15 Efficient LLaMA-3.2-Vision by Trimming Cross-attended Visual Features Visual token reduction lowers inference costs caused by extensive image features in large vision-language models (LVLMs). Unlike relevant studies that prune tokens in self-attention-only LVLMs, our work uniquely addresses cross-attention-based models, which achieve superior performance. We identify that the key-value (KV) cache size for image tokens in cross-attention layers significantly exceeds that of text tokens in self-attention layers, posing a major compute bottleneck. To mitigate this issue, we exploit the sparse nature in cross-attention maps to selectively prune redundant visual features. Our Trimmed Llama effectively reduces KV cache demands without requiring additional training. By benefiting from 50%-reduced visual features, our model can reduce inference latency and memory usage while achieving benchmark parity. 9 authors · Apr 1 2
57 LLM Pruning and Distillation in Practice: The Minitron Approach We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Aligner and tested in instruct-tuned versions. This approach produces a compelling 4B model from Llama 3.1 8B and a state-of-the-art Mistral-NeMo-Minitron-8B (MN-Minitron-8B for brevity) model from Mistral NeMo 12B. We found that with no access to the original data, it is beneficial to slightly fine-tune teacher models on the distillation dataset. We open-source our base model weights on Hugging Face with a permissive license. 9 authors · Aug 21, 2024 4
1 Llama-3.1-Sherkala-8B-Chat: An Open Large Language Model for Kazakh Llama-3.1-Sherkala-8B-Chat, or Sherkala-Chat (8B) for short, is a state-of-the-art instruction-tuned open generative large language model (LLM) designed for Kazakh. Sherkala-Chat (8B) aims to enhance the inclusivity of LLM advancements for Kazakh speakers. Adapted from the LLaMA-3.1-8B model, Sherkala-Chat (8B) is trained on 45.3B tokens across Kazakh, English, Russian, and Turkish. With 8 billion parameters, it demonstrates strong knowledge and reasoning abilities in Kazakh, significantly outperforming existing open Kazakh and multilingual models of similar scale while achieving competitive performance in English. We release Sherkala-Chat (8B) as an open-weight instruction-tuned model and provide a detailed overview of its training, fine-tuning, safety alignment, and evaluation, aiming to advance research and support diverse real-world applications. 35 authors · Mar 3
- R.I.P.: Better Models by Survival of the Fittest Prompts Training data quality is one of the most important drivers of final model quality. In this work, we introduce a method for evaluating data integrity based on the assumption that low-quality input prompts result in high variance and low quality responses. This is achieved by measuring the rejected response quality and the reward gap between the chosen and rejected preference pair. Our method, Rejecting Instruction Preferences (RIP) can be used to filter prompts from existing training sets, or to make high quality synthetic datasets, yielding large performance gains across various benchmarks compared to unfiltered data. Using Llama 3.1-8B-Instruct, RIP improves AlpacaEval2 LC Win Rate by 9.4%, Arena-Hard by 8.7%, and WildBench by 9.9%. Using Llama 3.3-70B-Instruct, RIP improves Arena-Hard from 67.5 to 82.9, which is from 18th place to 6th overall in the leaderboard. 7 authors · Jan 30
1 Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models Pruning large language models (LLMs) is a promising solution for reducing model sizes and computational complexity while preserving performance. Traditional layer-wise pruning methods often adopt a uniform sparsity approach across all layers, which leads to suboptimal performance due to the varying significance of individual transformer layers within the model not being accounted for. To this end, we propose the Shapley Value-based Non-Uniform Pruning (SV-NUP) method for LLMs. This approach quantifies the contribution of each transformer layer to the overall model performance, enabling the assignment of tailored pruning budgets to different layers to retain critical parameters. To further improve efficiency, we design the Sliding Window-based Shapley Value approximation method. It substantially reduces computational overhead compared to exact SV calculation methods. Extensive experiments on various LLMs including LLaMA-v1, LLaMA-v2 and OPT demonstrate the effectiveness of the proposed approach. The results reveal that non-uniform pruning significantly enhances the performance of pruned models. Notably, SV-NUP achieves a reduction in perplexity (PPL) of 18.01% and 19.55% on LLaMA-7B and LLaMA-13B, respectively, compared to SparseGPT at 70% sparsity. 4 authors · May 3 1
- Performance of Recent Large Language Models for a Low-Resourced Language Large Language Models (LLMs) have shown significant advances in the past year. In addition to new versions of GPT and Llama, several other LLMs have been introduced recently. Some of these are open models available for download and modification. Although multilingual large language models have been available for some time, their performance on low-resourced languages such as Sinhala has been poor. We evaluated four recent LLMs on their performance directly in the Sinhala language, and by translation to and from English. We also evaluated their fine-tunability with a small amount of fine-tuning data. Claude and GPT 4o perform well out-of-the-box and do significantly better than previous versions. Llama and Mistral perform poorly but show some promise of improvement with fine tuning. 2 authors · Jul 31, 2024
