new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 14

Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models

Improving reasoning capabilities of Large Language Models (LLMs), especially under parameter constraints, is crucial for real-world applications. Prior work proposes recurrent transformers, which allocate a fixed number of extra iterations per token to improve generation quality. After the first, standard forward pass, instead of verbalization, last-layer hidden states are fed back as inputs for additional iterations to refine token predictions. Yet we identify a latent overthinking phenomenon: easy token predictions that are already correct after the first pass are sometimes revised into errors in additional iterations. To address this, we propose Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only at hard tokens. It employs a lightweight neural decider to trigger latent iterations only at tokens that are likely incorrect after the standard forward pass. During latent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM objective from general next-token prediction to focused hard-token refinement. We further introduce a duo-causal attention mechanism that extends attention from the token sequence dimension to an additional iteration depth dimension. This enables cross-iteration information flow while maintaining full sequential parallelism. Experiments show that TaH boosts LLM reasoning performance across five challenging benchmarks while maintaining the same parameter count. Compared with baselines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy gains while exempting 94% of tokens from the second iteration. Against strong single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-5.0% accuracy gains. When allowing less than 3% additional parameters from LoRA and the iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively. Our code is available at https://github.com/thu-nics/TaH.

  • 6 authors
·
Nov 11

Qwen3 Technical Report

In this work, we present Qwen3, the latest version of the Qwen model family. Qwen3 comprises a series of large language models (LLMs) designed to advance performance, efficiency, and multilingual capabilities. The Qwen3 series includes models of both dense and Mixture-of-Expert (MoE) architectures, with parameter scales ranging from 0.6 to 235 billion. A key innovation in Qwen3 is the integration of thinking mode (for complex, multi-step reasoning) and non-thinking mode (for rapid, context-driven responses) into a unified framework. This eliminates the need to switch between different models--such as chat-optimized models (e.g., GPT-4o) and dedicated reasoning models (e.g., QwQ-32B)--and enables dynamic mode switching based on user queries or chat templates. Meanwhile, Qwen3 introduces a thinking budget mechanism, allowing users to allocate computational resources adaptively during inference, thereby balancing latency and performance based on task complexity. Moreover, by leveraging the knowledge from the flagship models, we significantly reduce the computational resources required to build smaller-scale models, while ensuring their highly competitive performance. Empirical evaluations demonstrate that Qwen3 achieves state-of-the-art results across diverse benchmarks, including tasks in code generation, mathematical reasoning, agent tasks, etc., competitive against larger MoE models and proprietary models. Compared to its predecessor Qwen2.5, Qwen3 expands multilingual support from 29 to 119 languages and dialects, enhancing global accessibility through improved cross-lingual understanding and generation capabilities. To facilitate reproducibility and community-driven research and development, all Qwen3 models are publicly accessible under Apache 2.0.

Qwen Qwen
·
May 14 10

ReFIne: A Framework for Trustworthy Large Reasoning Models with Reliability, Faithfulness, and Interpretability

Recent advances in long chain-of-thought (CoT) reasoning have largely prioritized answer accuracy and token efficiency, while overlooking aspects critical to trustworthiness. We argue that usable reasoning systems must be trustworthy, characterized by three properties: interpretability, faithfulness, and reliability. To this end, we propose ReFIne, a new training framework that integrates supervised fine-tuning with GRPO to encourage models to: (i) improve interpretability by producing structured, tag-based traces with high-level planning that are easier for humans to follow; (ii) enhance faithfulness by explicitly disclosing the decisive information guiding each solution, with consistent cross-section references; and (iii) promote reliability by providing self-assessments of both the derivation's soundness and the confidence of the final answer. We apply ReFIne to the Qwen3 models at multiple scales (1.7B/4B/8B) and evaluate across mathematical benchmarks of varying difficulty. Our experimental results show that ReFIne models generate clearer and better-structured reasoning traces (interpretability +44.0%), more faithfully expose their underlying decision process (faithfulness +18.8%), and offer informative confidence estimates (reliability +42.4%). These findings highlight an overlooked but important direction: reasoning models should be optimized not only for accuracy, but also for broader dimensions of trustworthiness. Our code is available at: https://github.com/Trustworthy-ML-Lab/Training_Trustworthy_LRM_with_Refine

  • 4 authors
·
Oct 10 2

Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models

In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training with supervised fine-tuning on high-quality datasets. Effective model merging strategies further ensure the robustness and adaptability of the Qwen3 Embedding series. During the training process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role in synthesizing high-quality, rich, and diverse training data across multiple domains and languages, thus enhancing the training pipeline. The Qwen3 Embedding series offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks, addressing diverse deployment scenarios where users can optimize for either efficiency or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the multilingual evaluation benchmark MTEB for text embedding, as well as in various retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval. To facilitate reproducibility and promote community-driven research and development, the Qwen3 Embedding models are publicly available under the Apache 2.0 license.

S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models

As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking issue arises from the inherent limitations of conventional outcome-reward reinforcement learning, which systematically overlooks the regulation of intermediate reasoning processes. This paper introduces Serial-Group Decaying-Reward Policy Optimization (S-GRPO), a novel reinforcement learning paradigm that enables models to implicitly evaluate the sufficiency of intermediate reasoning steps, thereby facilitating early exit in CoT generation. Unlike GRPO, which samples multiple possible reasoning paths in parallel (parallel group), S-GRPO only samples one reasoning path and serially selects multiple temporal positions from the path to exit thinking and directly generate answers (serial group). For correct answers within a serial group, rewards gradually decrease based on the exit positions along the reasoning path from front to back. This design encourages the model to produce more accurate and concise thoughts, while also incentivizing early thinking termination when appropriate. Empirical evaluations demonstrate that S-GRPO is compatible with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill. Across diverse benchmarks such as GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond, S-GRPO achieves a substantial reduction in sequence length (35.4% - 61.1%) while simultaneously improving accuracy (absolute 0.72% - 6.08%).

  • 3 authors
·
May 12

MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning

Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.

  • 3 authors
·
Jul 22 2

Xolver: Multi-Agent Reasoning with Holistic Experience Learning Just Like an Olympiad Team

Despite impressive progress on complex reasoning, current large language models (LLMs) typically operate in isolation - treating each problem as an independent attempt, without accumulating or integrating experiential knowledge. In contrast, expert problem solvers - such as Olympiad or programming contest teams - leverage a rich tapestry of experiences: absorbing mentorship from coaches, developing intuition from past problems, leveraging knowledge of tool usage and library functionality, adapting strategies based on the expertise and experiences of peers, continuously refining their reasoning through trial and error, and learning from other related problems even during competition. We introduce Xolver, a training-free multi-agent reasoning framework that equips a black-box LLM with a persistent, evolving memory of holistic experience. Xolver integrates diverse experience modalities, including external and self-retrieval, tool use, collaborative interactions, agent-driven evaluation, and iterative refinement. By learning from relevant strategies, code fragments, and abstract reasoning patterns at inference time, Xolver avoids generating solutions from scratch - marking a transition from isolated inference toward experience-aware language agents. Built on both open-weight and proprietary models, Xolver consistently outperforms specialized reasoning agents. Even with lightweight backbones (e.g., QWQ-32B), it often surpasses advanced models including Qwen3-235B, Gemini 2.5 Pro, o3, and o4-mini-high. With o3-mini-high, it achieves new best results on GSM8K (98.1%), AIME'24 (94.4%), AIME'25 (93.7%), Math-500 (99.8%), and LiveCodeBench-V5 (91.6%) - highlighting holistic experience learning as a key step toward generalist agents capable of expert-level reasoning. Code and data are available at https://kagnlp.github.io/xolver.github.io/.

  • 4 authors
·
Jun 17 2

DESIGNER: Design-Logic-Guided Multidisciplinary Data Synthesis for LLM Reasoning

Large language models (LLMs) have achieved remarkable success in many natural language tasks but still struggle with complex, multi-step reasoning, particularly across diverse disciplines. Existing reasoning datasets often lack disciplinary breadth, reasoning depth, and diversity, and lack guiding principles for question synthesis. We propose DESIGNER: a DESIGN-logic-guidEd Reasoning data synthesis pipeline that leverages naturally available, extensive raw documents (e.g., book corpus and web corpus) to generate multidisciplinary challenging questions. We introduce the concept of "design logic" and instruct LLMs to mimic human educators' question-creation process, enabling automated synthesis of large-scale, high-difficulty questions. We use LLMs to reverse-engineer and abstract over 120,000 design logics from existing questions across various disciplines. By matching these design logics with source documents, we are able to create reasoning questions that far surpass the difficulty and diversity of existing datasets. Using this pipeline, we synthesized two large-scale reasoning datasets that span 75 disciplines: DLR-Book (3.04 million questions from the book corpus) and DLR-Web (1.66 million questions from the web corpus). Data analysis indicates that the questions synthesized by our method exhibit greater difficulty and diversity compared to those in the baseline datasets. We validate our synthesized data through supervised fine-tuning (SFT) on the Qwen3 and Llama3 model families. Our data substantially enhances their multidisciplinary reasoning capabilities, outperforming existing datasets. Notably, after SFT on our datasets, the base versions of these models even surpass their official instruction-tuned counterparts.

  • 11 authors
·
Aug 18

Decoding Emotion in the Deep: A Systematic Study of How LLMs Represent, Retain, and Express Emotion

Large Language Models (LLMs) are increasingly expected to navigate the nuances of human emotion. While research confirms that LLMs can simulate emotional intelligence, their internal emotional mechanisms remain largely unexplored. This paper investigates the latent emotional representations within modern LLMs by asking: how, where, and for how long is emotion encoded in their neural architecture? To address this, we introduce a novel, large-scale Reddit corpus of approximately 400,000 utterances, balanced across seven basic emotions through a multi-stage process of classification, rewriting, and synthetic generation. Using this dataset, we employ lightweight "probes" to read out information from the hidden layers of various Qwen3 and LLaMA models without altering their parameters. Our findings reveal that LLMs develop a surprisingly well-defined internal geometry of emotion, which sharpens with model scale and significantly outperforms zero-shot prompting. We demonstrate that this emotional signal is not a final-layer phenomenon but emerges early and peaks mid-network. Furthermore, the internal states are both malleable (they can be influenced by simple system prompts) and persistent, as the initial emotional tone remains detectable for hundreds of subsequent tokens. We contribute our dataset, an open-source probing toolkit, and a detailed map of the emotional landscape within LLMs, offering crucial insights for developing more transparent and aligned AI systems. The code and dataset are open-sourced.

  • 2 authors
·
Oct 5

A Hierarchical and Evolvable Benchmark for Fine-Grained Code Instruction Following with Multi-Turn Feedback

Large language models (LLMs) have advanced significantly in code generation, yet their ability to follow complex programming instructions with layered and diverse constraints remains underexplored. Existing benchmarks often prioritize functional correctness, overlooking the nuanced requirements found in real-world development. We introduce MultiCodeIF, a comprehensive benchmark designed to evaluate instruction-following in code generation across multiple dimensions: constraint type, hierarchical levels, and iterative refinement. Built upon a structured taxonomy of 9 categories and 27 constraint types, MultiCodeIF enables granular assessment of both functional and non-functional instruction adherence. Using an automated pipeline, ConstraGen, we synthesize and evolve 2,021 code tasks sourced from 14 programming languages, supporting multi-turn evaluation through feedback-driven task variants. Empirical evaluation of six state-of-the-art LLMs uncovers substantial performance disparities. The top-performing model, Claude-3-7-Sonnet, achieves 63.0% average constraint satisfaction, while smaller models like Qwen3-1.7B fall to 44.8%. Models perform well on explicit constraints, but struggle with implicit or abstract constraints. Tasks with multiple hierarchical constraints significantly reduce model success rates, from 54.5% in single-level to just 18.8% in multi-level scenarios. However, structured feedback enables progressive improvement: average constraint satisfaction rises from 63.0% to 83.4% over four iterative refinement rounds. MultiCodeIF provides a scalable, constraint-aware, and feedback-sensitive framework to benchmark LLMs under realistic code generation scenarios, bridging the gap between synthetic evaluations and real-world instruction complexity. The full benchmark dataset, evaluation pipeline, and source code are available at https://github.com/SYSUSELab/MultiCodeIF.

