1 Smoothie-Qwen: Post-Hoc Smoothing to Reduce Language Bias in Multilingual LLMs Multilingual large language models (LLMs) often exhibit language confusion, a tendency to generate responses in a dominant language irrespective of the prompt's language. To address this, we propose Smoothie-Qwen, a lightweight, post-hoc method that mitigates language bias without retraining. This technique selectively adjusts token-level output probabilities to effectively suppress undesired language generation. Applied to the Qwen model, our method reduces unintended Chinese output by over 95% while preserving task accuracy on multilingual benchmarks. This work provides a practical and efficient solution for enhancing the language controllability of LLMs, making them more reliable for global applications. 5 authors · Jul 8
- Smoothie: Smoothing Diffusion on Token Embeddings for Text Generation Diffusion models have achieved state-of-the-art performance in generating images, audio, and video, but their adaptation to text remains challenging due to its discrete nature. Prior approaches either apply Gaussian diffusion in continuous latent spaces, which inherits semantic structure but struggles with token decoding, or operate in categorical simplex space, which respect discreteness but disregard semantic relation between tokens. In this paper, we propose Smoothing Diffusion on Token Embeddings (Smoothie), a novel diffusion method that combines the strengths of both approaches by progressively smoothing token embeddings based on semantic similarity. This technique enables gradual information removal while maintaining a natural decoding process. Experimental results on several sequence-to-sequence generation tasks demonstrate that Smoothie outperforms existing diffusion-based models in generation quality. Furthermore, ablation studies show that our proposed diffusion space yields better performance than both the standard embedding space and the categorical simplex. Our code is available at https://github.com/ashaba1in/smoothie. 3 authors · May 24
- Smoothie: Label Free Language Model Routing Large language models (LLMs) are increasingly used in applications where LLM inputs may span many different tasks. Recent work has found that the choice of LLM is consequential, and different LLMs may be good for different input samples. Prior approaches have thus explored how engineers might select an LLM to use for each sample (i.e. routing). While existing routing methods mostly require training auxiliary models on human-annotated data, our work explores whether it is possible to perform unsupervised routing. We propose Smoothie, a weak supervision-inspired routing approach that requires no labeled data. Given a set of outputs from different LLMs, Smoothie constructs a latent variable graphical model over embedding representations of observable LLM outputs and unknown "true" outputs. Using this graphical model, we estimate sample-dependent quality scores for each LLM, and route each sample to the LLM with the highest corresponding score. We find that Smoothie's LLM quality-scores correlate with ground-truth model quality (correctly identifying the optimal model on 9/14 tasks), and that Smoothie outperforms baselines for routing by up to 10 points accuracy. 5 authors · Dec 5, 2024