- Analysis of Disinformation and Fake News Detection Using Fine-Tuned Large Language Model The paper considers the possibility of fine-tuning Llama 2 large language model (LLM) for the disinformation analysis and fake news detection. For fine-tuning, the PEFT/LoRA based approach was used. In the study, the model was fine-tuned for the following tasks: analysing a text on revealing disinformation and propaganda narratives, fact checking, fake news detection, manipulation analytics, extracting named entities with their sentiments. The obtained results show that the fine-tuned Llama 2 model can perform a deep analysis of texts and reveal complex styles and narratives. Extracted sentiments for named entities can be considered as predictive features in supervised machine learning models. 1 authors · Sep 9, 2023 1
3 Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged moderate-sized large language models (LLMs) highlights the potential of building smaller yet powerful LLMs. Regardless, the cost of training such models from scratch on trillions of tokens remains high. In this work, we study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models. Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains. We demonstrate the efficacy of our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE, and OpenLLaMA models, on a wide range of downstream and instruction tuning evaluations, while requiring only 3% of compute compared to training such models from scratch. This work provides compelling evidence that leveraging existing LLMs with structured pruning is a far more cost-effective approach for building smaller LLMs. 4 authors · Oct 10, 2023 1
34 Extending Llama-3's Context Ten-Fold Overnight We extend the context length of Llama-3-8B-Instruct from 8K to 80K via QLoRA fine-tuning. The entire training cycle is super efficient, which takes 8 hours on one 8xA800 (80G) GPU machine. The resulted model exhibits superior performances across a broad range of evaluation tasks, such as NIHS, topic retrieval, and long-context language understanding; meanwhile, it also well preserves the original capability over short contexts. The dramatic context extension is mainly attributed to merely 3.5K synthetic training samples generated by GPT-4 , which indicates the LLMs' inherent (yet largely underestimated) potential to extend its original context length. In fact, the context length could be extended far beyond 80K with more computation resources. Therefore, the team will publicly release the entire resources (including data, model, data generation pipeline, training code) so as to facilitate the future research from the community: https://github.com/FlagOpen/FlagEmbedding. 7 authors · Apr 30, 2024 3
2 Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca Large Language Models (LLMs), such as ChatGPT and GPT-4, have revolutionized natural language processing research and demonstrated potential in Artificial General Intelligence (AGI). However, the expensive training and deployment of LLMs present challenges to transparent and open academic research. To address these issues, this project open-sources the Chinese LLaMA and Alpaca large models, emphasizing instruction fine-tuning. We expand the original LLaMA's Chinese vocabulary by adding 20K Chinese tokens, increasing encoding efficiency and enhancing basic semantic understanding. By incorporating secondary pre-training using Chinese data and fine-tuning with Chinese instruction data, we substantially improve the models' comprehension and execution of instructions. Our pilot study serves as a foundation for researchers adapting LLaMA and Alpaca models to other languages. Resources are made publicly available through GitHub, fostering open research in the Chinese NLP community and beyond. GitHub repository: https://github.com/ymcui/Chinese-LLaMA-Alpaca 3 authors · Apr 17, 2023
- Reassessing Layer Pruning in LLMs: New Insights and Methods Although large language models (LLMs) have achieved remarkable success across various domains, their considerable scale necessitates substantial computational resources, posing significant challenges for deployment in resource-constrained environments. Layer pruning, as a simple yet effective compression method, removes layers of a model directly, reducing computational overhead. However, what are the best practices for layer pruning in LLMs? Are sophisticated layer selection metrics truly effective? Does the LoRA (Low-Rank Approximation) family, widely regarded as a leading method for pruned model fine-tuning, truly meet expectations when applied to post-pruning fine-tuning? To answer these questions, we dedicate thousands of GPU hours to benchmarking layer pruning in LLMs and gaining insights across multiple dimensions. Our results demonstrate that a simple approach, i.e., pruning the final 25\% of layers followed by fine-tuning the lm\_head and the remaining last three layer, yields remarkably strong performance. Following this guide, we prune Llama-3.1-8B-It and obtain a model that outperforms many popular LLMs of similar size, such as ChatGLM2-6B, Vicuna-7B-v1.5, Qwen1.5-7B and Baichuan2-7B. We release the optimal model weights on Huggingface, and the code is available on GitHub. 9 authors · Nov 23, 2024
- Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning. 5 authors · Jun 15, 2024