  • 6 authors
·
Jul 1

An Empirical Study of Qwen3 Quantization

The Qwen series has emerged as a leading family of open-source Large Language Models (LLMs), demonstrating remarkable capabilities in natural language understanding tasks. With the recent release of Qwen3, which exhibits superior performance across diverse benchmarks, there is growing interest in deploying these models efficiently in resource-constrained environments. Low-bit quantization presents a promising solution, yet its impact on Qwen3's performance remains underexplored. This study conducts a systematic evaluation of Qwen3's robustness under various quantization settings, aiming to uncover both opportunities and challenges in compressing this state-of-the-art model. We rigorously assess 5 existing classic post-training quantization techniques applied to Qwen3, spanning bit-widths from 1 to 8 bits, and evaluate their effectiveness across multiple datasets. Our findings reveal that while Qwen3 maintains competitive performance at moderate bit-widths, it experiences notable degradation in linguistic tasks under ultra-low precision, underscoring the persistent hurdles in LLM compression. These results emphasize the need for further research to mitigate performance loss in extreme quantization scenarios. We anticipate that this empirical analysis will provide actionable insights for advancing quantization methods tailored to Qwen3 and future LLMs, ultimately enhancing their practicality without compromising accuracy. Our project is released on https://github.com/Efficient-ML/Qwen3-Quantization and https://huggingface.co/collections/Efficient-ML/qwen3-quantization-68164450decb1c868788cb2b.

Qwen2.5 Technical Report

In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.

  • 42 authors
·
Dec 19, 2024 11

Qwen2 Technical Report

This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face1 and ModelScope2, and the supplementary materials including example code on GitHub3. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.

  • 58 authors
·
Jul 15, 2024 3

Qwen3-Omni Technical Report

We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.

Qwen Qwen
·
Sep 22 5

Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns

Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.

  • 5 authors
·
Sep 29 2

UloRL:An Ultra-Long Output Reinforcement Learning Approach for Advancing Large Language Models' Reasoning Abilities

Recent advances in large language models (LLMs) have highlighted the potential of reinforcement learning with verifiable rewards (RLVR) to enhance reasoning capabilities through extended output sequences. However, traditional RL frameworks face inefficiencies when handling ultra-long outputs due to long-tail sequence distributions and entropy collapse during training. To address these challenges, we propose an Ultra-Long Output Reinforcement Learning (UloRL) approach for advancing large language models' reasoning abilities. Specifically, we divide ultra long output decoding into short segments, enabling efficient training by mitigating delays caused by long-tail samples. Additionally, we introduce dynamic masking of well-Mastered Positive Tokens (MPTs) to prevent entropy collapse. Experimental results demonstrate the effectiveness of our approach. On the Qwen3-30B-A3B model, RL with segment rollout achieved 2.06x increase in training speed, while RL training with 128k-token outputs improves the model's performance on AIME2025 from 70.9\% to 85.1\% and on BeyondAIME from 50.7\% to 61.9\%, even surpassing Qwen3-235B-A22B with remarkable gains. These findings underscore the potential of our methods to advance the reasoning capabilities of LLMs with ultra-long sequence generation. We will release our code and model for further use by the community.

  • 5 authors
·
Jul 25 2

In Their Own Words: Reasoning Traces Tailored for Small Models Make Them Better Reasoners

Transferring reasoning capabilities from larger language models to smaller ones through supervised fine-tuning often fails counterintuitively, with performance degrading despite access to high-quality teacher demonstrations. We identify that this failure stems from distributional misalignment: reasoning traces from larger models contain tokens that are low probability under the student's distribution, exceeding the internal representation capacity of smaller architectures and creating learning barriers rather than helpful guidance. We propose Reverse Speculative Decoding (RSD), a mechanism for generating student-friendly reasoning traces in which the teacher model proposes candidate tokens but the student model determines acceptance based on its own probability distributions, filtering low probability tokens. When applied to Qwen3-0.6B, direct distillation of s1K-1.1 reasoning trace data degrades average performance across major reasoning benchmarks by 20.5\%, while the same model trained on RSD-generated reasoning traces achieves meaningful improvements of 4.9\%. Our analysis reveals that low probability tokens constitute the critical bottleneck in reasoning ability transfer. However, cross-model experiments demonstrate that RSD traces are model-specific rather than universally applicable, indicating that distributional alignment must be tailored for each student architecture's unique internal representation.

  • 3 authors
·
Sep 26

ReasonIF: Large Reasoning Models Fail to Follow Instructions During Reasoning

The ability of large language models (LLMs) to follow user instructions is central to their reliability, safety, and usefulness. While prior studies assess instruction adherence in the model's main responses, we argue that it is also critical for large reasoning models (LRMs) to follow user instructions throughout their reasoning process. Reasoning instruction following makes LRMs more controllable and transparent, while reducing risks of undesirable shortcuts, hallucinations, or reward hacking within reasoning traces. To evaluate this dimension, we introduce ReasonIF, a systematic benchmark for assessing reasoning instruction following. ReasonIF includes six categories of instruction prompts, spanning multilingual reasoning, formatting and length control. Across many open-source LRMs including GPT-OSS, Qwen3, and DeepSeek-R1, we find substantial failures in reasoning instruction adherence: the highest instruction following score (IFS) remains below 0.25, meaning that fewer than 25% of reasoning traces comply with the given instructions. Notably, as task difficulty increases, reasoning instruction following degrades further. We also explore two strategies to enhance reasoning instruction fidelity. (1) multi-turn reasoning and (2) Reasoning Instruction Finetuning (RIF) using synthetic data. RIF improves the IFS of GPT-OSS-20B from 0.11 to 0.27, indicating measurable progress but leaving ample room for improvement.

  • 5 authors
·
Oct 16

PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models

Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and model expressiveness. While existing ultra-low-bit PTQ methods rely on binary approximations or complex compensation mechanisms, they suffer from either limited representational capacity or computational overhead that undermines their efficiency gains. We introduce PTQ to Trit-Planes (PTQTP), the first ternary-weight PTQ framework that decomposes weight matrices into structured ternary {-1, 0, 1} trit-planes using 2x1.58-bit representation. PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while maintaining superior expressiveness through its novel structured decomposition. Our approach provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment across diverse modern LLMs without architectural modifications; and (3) uniform ternary operations that eliminate the need for mixed-precision or compensation schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model families (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms existing low-bit PTQ methods, achieving 82.4% mathematical reasoning retention versus 0% for competing approaches. PTQTP approaches and sometimes surpasses 1.58-bit quantization-aware training performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods. These results establish PTQTP as a practical solution for efficient LLM deployment in resource-constrained environments.

  • 9 authors
·
Sep 21

Qwen3Guard Technical Report

As large language models (LLMs) become more capable and widely used, ensuring the safety of their outputs is increasingly critical. Existing guardrail models, though useful in static evaluation settings, face two major limitations in real-world applications: (1) they typically output only binary "safe/unsafe" labels, which can be interpreted inconsistently across diverse safety policies, rendering them incapable of accommodating varying safety tolerances across domains; and (2) they require complete model outputs before performing safety checks, making them fundamentally incompatible with streaming LLM inference, thereby preventing timely intervention during generation and increasing exposure to harmful partial outputs. To address these challenges, we present Qwen3Guard, a series of multilingual safety guardrail models with two specialized variants: Generative Qwen3Guard, which casts safety classification as an instruction-following task to enable fine-grained tri-class judgments (safe, controversial, unsafe); and Stream Qwen3Guard, which introduces a token-level classification head for real-time safety monitoring during incremental text generation. Both variants are available in three sizes (0.6B, 4B, and 8B parameters) and support up to 119 languages and dialects, providing comprehensive, scalable, and low-latency safety moderation for global LLM deployments. Evaluated across English, Chinese, and multilingual benchmarks, Qwen3Guard achieves state-of-the-art performance in both prompt and response safety classification. All models are released under the Apache 2.0 license for public use.

Qwen Qwen
·
Oct 16 2

Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation

Large language models (LLMs) are increasingly trained with reinforcement learning from verifiable rewards (RLVR), yet real-world deployment demands models that can self-improve without labels or external judges. Existing label-free methods, confidence minimization, self-consistency, or majority-vote objectives, stabilize learning but steadily shrink exploration, causing an entropy collapse: generations become shorter, less diverse, and brittle. Unlike prior approaches such as Test-Time Reinforcement Learning (TTRL), which primarily adapt models to the immediate unlabeled dataset at hand, our goal is broader: to enable general improvements without sacrificing the model's inherent exploration capacity and generalization ability, i.e., evolving. We formalize this issue and propose EVolution-Oriented and Label-free Reinforcement Learning (EVOL-RL), a simple rule that couples stability with variation under a label-free setting. EVOL-RL keeps the majority-voted answer as a stable anchor (selection) while adding a novelty-aware reward that favors responses whose reasoning differs from what has already been produced (variation), measured in semantic space. Implemented with GRPO, EVOL-RL also uses asymmetric clipping to preserve strong signals and an entropy regularizer to sustain search. This majority-for-selection + novelty-for-variation design prevents collapse, maintains longer and more informative chains of thought, and improves both pass@1 and pass@n. EVOL-RL consistently outperforms the majority-only TTRL baseline; e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME25 pass@1 from TTRL's 4.6% to 16.4%, and pass@16 from 18.5% to 37.9%. EVOL-RL not only prevents diversity collapse but also unlocks stronger generalization across domains (e.g., GPQA). Furthermore, we demonstrate that EVOL-RL also boosts performance in the RLVR setting, highlighting its broad applicability.

QwenLong-L1: Towards Long-Context Large Reasoning Models with Reinforcement Learning

Recent large reasoning models (LRMs) have demonstrated strong reasoning capabilities through reinforcement learning (RL). These improvements have primarily been observed within the short-context reasoning tasks. In contrast, extending LRMs to effectively process and reason on long-context inputs via RL remains a critical unsolved challenge. To bridge this gap, we first formalize the paradigm of long-context reasoning RL, and identify key challenges in suboptimal training efficiency and unstable optimization process. To address these issues, we propose QwenLong-L1, a framework that adapts short-context LRMs to long-context scenarios via progressive context scaling. Specifically, we utilize a warm-up supervised fine-tuning (SFT) stage to establish a robust initial policy, followed by a curriculum-guided phased RL technique to stabilize the policy evolution, and enhanced with a difficulty-aware retrospective sampling strategy to incentivize the policy exploration. Experiments on seven long-context document question-answering benchmarks demonstrate that QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking, demonstrating leading performance among state-of-the-art LRMs. This work advances the development of practical long-context LRMs capable of robust reasoning across information-intensive environments.

