, offering a scalable and efficient solution for integrated sensing and communication (ISAC). With an initial parameter size of around 80 million, WirelessGPT demonstrates significant improvements over conventional methods and smaller AI models, reducing reliance on large-scale labeled data. As the first foundation model capable of supporting diverse tasks across different domains, WirelessGPT establishes a new benchmark, paving the way for future advancements in multi-task wireless systems. 7 authors · Feb 8
- On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model, Data, and Training Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind the social media texts or reviews, which has been a fundamental application to the real-world society. Since the early 2010s, ABSA has achieved extraordinarily high accuracy with various deep neural models. However, existing ABSA models with strong in-house performances may fail to generalize to some challenging cases where the contexts are variable, i.e., low robustness to real-world environments. In this study, we propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training. First, we strengthen the current best-robust syntax-aware models by further incorporating the rich external syntactic dependencies and the labels with aspect simultaneously with a universal-syntax graph convolutional network. In the corpus perspective, we propose to automatically induce high-quality synthetic training data with various types, allowing models to learn sufficient inductive bias for better robustness. Last, we based on the rich pseudo data perform adversarial training to enhance the resistance to the context perturbation and meanwhile employ contrastive learning to reinforce the representations of instances with contrastive sentiments. Extensive robustness evaluations are conducted. The results demonstrate that our enhanced syntax-aware model achieves better robustness performances than all the state-of-the-art baselines. By additionally incorporating our synthetic corpus, the robust testing results are pushed with around 10% accuracy, which are then further improved by installing the advanced training strategies. In-depth analyses are presented for revealing the factors influencing the ABSA robustness. 6 authors · Apr 19, 2023