  • 10 authors
·
May 23 3

Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance

In this report, we introduce Falcon-H1, a new series of large language models (LLMs) featuring hybrid architecture designs optimized for both high performance and efficiency across diverse use cases. Unlike earlier Falcon models built solely on Transformer or Mamba architectures, Falcon-H1 adopts a parallel hybrid approach that combines Transformer-based attention with State Space Models (SSMs), known for superior long-context memory and computational efficiency. We systematically revisited model design, data strategy, and training dynamics, challenging conventional practices in the field. Falcon-H1 is released in multiple configurations, including base and instruction-tuned variants at 0.5B, 1.5B, 1.5B-deep, 3B, 7B, and 34B parameters. Quantized instruction-tuned models are also available, totaling over 30 checkpoints on Hugging Face Hub. Falcon-H1 models demonstrate state-of-the-art performance and exceptional parameter and training efficiency. The flagship Falcon-H1-34B matches or outperforms models up to 70B scale, such as Qwen3-32B, Qwen2.5-72B, and Llama3.3-70B, while using fewer parameters and less data. Smaller models show similar trends: the Falcon-H1-1.5B-Deep rivals current leading 7B-10B models, and Falcon-H1-0.5B performs comparably to typical 7B models from 2024. These models excel across reasoning, mathematics, multilingual tasks, instruction following, and scientific knowledge. With support for up to 256K context tokens and 18 languages, Falcon-H1 is suitable for a wide range of applications. All models are released under a permissive open-source license, underscoring our commitment to accessible and impactful AI research.

  • 27 authors
·
Jul 30 5

Pushing on Multilingual Reasoning Models with Language-Mixed Chain-of-Thought

Recent frontier models employ long chain-of-thought reasoning to explore solution spaces in context and achieve stonger performance. While many works study distillation to build smaller yet capable models, most focus on English and little is known about language-specific reasoning. To bridge this gap, we first introduct **Language-Mixed CoT**, a reasoning schema that switches between English and a target language, using English as an anchor to excel in reasoning while minimizing translation artificats. As a Korean case study, we curate **Yi-Sang**: 5.79M native-Korean prompts from web Q&A, exams, STEM, and code; 3.7M long reasoning traces generated from Qwen3-32B; and a targeted 260k high-yield subset. We train ninve models (4B-35B) across six families (Qwen2.5, Llama-3.1, Gemma-3, etc). Our best model, **KO-REAson-35B**, achieves state-of-the-art performance, with the highest overall average score (64.0 \pm 25), ranking first on 5/9 benchmarks and second on the remainder. Samller and mid-sized models also benefit substantially, with an average improvement of +18.6 points across teh evaluated nine benchmarks. Ablations show **Language-Mixed CoT** is more effective than monolingual CoT, also resulting in cross-lingual and mult-modal performance gains. We release our data-curation pipeline, evaluation system, datasets, and models to advance research on language-specific reasoning. Data and model collection: https://huggingface.co/KOREAson.

KOREAson KO-REAson
·
Oct 5 2

Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training

Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs) have achieved impressive reasoning capabilities by selectively activating experts to facilitate structured cognitive processes. Despite notable advances, existing reasoning models often suffer from cognitive inefficiencies like overthinking and underthinking. To address these limitations, we introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE), designed to improve reasoning performance without additional training or complex heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we systematically identify specialized experts, termed ''cognitive experts'' that orchestrate meta-level reasoning operations characterized by tokens like ''<think>''. Empirical evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B) on rigorous quantitative and scientific reasoning benchmarks demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization. Crucially, our lightweight approach substantially outperforms prevalent reasoning-steering techniques, such as prompt design and decoding constraints, while preserving the model's general instruction-following skills. These results highlight reinforcing cognitive experts as a promising, practical, and interpretable direction to enhance cognitive efficiency within advanced reasoning models.

  • 15 authors
·
May 20 2

SPELL: Self-Play Reinforcement Learning for evolving Long-Context Language Models

Progress in long-context reasoning for large language models (LLMs) has lagged behind other recent advances. This gap arises not only from the intrinsic difficulty of processing long texts, but also from the scarcity of reliable human annotations and programmatically verifiable reward signals. In this paper, we propose SPELL, a multi-role self-play reinforcement learning framework that enables scalable, label-free optimization for long-context reasoning. SPELL integrates three cyclical roles-questioner, responder, and verifier-within a single model to enable continual self-improvement. The questioner generates questions from raw documents paired with reference answers; the responder learns to solve these questions based on the documents; and the verifier evaluates semantic equivalence between the responder's output and the questioner's reference answer, producing reward signals to guide continual training. To stabilize training, we introduce an automated curriculum that gradually increases document length and a reward function that adapts question difficulty to the model's evolving capabilities. Extensive experiments on six long-context benchmarks show that SPELL consistently improves performance across diverse LLMs and outperforms equally sized models fine-tuned on large-scale annotated data. Notably, SPELL achieves an average 7.6-point gain in pass@8 on the strong reasoning model Qwen3-30B-A3B-Thinking, raising its performance ceiling and showing promise for scaling to even more capable models.

  • 8 authors
·
Sep 28

Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression

Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.

  • 6 authors
·
Aug 7

Unveiling Super Experts in Mixture-of-Experts Large Language Models

Sparsely activated Mixture-of-Experts (MoE) models have shown promise in enhancing the learning capacity of large language models (LLMs). Leveraging the intrinsic importance differences among experts, recent research has explored expert-level compression techniques to improve the efficiency of MoE LLMs. However, existing approaches often rely on empirical criteria to identify critical experts, lacking a deeper exploration and understanding of the heterogeneous importance of experts. In this study, we present the first discovery and investigation of a distinct subset of experts that play a crucial role in the underlying mechanisms during the model's forward inference. These experts are prevalent in open-source MoE LLMs, and despite their limited number, pruning them leads to a significant decline in model performance (e.g., pruning three causes Qwen3-30B-A3B to produce repetitive and uninformative outputs). We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs. (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs remains model-specific and is unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further enhance our understanding of the influence of SEs compression. Our findings confirm that MoE LLMs rely on SEs to induce attention sinks, which are crucial for the distribution of attention scores but are significantly disrupted by SE pruning. The code is available at https://github.com/ZunhaiSu/Super-Experts-Profilling.

  • 6 authors
·
Jul 31

Qwen2.5-1M Technical Report

We introduce Qwen2.5-1M, a series of models that extend the context length to 1 million tokens. Compared to the previous 128K version, the Qwen2.5-1M series have significantly enhanced long-context capabilities through long-context pre-training and post-training. Key techniques such as long data synthesis, progressive pre-training, and multi-stage supervised fine-tuning are employed to effectively enhance long-context performance while reducing training costs. To promote the use of long-context models among a broader user base, we present and open-source our inference framework. This framework includes a length extrapolation method that can expand the model context lengths by at least four times, or even more, without additional training. To reduce inference costs, we implement a sparse attention method along with chunked prefill optimization for deployment scenarios and a sparsity refinement method to improve precision. Additionally, we detail our optimizations in the inference engine, including kernel optimization, pipeline parallelism, and scheduling optimization, which significantly enhance overall inference performance. By leveraging our inference framework, the Qwen2.5-1M models achieve a remarkable 3x to 7x prefill speedup in scenarios with 1 million tokens of context. This framework provides an efficient and powerful solution for developing applications that require long-context processing using open-source models. The Qwen2.5-1M series currently includes the open-source models Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, as well as the API-accessed model Qwen2.5-Turbo. Evaluations show that Qwen2.5-1M models have been greatly improved in long-context tasks without compromising performance in short-context scenarios. Specifically, the Qwen2.5-14B-Instruct-1M model significantly outperforms GPT-4o-mini in long-context tasks and supports contexts eight times longer.

  • 28 authors
·
Jan 25 4

Qwen-GUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding

This paper introduces Qwen-GUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, Qwen-GUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights Qwen-GUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The Qwen-GUI-3B is available at: https://github.com/Han1018/Qwen-GUI-3B

  • 2 authors
·
Jun 29

Qwen-Image Technical Report

We present Qwen-Image, an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. To address the challenges of complex text rendering, we design a comprehensive data pipeline that includes large-scale data collection, filtering, annotation, synthesis, and balancing. Moreover, we adopt a progressive training strategy that starts with non-text-to-text rendering, evolves from simple to complex textual inputs, and gradually scales up to paragraph-level descriptions. This curriculum learning approach substantially enhances the model's native text rendering capabilities. As a result, Qwen-Image not only performs exceptionally well in alphabetic languages such as English, but also achieves remarkable progress on more challenging logographic languages like Chinese. To enhance image editing consistency, we introduce an improved multi-task training paradigm that incorporates not only traditional text-to-image (T2I) and text-image-to-image (TI2I) tasks but also image-to-image (I2I) reconstruction, effectively aligning the latent representations between Qwen2.5-VL and MMDiT. Furthermore, we separately feed the original image into Qwen2.5-VL and the VAE encoder to obtain semantic and reconstructive representations, respectively. This dual-encoding mechanism enables the editing module to strike a balance between preserving semantic consistency and maintaining visual fidelity. Qwen-Image achieves state-of-the-art performance, demonstrating its strong capabilities in both image generation and editing across multiple benchmarks.

QZhou-Embedding Technical Report

We present QZhou-Embedding, a general-purpose contextual text embedding model with exceptional text representation capabilities. Built upon the Qwen2.5-7B-Instruct foundation model, we designed a unified multi-task framework comprising specialized data transformation and training strategies. The data transformation scheme enables the incorporation of more diverse textual training datasets, while the task-specific training strategies enhance model learning efficiency. We developed a data synthesis pipeline leveraging LLM API, incorporating techniques such as paraphrasing, augmentation, and hard negative example generation to improve the semantic richness and sample difficulty of the training set. Additionally, we employ a two-stage training strategy, comprising initial retrieval-focused pretraining followed by full-task fine-tuning, enabling the embedding model to extend its capabilities based on robust retrieval performance. Our model achieves state-of-the-art results on the MTEB and CMTEB benchmarks, ranking first on both leaderboards (August 27 2025), and simultaneously achieves state-of-the-art performance on tasks including reranking, clustering, etc. Our findings demonstrate that higher-quality, more diverse data is crucial for advancing retrieval model performance, and that leveraging LLMs generative capabilities can further optimize data quality for embedding model breakthroughs. Our model weights are released on HuggingFace under Apache 2.0 license. For reproducibility, we provide evaluation code and instructions on GitHub.

  • 5 authors
·
Aug 29

Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch

The availability of high-quality data is one of the most important factors in improving the reasoning capability of LLMs. Existing works have demonstrated the effectiveness of creating more instruction data from seed questions or knowledge bases. Recent research indicates that continually scaling up data synthesis from strong models (e.g., GPT-4) can further elicit reasoning performance. Though promising, the open-sourced community still lacks high-quality data at scale and scalable data synthesis methods with affordable costs. To address this, we introduce ScaleQuest, a scalable and novel data synthesis method that utilizes "small-size" (e.g., 7B) open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. With the efficient ScaleQuest, we automatically constructed a mathematical reasoning dataset consisting of 1 million problem-solution pairs, which are more effective than existing open-sourced datasets. It can universally increase the performance of mainstream open-source models (i.e., Mistral, Llama3, DeepSeekMath, and Qwen2-Math) by achieving 29.2% to 46.4% gains on MATH. Notably, simply fine-tuning the Qwen2-Math-7B-Base model with our dataset can even surpass Qwen2-Math-7B-Instruct, a strong and well-aligned model on closed-source data, and proprietary models such as GPT-4-Turbo and Claude-3.5 Sonnet.

  • 6 authors
·
Oct 24, 2024 3

Gazal-R1: Achieving State-of-the-Art Medical Reasoning with Parameter-Efficient Two-Stage Training

We present Gazal-R1, a 32-billion-parameter language model that achieves state-of-the-art performance in medical reasoning while providing transparent, step-by-step explanations for clinical decision-making. Built upon Qwen3 32B, our model demonstrates that strategic training can enable mid-sized models to outperform significantly larger counterparts in specialized domains. We developed a novel two-stage training pipeline: first, supervised fine-tuning on a carefully curated dataset of 107,033 synthetic medical reasoning examples that teaches structured clinical thinking, enhanced by advanced parameter-efficient techniques including Weight-Decomposed Low-Rank Adaptation (DoRA) and Rank-Stabilized LoRA (rsLoRA); second, reinforcement learning using Group Relative Policy Optimization (GRPO) with a sophisticated multi-component reward system that refines accuracy, format adherence, and reasoning quality. Gazal-R1 achieves exceptional performance across medical benchmarks, scoring 87.1% on MedQA, 81.6% on MMLU Pro (Medical), and 79.6% on PubMedQA, surpassing models up to 12x larger. Beyond its strong empirical results, this work provides detailed insights into the challenges of training reasoning-capable models in specialized domains, including issues with reward hacking, training instability, and the fundamental tension between factual recall and detailed reasoning. Our methodology offers a reproducible framework for developing high-capability, domain-specific language models that balance performance, efficiency, and explainability.

  • 3 authors
·
Jun 18 1

InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training

Large Language Models (LLMs) have shown substantial advances through reinforcement learning (RL), particularly in domains where rewards can be programmatically verified, such as mathematics and code. In these areas, models benefit from a well-defined operational base guided by explicit rule-based objectives. However, this progress reveals a significant limitation: in open-ended domains where rewards are ambiguous, subjective, or context-dependent, such as creative writing, scientific reasoning, and notably medical consultation, robust reward functions are lacking, making these areas challenging for current RL strategies. To bridge this gap, we introduce ORBIT, an open-ended rubric-based incremental training framework specifically designed for high-stakes medical dialogue. ORBIT integrates syn- thetic dialogue generation with the dynamic creation of rubrics, employing these rubrics to direct an incremental RL process. In particular, this approach does not depend on external medical knowledge or manual rules, instead utilizing rubric-guided feedback to shape learning. When implemented on the Qwen3-4B-Instruct model, our method can greatly enhance its performance on the HealthBench-Hard benchmark from 7.0 to 27.2 using only 2k samples, thus achieving state-of-the-art results for models of this scale. Our analysis confirms that rubric-driven RL fos-ters consistent performance gains across diverse consultation scenarios, going beyond simple numerical improvements. These findings underscore rubric-based feedback as a scalable strategy for advancing LLMs in intricate, open-ended tasks.

  • 6 authors
·
Oct 17 2

Learning to Generate Unit Test via Adversarial Reinforcement Learning

Unit testing is a core practice in programming, enabling systematic evaluation of programs produced by human developers or large language models (LLMs). Given the challenges in writing comprehensive unit tests, LLMs have been employed to automate test generation, yet methods for training LLMs to produce high-quality tests remain underexplored. In this work, we propose UTRL, a novel reinforcement learning framework that trains an LLM to generate high-quality unit tests given a programming instruction. Our key idea is to iteratively train two LLMs, the unit test generator and the code generator, in an adversarial manner via reinforcement learning. The unit test generator is trained to maximize a discrimination reward, which reflects its ability to produce tests that expose faults in the code generator's solutions, and the code generator is trained to maximize a code reward, which reflects its ability to produce solutions that pass the unit tests generated by the test generator. In our experiments, we demonstrate that unit tests generated by Qwen3-4B trained via UTRL show higher quality compared to unit tests generated by the same model trained via supervised fine-tuning on human-written ground-truth unit tests, yielding code evaluations that more closely align with those induced by the ground-truth tests. Moreover, Qwen3-4B trained with UTRL outperforms frontier models such as GPT-4.1 in generating high-quality unit tests, highlighting the effectiveness of UTRL in training LLMs for this task.

  • 3 authors
·
Aug 28

MRMR: A Realistic and Expert-Level Multidisciplinary Benchmark for Reasoning-Intensive Multimodal Retrieval

We introduce MRMR, the first expert-level multidisciplinary multimodal retrieval benchmark requiring intensive reasoning. MRMR contains 1,502 queries spanning 23 domains, with positive documents carefully verified by human experts. Compared to prior benchmarks, MRMR introduces three key advancements. First, it challenges retrieval systems across diverse areas of expertise, enabling fine-grained model comparison across domains. Second, queries are reasoning-intensive, with images requiring deeper interpretation such as diagnosing microscopic slides. We further introduce Contradiction Retrieval, a novel task requiring models to identify conflicting concepts. Finally, queries and documents are constructed as image-text interleaved sequences. Unlike earlier benchmarks restricted to single images or unimodal documents, MRMR offers a realistic setting with multi-image queries and mixed-modality corpus documents. We conduct an extensive evaluation of 4 categories of multimodal retrieval systems and 14 frontier models on MRMR. The text embedding model Qwen3-Embedding with LLM-generated image captions achieves the highest performance, highlighting substantial room for improving multimodal retrieval models. Although latest multimodal models such as Ops-MM-Embedding perform competitively on expert-domain queries, they fall short on reasoning-intensive tasks. We believe that MRMR paves the way for advancing multimodal retrieval in more realistic and challenging scenarios.

  • 8 authors
·
Oct 10 2

Qwen2-Audio Technical Report

We introduce the latest progress of Qwen-Audio, a large-scale audio-language model called Qwen2-Audio, which is capable of accepting various audio signal inputs and performing audio analysis or direct textual responses with regard to speech instructions. In contrast to complex hierarchical tags, we have simplified the pre-training process by utilizing natural language prompts for different data and tasks, and have further expanded the data volume. We have boosted the instruction-following capability of Qwen2-Audio and implemented two distinct audio interaction modes for voice chat and audio analysis. In the voice chat mode, users can freely engage in voice interactions with Qwen2-Audio without text input. In the audio analysis mode, users could provide audio and text instructions for analysis during the interaction. Note that we do not use any system prompts to switch between voice chat and audio analysis modes. Qwen2-Audio is capable of intelligently comprehending the content within audio and following voice commands to respond appropriately. For instance, in an audio segment that simultaneously contains sounds, multi-speaker conversations, and a voice command, Qwen2-Audio can directly understand the command and provide an interpretation and response to the audio. Additionally, DPO has optimized the model's performance in terms of factuality and adherence to desired behavior. According to the evaluation results from AIR-Bench, Qwen2-Audio outperformed previous SOTAs, such as Gemini-1.5-pro, in tests focused on audio-centric instruction-following capabilities. Qwen2-Audio is open-sourced with the aim of fostering the advancement of the multi-modal language community.

  • 12 authors
·
Jul 15, 2024 7

MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention

We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.

  • 127 authors
·
Jun 16 5

Agentar-Fin-R1: Enhancing Financial Intelligence through Domain Expertise, Training Efficiency, and Advanced Reasoning

Large Language Models (LLMs) exhibit considerable promise in financial applications; however, prevailing models frequently demonstrate limitations when confronted with scenarios that necessitate sophisticated reasoning capabilities, stringent trustworthiness criteria, and efficient adaptation to domain-specific requirements. We introduce the Agentar-Fin-R1 series of financial large language models (8B and 32B parameters), specifically engineered based on the Qwen3 foundation model to enhance reasoning capabilities, reliability, and domain specialization for financial applications. Our optimization approach integrates a high-quality, systematic financial task label system with a comprehensive multi-layered trustworthiness assurance framework. This framework encompasses high-quality trustworthy knowledge engineering, multi-agent trustworthy data synthesis, and rigorous data validation governance. Through label-guided automated difficulty-aware optimization, tow-stage training pipeline, and dynamic attribution systems, we achieve substantial improvements in training efficiency. Our models undergo comprehensive evaluation on mainstream financial benchmarks including Fineva, FinEval, and FinanceIQ, as well as general reasoning datasets such as MATH-500 and GPQA-diamond. To thoroughly assess real-world deployment capabilities, we innovatively propose the Finova evaluation benchmark, which focuses on agent-level financial reasoning and compliance verification. Experimental results demonstrate that Agentar-Fin-R1 not only achieves state-of-the-art performance on financial tasks but also exhibits exceptional general reasoning capabilities, validating its effectiveness as a trustworthy solution for high-stakes financial applications. The Finova bench is available at https://github.com/antgroup/Finova.

CodeJudgeBench: Benchmarking LLM-as-a-Judge for Coding Tasks

Large Language Models (LLMs) have significantly advanced the state-of-the-art in various coding tasks. Beyond directly answering user queries, LLMs can also serve as judges, assessing and comparing the quality of responses generated by other models. Such an evaluation capability is crucial both for benchmarking different LLMs and for improving response quality through response ranking. However, despite the growing adoption of the LLM-as-a-Judge paradigm, its effectiveness in coding scenarios remains underexplored due to the absence of dedicated benchmarks. To address this gap, we introduce CodeJudgeBench, a benchmark explicitly designed to evaluate the performance of LLM-as-a-Judge models across three critical coding tasks: code generation, code repair, and unit test generation. Through comprehensive benchmarking of 26 LLM-as-a-Judge models, we find that recent thinking models significantly outperform non-thinking models on our carefully designed code judging tasks. Notably, even relatively small thinking models, such as Qwen3-8B, can outperform specially trained LLM-as-a-Judge models up to 70B in size. Nevertheless, all models still exhibit significant randomness in their judgment of coding tasks. For pairwise judging tasks, simply changing the order in which responses are presented can substantially impact accuracy. In addition, when judging code and unit tests written by different LLMs, LLM-as-a-Judge models also show variance in performance. This sensitivity raises concerns about the reliability and consistency of LLM-as-a-Judge in coding scenarios. Lastly, we study optimal prompting strategies for LLM-as-a-Judge. We find that using pair-wise comparison outperforms scalar point-wise judging. Furthermore, retaining comments and reasoning in the full, unprocessed LLM response leads to improved judge performance.

  • 5 authors
·
Jul 14

Not All Correct Answers Are Equal: Why Your Distillation Source Matters

Distillation has emerged as a practical and effective approach to enhance the reasoning capabilities of open-source language models. In this work, we conduct a large-scale empirical study on reasoning data distillation by collecting verified outputs from three state-of-the-art teacher models-AM-Thinking-v1, Qwen3-235B-A22B, and DeepSeek-R1-on a shared corpus of 1.89 million queries. We construct three parallel datasets and analyze their distributions, revealing that AM-Thinking-v1-distilled data exhibits greater token length diversity and lower perplexity. Student models trained on each dataset are evaluated on reasoning benchmarks including AIME2024, AIME2025, MATH500, and LiveCodeBench. The AM-based model consistently achieves the best performance (e.g., 84.3 on AIME2024, 72.2 on AIME2025, 98.4 on MATH500, and 65.9 on LiveCodeBench) and demonstrates adaptive output behavior-producing longer responses for harder tasks and shorter ones for simpler tasks. These findings highlight the value of high-quality, verified reasoning traces. We release the AM-Thinking-v1 and Qwen3-235B-A22B distilled datasets to support future research on open and high-performing reasoning-oriented language models. The datasets are publicly available on Hugging FaceDatasets are available on Hugging Face: \href{https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled{AM-Thinking-v1-Distilled}, https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled{AM-Qwen3-Distilled}.}.

  • 8 authors
·
May 20 2

Qwen2.5-VL Technical Report

We introduce Qwen2.5-VL, the latest flagship model of Qwen vision-language series, which demonstrates significant advancements in both foundational capabilities and innovative functionalities. Qwen2.5-VL achieves a major leap forward in understanding and interacting with the world through enhanced visual recognition, precise object localization, robust document parsing, and long-video comprehension. A standout feature of Qwen2.5-VL is its ability to localize objects using bounding boxes or points accurately. It provides robust structured data extraction from invoices, forms, and tables, as well as detailed analysis of charts, diagrams, and layouts. To handle complex inputs, Qwen2.5-VL introduces dynamic resolution processing and absolute time encoding, enabling it to process images of varying sizes and videos of extended durations (up to hours) with second-level event localization. This allows the model to natively perceive spatial scales and temporal dynamics without relying on traditional normalization techniques. By training a native dynamic-resolution Vision Transformer (ViT) from scratch and incorporating Window Attention, we reduce computational overhead while maintaining native resolution. As a result, Qwen2.5-VL excels not only in static image and document understanding but also as an interactive visual agent capable of reasoning, tool usage, and task execution in real-world scenarios such as operating computers and mobile devices. Qwen2.5-VL is available in three sizes, addressing diverse use cases from edge AI to high-performance computing. The flagship Qwen2.5-VL-72B model matches state-of-the-art models like GPT-4o and Claude 3.5 Sonnet, particularly excelling in document and diagram understanding. Additionally, Qwen2.5-VL maintains robust linguistic performance, preserving the core language competencies of the Qwen2.5 LLM.

  • 27 authors
·
Feb 19 8

MobileLLM-R1: Exploring the Limits of Sub-Billion Language Model Reasoners with Open Training Recipes

The paradigm shift in large language models (LLMs) from instinctive responses to chain-of-thought (CoT) reasoning has fueled two prevailing assumptions: (1) reasoning capabilities only emerge in sufficiently large models, and (2) such capabilities require training on massive datasets. While the first assumption has already been challenged by recent sub-billion-parameter reasoning models such as Qwen3-0.6B and DeepSeek distilled variants, the second remains largely unquestioned. In this work, we revisit the necessity of scaling to extremely large corpora (>10T tokens) for reasoning emergence. By carefully curating and resampling open-source datasets that we identify as beneficial under our designed metrics, we demonstrate that strong reasoning abilities can emerge with far less data. Specifically, we show that only ~2T tokens of high-quality data are sufficient, and pre-training with 4.2T tokens on the dataset resampled from these ~2T tokens, followed by a established post-training procedure, enables the development of MobileLLM-R1, a series of sub-billion-parameter reasoning models that substantially outperform prior models trained on fully open-sourced data. For example, MobileLLM-R1-950M achieves an AIME score of 15.5, compared to just 0.6 for OLMo-2-1.48B and 0.3 for SmolLM-2-1.7B. Remarkably, despite being trained on only 11.7% of the tokens compared to Qwen3's proprietary 36T-token corpus for pretraining, MobileLLM-R1-950M matches or surpasses Qwen3-0.6B across multiple reasoning benchmarks. To facilitate further research in this direction, we have released the complete training recipe, data sources, data mixing ratio, and model checkpoints, together with the key insights obtained throughout this study.

  • 11 authors
·
Sep 29

Step-3 is Large yet Affordable: Model-system Co-design for Cost-effective Decoding

Large language models (LLMs) face low hardware efficiency during decoding, especially for long-context reasoning tasks. This paper introduces Step-3, a 321B-parameter VLM with hardware-aware model-system co-design optimized for minimizing decoding costs. Step-3 innovates in two key dimensions: (1) A novel Multi-Matrix Factorization Attention (MFA) mechanism that significantly reduces both KV cache size and computation while maintaining high attention expressiveness, and (2) Attention-FFN Disaggregation (AFD), a distributed inference system that decouples attention and Feed-Forward Network (FFN) layers into specialized subsystems. This co-design achieves unprecedented cost efficiency: Step-3 significantly reduces theoretical decoding costs compared with models like DeepSeek-V3 and Qwen3 MoE 235B, with the gains widening at longer context. Step-3 achieves low cost while activating 38B parameters per token (more than DeepSeek-V3 and Qwen3 MoE 235B), demonstrating that hardware-aligned attention arithmetic intensity, MoE sparsity, and AFD are critical to cost-effectiveness. We perform a head-to-head comparison with DeepSeek-V3 in its favorable scenarios. Our implementation on Hopper GPUs achieves a decoding throughput of up to 4,039 tokens per second per GPU under 50ms TPOT SLA (4K context, FP8, no MTP). It is higher than DeepSeek-V3's 2,324 in the same setup and sets a new Pareto frontier for LLM decoding.

KAT-V1: Kwai-AutoThink Technical Report

We present Kwaipilot-AutoThink (KAT), an open-source 40B large language model developed to address the overthinking problem in reasoning-intensive tasks, where an automatic thinking training paradigm is proposed to dynamically switch between reasoning and non-reasoning modes based on task complexity. Specifically, first, we construct the dual-regime dataset based on a novel tagging pipeline and a multi-agent synthesis strategy, and then we apply Multi-Token Prediction (MTP)-enhanced knowledge distillation, enabling efficient and fine-grained reasoning transfer with minimal pretraining cost. Besides, we implement a cold-start initialization strategy that introduces mode-selection priors using majority-vote signals and intent-aware prompting. Finally, we propose Step-SRPO, a reinforcement learning algorithm that incorporates intermediate supervision into the GRPO framework, offering structured guidance over both reasoning-mode selection and response accuracy. Extensive experiments across multiple benchmarks demonstrate that KAT consistently matches or even outperforms current state-of-the-art models, including DeepSeek-R1-0528 and Qwen3-235B-A22B, across a wide range of reasoning-intensive tasks while reducing token usage by up to approximately 30\%. Beyond academic evaluation, KAT has been successfully deployed in Kwaipilot (i.e., Kuaishou's internal coding assistant), and improves real-world development workflows with high accuracy, efficiency, and controllable reasoning behaviors. Moreover, we are actively training a 200B Mixture-of-Experts (MoE) with 40B activation parameters, where the early-stage results already demonstrate promising improvements in performance and efficiency, further showing the scalability of the AutoThink paradigm.

  • 24 authors
·
Jul 11

ScaleDiff: Scaling Difficult Problems for Advanced Mathematical Reasoning

Large Reasoning Models (LRMs) have shown impressive capabilities in complex problem-solving, often benefiting from training on difficult mathematical problems that stimulate intricate reasoning. Recent efforts have explored automated synthesis of mathematical problems by prompting proprietary models or large-scale open-source models from seed data or inherent mathematical concepts. However, scaling up these methods remains challenging due to their high computational/API cost, complexity of prompting, and limited difficulty level of the generated problems. To overcome these limitations, we propose ScaleDiff, a simple yet effective pipeline designed to scale the creation of difficult problems. We efficiently identify difficult problems from existing datasets with only a single forward pass using an adaptive thinking model, which can perceive problem difficulty and automatically switch between "Thinking" and "NoThinking" modes. We then train a specialized difficult problem generator (DiffGen-8B) on this filtered difficult data, which can produce new difficult problems in large scale, eliminating the need for complex, per-instance prompting and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset yields a substantial performance increase of 11.3% compared to the original dataset and achieves a 65.9% average accuracy on AIME'24, AIME'25, HMMT-Feb'25, BRUMO'25, and MATH500, outperforming recent strong LRMs like OpenThinker3. Notably, this performance is achieved using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our pipeline can effectively transfer advanced reasoning capabilities without relying on larger, more expensive teacher models. Furthermore, we observe a clear scaling phenomenon in model performance on difficult benchmarks as the quantity of difficult problems increases. Code: https://github.com/QizhiPei/ScaleDiff.

  • 9 authors
·
Sep 25 2

LIMI: Less is More for Agency

We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.

  • 21 authors
·
Sep 22 5

LongWriter-Zero: Mastering Ultra-Long Text Generation via Reinforcement Learning

Ultra-long generation by large language models (LLMs) is a widely demanded scenario, yet it remains a significant challenge due to their maximum generation length limit and overall quality degradation as sequence length increases. Previous approaches, exemplified by LongWriter, typically rely on ''teaching'', which involves supervised fine-tuning (SFT) on synthetic long-form outputs. However, this strategy heavily depends on synthetic SFT data, which is difficult and costly to construct, often lacks coherence and consistency, and tends to be overly artificial and structurally monotonous. In this work, we propose an incentivization-based approach that, starting entirely from scratch and without relying on any annotated or synthetic data, leverages reinforcement learning (RL) to foster the emergence of ultra-long, high-quality text generation capabilities in LLMs. We perform RL training starting from a base model, similar to R1-Zero, guiding it to engage in reasoning that facilitates planning and refinement during the writing process. To support this, we employ specialized reward models that steer the LLM towards improved length control, writing quality, and structural formatting. Experimental evaluations show that our LongWriter-Zero model, trained from Qwen2.5-32B, consistently outperforms traditional SFT methods on long-form writing tasks, achieving state-of-the-art results across all metrics on WritingBench and Arena-Write, and even surpassing 100B+ models such as DeepSeek R1 and Qwen3-235B. We open-source our data and model checkpoints under https://huggingface.co/THU-KEG/LongWriter-Zero-32B

  • 5 authors
·
Jun 23 4

StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?

Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.

Pangu Pro MoE: Mixture of Grouped Experts for Efficient Sparsity

The surgence of Mixture of Experts (MoE) in Large Language Models promises a small price of execution cost for a much larger model parameter count and learning capacity, because only a small fraction of parameters are activated for each input token. However, it is commonly observed that some experts are activated far more often than others, leading to system inefficiency when running the experts on different devices in parallel. Therefore, we introduce Mixture of Grouped Experts (MoGE), which groups the experts during selection and balances the expert workload better than MoE in nature. It constrains tokens to activate an equal number of experts within each predefined expert group. When a model execution is distributed on multiple devices, this architectural design ensures a balanced computational load across devices, significantly enhancing throughput, particularly for the inference phase. Further, we build Pangu Pro MoE on Ascend NPUs, a sparse model based on MoGE with 72 billion total parameters, 16 billion of which are activated for each token. The configuration of Pangu Pro MoE is optimized for Ascend 300I Duo and 800I A2 through extensive system simulation studies. Our experiments indicate that MoGE indeed leads to better expert load balancing and more efficient execution for both model training and inference on Ascend NPUs. The inference performance of Pangu Pro MoE achieves 1148 tokens/s per card and can be further improved to 1528 tokens/s per card by speculative acceleration, outperforming comparable 32B and 72B Dense models. Furthermore, we achieve an excellent cost-to-performance ratio for model inference on Ascend 300I Duo. Our studies show that Ascend NPUs are capable of training Pangu Pro MoE with massive parallelization to make it a leading model within the sub-100B total parameter class, outperforming prominent open-source models like GLM-Z1-32B and Qwen3-32B.

Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning performance. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways. Furthermore, studying how entropy patterns evolve during RLVR training reveals that RLVR largely adheres to the base model's entropy patterns, primarily adjusting the entropy of high-entropy tokens. These findings highlight the significance of high-entropy tokens (i.e., forking tokens) to RLVR. We ultimately improve RLVR by restricting policy gradient updates to forking tokens and uncover a finding even beyond the 80/20 rule: utilizing only 20% of the tokens while maintaining performance comparable to full-gradient updates on the Qwen3-8B base model and significantly surpassing full-gradient updates on the Qwen3-32B (+11.04 on AIME'25 and +7.71 on AIME'24) and Qwen3-14B (+4.79 on AIME'25 and +5.21 on AIME'24) base models, highlighting a strong scaling trend. In contrast, training exclusively on the 80% lowest-entropy tokens leads to a marked decline in performance. These findings indicate that the efficacy of RLVR primarily arises from optimizing the high-entropy tokens that decide reasoning directions. Collectively, our results highlight the potential to understand RLVR through a token-entropy perspective and optimize RLVR by leveraging high-entropy minority tokens to further improve LLM reasoning.

BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs

Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.

  • 5 authors
·
May 25 4

Plan Then Action:High-Level Planning Guidance Reinforcement Learning for LLM Reasoning

Large language models (LLMs) have demonstrated remarkable reasoning abilities in complex tasks, often relying on Chain-of-Thought (CoT) reasoning. However, due to their autoregressive token-level generation, the reasoning process is largely constrained to local decision-making and lacks global planning. This limitation frequently results in redundant, incoherent, or inaccurate reasoning, which significantly degrades overall performance. Existing approaches, such as tree-based algorithms and reinforcement learning (RL), attempt to address this issue but suffer from high computational costs and often fail to produce optimal reasoning trajectories. To tackle this challenge, we propose Plan-Then-Action Enhanced Reasoning with Group Relative Policy Optimization PTA-GRPO, a two-stage framework designed to improve both high-level planning and fine-grained CoT reasoning. In the first stage, we leverage advanced LLMs to distill CoT into compact high-level guidance, which is then used for supervised fine-tuning (SFT). In the second stage, we introduce a guidance-aware RL method that jointly optimizes the final output and the quality of high-level guidance, thereby enhancing reasoning effectiveness. We conduct extensive experiments on multiple mathematical reasoning benchmarks, including MATH, AIME2024, AIME2025, and AMC, across diverse base models such as Qwen2.5-7B-Instruct, Qwen3-8B, Qwen3-14B, and LLaMA3.2-3B. Experimental results demonstrate that PTA-GRPO consistently achieves stable and significant improvements across different models and tasks, validating its effectiveness and generalization.

  • 12 authors
·
Oct 2

MUA-RL: Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use

With the recent rapid advancement of Agentic Intelligence, agentic tool use in LLMs has become increasingly important. During multi-turn interactions between agents and users, the dynamic, uncertain, and stochastic nature of user demands poses significant challenges to the agent's tool invocation capabilities. Agents are no longer expected to simply call tools to deliver a result; rather, they must iteratively refine their understanding of user needs through communication while simultaneously invoking tools to resolve user queries. Existing reinforcement learning (RL) approaches for tool use lack the integration of genuinely dynamic users during the RL training process. To bridge this gap, we introduce MUA-RL (Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use), a novel reinforcement learning framework that, for the first time in the field of agentic tool use, integrates LLM-simulated users into the reinforcement learning loop. MUA-RL aims to enable autonomous learning of models to communicate with users efficiently and use various tools to solve practical problems in dynamic multi-turn interactions. Evaluations are done on several multi-turn tool-using benchmarks (see Figure 1). Specifically, MUA-RL-32B achieves 67.3 on TAU2 Retail, 45.4 on TAU2 Airline, 28.3 on TAU2 Telecom, 28.4 on BFCL-V3 Multi Turn, and 82.5 on ACEBench Agent -- outperforming or matching the performance of larger open-source models such as DeepSeek-V3-0324 and Qwen3-235B-A22B in non-thinking settings.

  • 9 authors
·
Aug 26

Socratic-Zero : Bootstrapping Reasoning via Data-Free Agent Co-evolution

Recent breakthroughs in large language models (LLMs) on reasoning tasks rely heavily on massive, high-quality datasets-typically human-annotated and thus difficult to scale. While data synthesis or distillation offers a promising alternative, existing methods struggle with inconsistent data quality and an inability to dynamically adapt to the evolving capabilities of the model, leading to suboptimal training signals. To address these limitations, we introduce Socratic-Zero, a fully autonomous framework that generates high-quality training data from minimal seed examples through the co-evolution of three agents: the Teacher, the Solver, and the Generator. The Solver continuously refines its reasoning by learning from preference feedback on both successful and failed trajectories; the Teacher adaptively crafts increasingly challenging questions based on the Solver's weaknesses; and the Generator distills the Teacher's question-design strategy to enable scalable, high-fidelity curriculum generation. This closed-loop system produces a self-improving curriculum-requiring no pre-existing tasks or labels. Remarkably, starting from only 100 seed questions, our Socratic-Solver-8B achieves an average gain of +20.2 percentage points over prior data synthesis methods across seven mathematical reasoning benchmarks (AMC23, AIME24-25, Olympiad, MATH-500, Minerva, and GSM8K), with consistent gains on both Qwen3 and GLM4 series models. Even more surprisingly, synthetic data from Socratic-Generator-32B enables student LLMs to achieve superior performance compared to other state-of-the-art (SOTA) commercial LLMs on these benchmarks, including Qwen3-235B-A22B, DeepSeek-V3.1-671B, GPT-5, Gemini-2.5-Pro, Grok-4, and Claude-4.1-Opus.

alibaba-inc alibaba-inc
·
Sep 29 1

OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!

Large Language Model (LLM) safety is one of the most pressing challenges for enabling wide-scale deployment. While most studies and global discussions focus on generic harms, such as models assisting users in harming themselves or others, enterprises face a more fundamental concern: whether LLM-based agents are safe for their intended use case. To address this, we introduce operational safety, defined as an LLM's ability to appropriately accept or refuse user queries when tasked with a specific purpose. We further propose OffTopicEval, an evaluation suite and benchmark for measuring operational safety both in general and within specific agentic use cases. Our evaluations on six model families comprising 20 open-weight LLMs reveal that while performance varies across models, all of them remain highly operationally unsafe. Even the strongest models -- Qwen-3 (235B) with 77.77\% and Mistral (24B) with 79.96\% -- fall far short of reliable operational safety, while GPT models plateau in the 62--73\% range, Phi achieves only mid-level scores (48--70\%), and Gemma and Llama-3 collapse to 39.53\% and 23.84\%, respectively. While operational safety is a core model alignment issue, to suppress these failures, we propose prompt-based steering methods: query grounding (Q-ground) and system-prompt grounding (P-ground), which substantially improve OOD refusal. Q-ground provides consistent gains of up to 23\%, while P-ground delivers even larger boosts, raising Llama-3.3 (70B) by 41\% and Qwen-3 (30B) by 27\%. These results highlight both the urgent need for operational safety interventions and the promise of prompt-based steering as a first step toward more reliable LLM-based agents.

Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement

In this report, we present a series of math-specific large language models: Qwen2.5-Math and Qwen2.5-Math-Instruct-1.5B/7B/72B. The core innovation of the Qwen2.5 series lies in integrating the philosophy of self-improvement throughout the entire pipeline, from pre-training and post-training to inference: (1) During the pre-training phase, Qwen2-Math-Instruct is utilized to generate large-scale, high-quality mathematical data. (2) In the post-training phase, we develop a reward model (RM) by conducting massive sampling from Qwen2-Math-Instruct. This RM is then applied to the iterative evolution of data in supervised fine-tuning (SFT). With a stronger SFT model, it's possible to iteratively train and update the RM, which in turn guides the next round of SFT data iteration. On the final SFT model, we employ the ultimate RM for reinforcement learning, resulting in the Qwen2.5-Math-Instruct. (3) Furthermore, during the inference stage, the RM is used to guide sampling, optimizing the model's performance. Qwen2.5-Math-Instruct supports both Chinese and English, and possess advanced mathematical reasoning capabilities, including Chain-of-Thought (CoT) and Tool-Integrated Reasoning (TIR). We evaluate our models on 10 mathematics datasets in both English and Chinese, such as GSM8K, MATH, GaoKao, AMC23, and AIME24, covering a range of difficulties from grade school level to math competition problems.

  • 16 authors
·
Sep 18, 2024

RCP-Merging: Merging Long Chain-of-Thought Models with Domain-Specific Models by Considering Reasoning Capability as Prior

Large Language Models (LLMs) with long chain-of-thought (CoT) capability, termed Reasoning Models, demonstrate superior intricate problem-solving abilities through multi-step long CoT reasoning. To create a dual-capability model with long CoT capability and domain-specific knowledge without substantial computational and data costs, model merging emerges as a highly resource-efficient method. However, significant challenges lie in merging domain-specific LLMs with long CoT ones since nowadays merging methods suffer from reasoning capability degradation, even gibberish output and output collapse. To overcome this, we introduce RCP-Merging: Merging Long Chain-of-Thought Models with Domain-Specific Models by Considering Reasoning Capability as Prior, a novel merging framework designed to integrate domain-specific LLMs with long CoT capability, meanwhile maintaining model performance in the original domain. Treating reasoning model weights as foundational prior, our method utilizes a reasoning capability indicator to preserve core long CoT capability model weights while selectively merging essential domain-specific weights. We conducted extensive experiments on Qwen2.5-7B, Llama3.1-8B, and Qwen2.5-1.5B models in BioMedicine and Finance domains. Our results show that RCP-Merging successfully merges a reasoning model with domain-specific ones, improving domain task performance by 9.5% and 9.2% over state-of-the-art methods, without significantly harming the original long CoT reasoning capability.

  • 5 authors
·
Aug 5

Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning

Recent advances in large language models (LLMs) have popularized test-time scaling, where models generate additional reasoning tokens before producing final answers. These approaches have demonstrated significant performance improvements on benchmarks involving mathematical reasoning. However, language models relying solely on direct inference still struggle with tasks demanding up-to-date knowledge or computational tools such as calculators and code interpreters for complex arithmetic operations. To overcome these limitations, we propose Tool-Augmented Policy Optimization (TAPO), a novel reinforcement learning framework that systematically integrates multi-hop reasoning with adaptive tool-calling capabilities. Our approach employs a modified version of Dynamic Sampling Policy Optimization (DAPO), a recently developed RL paradigm, which we adapt specifically for tool invocation scenarios, enabling models to dynamically interleave complex reasoning with on-demand tool usage (including search APIs and Python interpreters). To support this research, we introduce two new datasets: TAPO-easy-60K and TAPO-hard-18K, specifically designed to train and evaluate both fact-based reasoning and mathematical calculation capabilities. Our experiments on Qwen2.5-3B and Qwen2.5-7B models demonstrate the effectiveness of our approach, with both models achieving state-of-the-art performance on tasks requiring external knowledge and mathematical computation among methods with comparable parameters. Notably, TAPO achieves more efficient tool utilization than baseline methods while preventing excessive calls caused by reward hacking. These results highlight the significant potential of combining advanced reasoning with tool usage to enhance model performance in knowledge-intensive and computationally demanding tasks.

  • 5 authors
·
Oct 8

2 OLMo 2 Furious

We present OLMo 2, the next generation of our fully open language models. OLMo 2 includes dense autoregressive models with improved architecture and training recipe, pretraining data mixtures, and instruction tuning recipes. Our modified model architecture and training recipe achieve both better training stability and improved per-token efficiency. Our updated pretraining data mixture introduces a new, specialized data mix called Dolmino Mix 1124, which significantly improves model capabilities across many downstream task benchmarks when introduced via late-stage curriculum training (i.e. specialized data during the annealing phase of pretraining). Finally, we incorporate best practices from T\"ulu 3 to develop OLMo 2-Instruct, focusing on permissive data and extending our final-stage reinforcement learning with verifiable rewards (RLVR). Our OLMo 2 base models sit at the Pareto frontier of performance to compute, often matching or outperforming open-weight only models like Llama 3.1 and Qwen 2.5 while using fewer FLOPs and with fully transparent training data, code, and recipe. Our fully open OLMo 2-Instruct models are competitive with or surpassing open-weight only models of comparable size, including Qwen 2.5, Llama 3.1 and Gemma 2. We release all OLMo 2 artifacts openly -- models at 7B and 13B scales, both pretrained and post-trained, including their full training data, training code and recipes, training logs and thousands of intermediate checkpoints. The final instruction model is available on the Ai2 Playground as a free research demo.

  • 40 authors
·
Dec 31, 2024

Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination

The reasoning capabilities of large language models (LLMs) have been a longstanding focus of research. Recent works have further enhanced these capabilities using reinforcement learning (RL), with many new methods claiming significant improvements with minimal or no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance reasoning performance. However, these breakthroughs are mostly reported on the Qwen2.5 model family and evaluated on well-known benchmarks such as MATH-500, AMC, and AIME, while failing to achieve similar gains on other models like Llama, which warrants further investigation. Our analysis shows that although Qwen2.5 achieves strong mathematical reasoning performance, its pretraining on large-scale web corpora makes it vulnerable to data contamination in popular benchmarks. As a result, results derived from these benchmarks may be unreliable. To address this, we introduce a generator that produces fully synthetic arithmetic problems of arbitrary length and difficulty, yielding a clean dataset we call RandomCalculation. Using these leakage-free datasets, we show that only accurate reward signals consistently improve performance, while noisy or incorrect signals do not. We advocate for evaluating RL methods on uncontaminated benchmarks and across diverse model families to ensure trustworthy conclusions.

  • 12 authors
·
Jul 14 3

SleepCoT: A Lightweight Personalized Sleep Health Model via Chain-of-Thought Distillation

We present a novel approach to personalized sleep health management using few-shot Chain-of-Thought (CoT) distillation, enabling small-scale language models (> 2B parameters) to rival the performance of large language models (LLMs) in specialized health domains. Our method simultaneously distills problem-solving strategies, long-tail expert knowledge, and personalized recommendation capabilities from larger models into more efficient, compact models. Unlike existing systems, our approach offers three key functionalities: generating personalized sleep health recommendations, supporting user-specific follow-up inquiries, and providing responses to domain-specific knowledge questions. We focus on sleep health due to its measurability via wearable devices and its impact on overall well-being. Our experimental setup, involving GPT-4o for data synthesis, Qwen-max for instruction set creation, and Qwen2.5 1.5B for model distillation, demonstrates significant improvements over baseline small-scale models in penalization, reasoning, and knowledge application. Experiments using 100 simulated sleep reports and 1,000 domain-specific questions shows our model achieves comparable performance to larger models while maintaining efficiency for real-world deployment. This research not only advances AI-driven health management but also provides a novel approach to leveraging LLM capabilities in resource-constrained environments, potentially enhancing the accessibility of personalized healthcare solutions.

  • 3 authors
·
Oct 22, 2024

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

  • 11 authors
·
Jul 15, 2024

BeyondBench: Benchmark-Free Evaluation of Reasoning in Language Models

Evaluating language models fairly is becoming harder as static benchmarks available on the internet risk contamination by training data. This makes it unclear whether models are truly reasoning or just recalling answers. In this paper, we introduce BeyondBench, an evaluation framework that avoids this problem by using algorithmic problem generation. Unlike traditional benchmarks that risk contamination from internet-scale training data, BeyondBench creates mathematically grounded problems on the fly, ensuring each test remains fresh and uncontaminated. Our framework covers 44 algorithmic tasks with a total of 117 variations, grouped into three difficulty levels: the Easy Suite (29 tasks) for basic arithmetic and statistics, the Medium Suite (5 tasks, 49 variations) for sequence patterns and reasoning, and the Hard Suite (10 tasks, 68 variations) tackling NP-complete and constraint satisfaction problems. Each task generates problems from a combinatorial space larger than 10^15 unique instances, with solutions verified deterministically by mathematical proofs. We evaluated 101 language models, including 85 open-source and 16 closed-source models, spanning sizes from 0.5B to 141B parameters and multiple quantization schemes. Our results show consistent reasoning deficiencies across model families, with performance degrading sharply as problem complexity increases from polynomial to exponential. In our Hard Suite evaluations, models such as Gemini-2.5-pro, Llama-3.3-70B, and Qwen2.5-72B achieved average accuracies of 56.38%, 26.91%, and 33.60%, respectively. Moreover, we observe that performance drops drastically without tool usage, with GPT-5, GPT-5-mini, and GPT-5-nano showing a decline of 16.81%, 28.05%, and 47.59% accuracy on the hard suite. Our leaderboard is publicly available at https://ctrl-gaurav.github.io/BeyondBench/

  • 8 authors
·
Sep 28

SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild

DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.

  • 7 authors
·
Mar 24 1

Agnostics: Learning to Code in Any Programming Language via Reinforcement with a Universal Learning Environment

Large language models (LLMs) already excel at writing code in high-resource languages such as Python and JavaScript, yet stumble on low-resource languages that remain essential to science and engineering. Besides the obvious shortage of pre-training data, post-training itself is a bottleneck: every new language seems to require new datasets, test harnesses, and reinforcement-learning (RL) infrastructure. We introduce Agnostics, a language-agnostic post-training pipeline that eliminates this per-language engineering. The key idea is to judge code solely by its externally observable behavior, so a single verifier can test solutions written in any language. Concretely, we (i) use an LLM to rewrite existing unit-test datasets into an I/O format, (ii) supply a short configuration that tells the verifier how to compile and run a target language, and (iii) apply reinforcement learning with verifiable rewards (RLVR) in a robust code execution environment. Applied to five low-resource languages--Lua, Julia, R, OCaml, and Fortran--Agnostics (1) improves Qwen-3 4B to performance that rivals other 16B-70B open-weight models; (2) scales cleanly to larger and diverse model families (Qwen-3 8B, DeepSeek Coder 6.7B Instruct, Phi 4 Mini); and (3) for {le} 16B parameter models, sets new state-of-the-art pass@1 results on MultiPL-E and a new multi-language version LiveCodeBench that we introduce. We will release the language-agnostic training datasets (Ag-MBPP-X, Ag-Codeforces-X, Ag-LiveCodeBench-X), training code, and ready-to-use configurations, making RL post-training in any programming language as simple as editing a short YAML file.

  • 7 authors
·
Aug 6

The Aloe Family Recipe for Open and Specialized Healthcare LLMs

Purpose: With advancements in Large Language Models (LLMs) for healthcare, the need arises for competitive open-source models to protect the public interest. This work contributes to the field of open medical LLMs by optimizing key stages of data preprocessing and training, while showing how to improve model safety (through DPO) and efficacy (through RAG). The evaluation methodology used, which includes four different types of tests, defines a new standard for the field. The resultant models, shown to be competitive with the best private alternatives, are released with a permisive license. Methods: Building on top of strong base models like Llama 3.1 and Qwen 2.5, Aloe Beta uses a custom dataset to enhance public data with synthetic Chain of Thought examples. The models undergo alignment with Direct Preference Optimization, emphasizing ethical and policy-aligned performance in the presence of jailbreaking attacks. Evaluation includes close-ended, open-ended, safety and human assessments, to maximize the reliability of results. Results: Recommendations are made across the entire pipeline, backed by the solid performance of the Aloe Family. These models deliver competitive performance across healthcare benchmarks and medical fields, and are often preferred by healthcare professionals. On bias and toxicity, the Aloe Beta models significantly improve safety, showing resilience to unseen jailbreaking attacks. For a responsible release, a detailed risk assessment specific to healthcare is attached to the Aloe Family models. Conclusion: The Aloe Beta models, and the recipe that leads to them, are a significant contribution to the open-source medical LLM field, offering top-of-the-line performance while maintaining high ethical requirements. This work sets a new standard for developing and reporting aligned LLMs in healthcare.

rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset

Advancing code reasoning in large language models (LLMs) is fundamentally limited by the scarcity of high-difficulty datasets, especially those with verifiable input-output test cases necessary for rigorous solution validation at scale. We introduce rStar-Coder, which significantly improves LLM code reasoning capabilities by constructing a large-scale, verified dataset of 418K competition-level code problems, 580K long-reasoning solutions along with rich test cases of varying difficulty. This is achieved through three core contributions: (1) we curate competitive programming code problems and oracle solutions to synthesize new, solvable problems; (2) we introduce a reliable input-output test case synthesis pipeline that decouples the generation into a three-step input generation method and a mutual verification mechanism for effective output labeling; (3) we augment problems with high-quality, test-case-verified long-reasoning solutions. Extensive experiments on Qwen models (1.5B-14B) across various code reasoning benchmarks demonstrate the superiority of rStar-Coder dataset, achieving leading performance comparable to frontier reasoning LLMs with much smaller model sizes. On LiveCodeBench, rStar-Coder improves Qwen2.5-7B from 17.4% to an impressive 57.3%, and Qwen2.5-14B from 23.3% to 62.5%, surpassing o3-mini (low) by3.1%. On the more challenging USA Computing Olympiad, our 7B model achieves an average pass@1 accuracy of 16.15%, outperforming the frontier-level QWQ-32B. Code and the dataset will be released at https://github.com/microsoft/rStar.

  • 8 authors
·
May 27 5

OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling

Different base language model families, such as Llama and Qwen, exhibit divergent behaviors during post-training with reinforcement learning (RL), especially on reasoning-intensive tasks. What makes a base language model suitable for reinforcement learning? Gaining deeper insight into this question is essential for developing RL-scalable foundation models of the next generation. In this work, we investigate how mid-training strategies shape RL dynamics, focusing on two representative model families: Qwen and Llama. Our study reveals that (1) high-quality mathematical corpora, such as MegaMath-Web-Pro, significantly improve both base model and RL performance, while existing alternatives (e.g., FineMath-4plus) fail to do so; (2) further adding QA-style data, particularly long chain-of-thought (CoT) reasoning examples, enhances RL outcomes, and instruction data further unlocks this effect; (3) while long-CoT improves reasoning depth, it can also induce verbosity of model responses and unstability of RL training, underscoring the importance of data formatting; (4) scaling mid-training consistently leads to stronger downstream RL performance. Building on these insights, we introduce a two-stage mid-training strategy, Stable-then-Decay, in which base models are first trained on 200B tokens with a constant learning rate, followed by 20B tokens across three CoT-focused branches with learning rate decay. This yields OctoThinker, a family of models demonstrating strong RL compatibility and closing the performance gap with more RL-friendly model families, i.e., Qwen. We hope our work will help shape pre-training strategies for foundation models in the RL era. To support further research, we release our open-source models along with a curated math reasoning-intensive corpus of over 70 billion tokens (i.e., MegaMath-Web-Pro-Max).

  • 4 authors
·
Jun 25 1

Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation

Bug reports contain the information developers need to triage and fix software bugs. However, unclear, incomplete, or ambiguous information may lead to delays and excessive manual effort spent on bug triage and resolution. In this paper, we explore whether Instruction fine-tuned Large Language Models (LLMs) can automatically transform casual, unstructured bug reports into high-quality, structured bug reports adhering to a standard template. We evaluate three open-source instruction-tuned LLMs (Qwen 2.5, Mistral, and Llama 3.2) against ChatGPT-4o, measuring performance on established metrics such as CTQRS, ROUGE, METEOR, and SBERT. Our experiments show that fine-tuned Qwen 2.5 achieves a CTQRS score of 77%, outperforming both fine-tuned Mistral (71%), Llama 3.2 (63%) and ChatGPT in 3-shot learning (75%). Further analysis reveals that Llama 3.2 shows higher accuracy of detecting missing fields particularly Expected Behavior and Actual Behavior, while Qwen 2.5 demonstrates superior performance in capturing Steps-to-Reproduce, with an F1 score of 76%. Additional testing of the models on other popular projects (e.g., Eclipse, GCC) demonstrates that our approach generalizes well, achieving up to 70% CTQRS in unseen projects' bug reports. These findings highlight the potential of instruction fine-tuning in automating structured bug report generation, reducing manual effort for developers and streamlining the software maintenance process.

  • 2 authors
·
Apr 26

FuseChat-3.0: Preference Optimization Meets Heterogeneous Model Fusion

We introduce FuseChat-3.0, a suite of large language models (LLMs) developed by integrating the strengths of heterogeneous source LLMs into more compact target LLMs. Our source models include the powerful Gemma-2-27B-it, Mistral-Large-Instruct-2407, Qwen-2.5-72B-Instruct, and Llama-3.1-70B-Instruct. For target models, we focus on three widely-used smaller variants-Llama-3.1-8B-Instruct, Gemma-2-9B-it, and Qwen-2.5-7B-Instruct-along with two ultra-compact options, Llama-3.2-3B-Instruct and Llama-3.2-1B-Instruct. To leverage the diverse capabilities of these source models, we develop a specialized data construction protocol tailored to various tasks and domains. The FuseChat-3.0 training pipeline consists of two key stages: (1) supervised fine-tuning (SFT) to align the target and source model distributions, and (2) Direct Preference Optimization (DPO) to apply preferences from multiple source LLMs to fine-tune the target model. The resulting FuseChat-3.0 models exhibit significant performance gains across tasks such as instruction following, general knowledge, mathematics, and coding. As illustrated in Figure 1, using Llama-3.1-8B-Instruct as the target model, our fusion approach achieves an average improvement of 6.8 points across 14 benchmarks. Moreover, it demonstrates remarkable gains of 37.1 points and 30.1 points on the instruction-following benchmarks AlpacaEval-2 and Arena-Hard, respectively. Our code, models, and datasets are available at https://github.com/SLIT-AI/FuseChat-3.0.

  • 6 authors
·
Mar 6 3

Entropy Adaptive Decoding: Dynamic Model Switching for Efficient Inference

We present Entropy Adaptive Decoding (EAD), a novel approach for efficient language model inference that dynamically switches between different-sized models based on prediction uncertainty. By monitoring rolling entropy in model logit distributions, our method identifies text regions where a smaller model suffices and switches to a larger model only when prediction uncertainty exceeds a threshold. Unlike speculative decoding approaches that maintain perfect output fidelity through verification, EAD accepts controlled output divergence in exchange for computational efficiency. Our experiments on the MATH benchmark demonstrate remarkable efficiency gains across different model families. Using the LLaMA family, we maintain 96.7\% of the 11B model's performance (50.4\% vs 52.1\%) while using it for only 43\% of tokens, decreasing computational cost by 41.5\%. These gains become more pronounced with larger size differentials in the Qwen family, where we achieve 92.9\% of the 14B model's performance (74.3\% vs 80.0\%) while using it for just 25\% of tokens, decreasing computational cost by 67\%. The consistency of these results across model pairs suggests that language model computation can be significantly optimized by selectively deploying model capacity based on local generation complexity. Our findings indicate that current approaches to model inference may be unnecessarily conservative in their pursuit of perfect output fidelity, and that accepting minor performance trade-offs can enable dramatic reductions in computational costs.

  • 1 authors
·
Feb 5

Reasoning Vectors: Transferring Chain-of-Thought Capabilities via Task Arithmetic

Large language models often require costly optimization, such as reinforcement learning, to master complex reasoning tasks. This work demonstrates that reasoning ability, once learned, can be extracted and transferred between models as a compact task vector. We source two publicly available, identically initialized Qwen2.5 models, one fine-tuned with supervised fine-tuning (SFT) and the other with group relative policy optimization (GRPO) on the same dataset. From these, we extract a reasoning vector: v_{reason} = theta_{GRPO} - theta_{SFT}. We hypothesize that this vector captures the reasoning capability instilled by reinforcement learning while factoring out shared knowledge from the SFT process. When added to compatible instruction-tuned models through simple arithmetic, this vector consistently improves performance across diverse reasoning benchmarks: GSM8K (+4.9%), HumanEval (+4.3%), SciQ (+1.7%), and BigBenchHard (+12.3% for the 1.5B model). The performance improvements persist under adversarial conditions. Conversely, subtracting the vector causes significant performance degradation (-11.8% on GSM8K), demonstrating the vector's strong contribution to the model's reasoning abilities. This work shows how reasoning capabilities, typically developed through expensive training, can be extracted from existing open-source models and reused through simple tensor arithmetic, offering a practical way to enhance models by recycling prior computational investments.

  • 3 authors
·
Sep 1 1

InfiAlign: A Scalable and Sample-Efficient Framework for Aligning LLMs to Enhance Reasoning Capabilities

Large language models (LLMs) have exhibited impressive reasoning abilities on a wide range of complex tasks. However, enhancing these capabilities through post-training remains resource intensive, particularly in terms of data and computational cost. Although recent efforts have sought to improve sample efficiency through selective data curation, existing methods often rely on heuristic or task-specific strategies that hinder scalability. In this work, we introduce InfiAlign, a scalable and sample-efficient post-training framework that integrates supervised fine-tuning (SFT) with Direct Preference Optimization (DPO) to align LLMs for enhanced reasoning. At the core of InfiAlign is a robust data selection pipeline that automatically curates high-quality alignment data from open-source reasoning datasets using multidimensional quality metrics. This pipeline enables significant performance gains while drastically reducing data requirements and remains extensible to new data sources. When applied to the Qwen2.5-Math-7B-Base model, our SFT model achieves performance on par with DeepSeek-R1-Distill-Qwen-7B, while using only approximately 12% of the training data, and demonstrates strong generalization across diverse reasoning tasks. Additional improvements are obtained through the application of DPO, with particularly notable gains in mathematical reasoning tasks. The model achieves an average improvement of 3.89% on AIME 24/25 benchmarks. Our results highlight the effectiveness of combining principled data selection with full-stage post-training, offering a practical solution for aligning large reasoning models in a scalable and data-efficient manner. The model checkpoints are available at https://huggingface.co/InfiX-ai/InfiAlign-Qwen-7B-SFT.

LLM-enabled Instance Model Generation

In the domain of model-based engineering, models are essential components that enable system design and analysis. Traditionally, the creation of these models has been a manual process requiring not only deep modeling expertise but also substantial domain knowledge of target systems. With the rapid advancement of generative artificial intelligence, large language models (LLMs) show potential for automating model generation. This work explores the generation of instance models using LLMs, focusing specifically on producing XMI-based instance models from Ecore metamodels and natural language specifications. We observe that current LLMs struggle to directly generate valid XMI models. To address this, we propose a two-step approach: first, using LLMs to produce a simplified structured output containing all necessary instance model information, namely a conceptual instance model, and then compiling this intermediate representation into a valid XMI file. The conceptual instance model is format-independent, allowing it to be transformed into various modeling formats via different compilers. The feasibility of the proposed method has been demonstrated using several LLMs, including GPT-4o, o1-preview, Llama 3.1 (8B and 70B). Results show that the proposed method significantly improves the usability of LLMs for instance model generation tasks. Notably, the smaller open-source model, Llama 3.1 70B, demonstrated performance comparable to proprietary GPT models within the proposed framework.

  • 5 authors
·
Mar 28

Qwen2.5-Omni Technical Report

In this report, we present Qwen2.5-Omni, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. To enable the streaming of multimodal information inputs, both audio and visual encoders utilize a block-wise processing approach. To synchronize the timestamps of video inputs with audio, we organize the audio and video sequentially in an interleaved manner and propose a novel position embedding approach, named TMRoPE(Time-aligned Multimodal RoPE). To concurrently generate text and speech while avoiding interference between the two modalities, we propose Thinker-Talker architecture. In this framework, Thinker functions as a large language model tasked with text generation, while Talker is a dual-track autoregressive model that directly utilizes the hidden representations from the Thinker to produce audio tokens as output. Both the Thinker and Talker models are designed to be trained and inferred in an end-to-end manner. For decoding audio tokens in a streaming manner, we introduce a sliding-window DiT that restricts the receptive field, aiming to reduce the initial package delay. Qwen2.5-Omni is comparable with the similarly sized Qwen2.5-VL and outperforms Qwen2-Audio. Furthermore, Qwen2.5-Omni achieves state-of-the-art performance on multimodal benchmarks like Omni-Bench. Notably, Qwen2.5-Omni's performance in end-to-end speech instruction following is comparable to its capabilities with text inputs, as evidenced by benchmarks such as MMLU and GSM8K. As for speech generation, Qwen2.5-Omni's streaming Talker outperforms most existing streaming and non-streaming alternatives in robustness and naturalness.

  • 14 authors
·
Mar 26 4

Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models

Recently, instruction-following audio-language models have received broad attention for audio interaction with humans. However, the absence of pre-trained audio models capable of handling diverse audio types and tasks has hindered progress in this field. Consequently, most existing works have only been able to support a limited range of interaction capabilities. In this paper, we develop the Qwen-Audio model and address this limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types, such as human speech, natural sounds, music, and songs, to facilitate universal audio understanding abilities. However, directly co-training all tasks and datasets can lead to interference issues, as the textual labels associated with different datasets exhibit considerable variations due to differences in task focus, language, granularity of annotation, and text structure. To overcome the one-to-many interference, we carefully design a multi-task training framework by conditioning on a sequence of hierarchical tags to the decoder for encouraging knowledge sharing and avoiding interference through shared and specified tags respectively. Remarkably, Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Building upon the capabilities of Qwen-Audio, we further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.

  • 8 authors
·
Nov 14, 2023

FEVO: Financial Knowledge Expansion and Reasoning Evolution for Large Language Models

Advancements in reasoning for large language models (LLMs) have lead to significant performance improvements for LLMs in various fields such as mathematics and programming. However, research applying these advances to the financial domain, where considerable domain-specific knowledge is necessary to complete tasks, remains limited. To address this gap, we introduce FEVO (Financial Evolution), a multi-stage enhancement framework developed to enhance LLM performance in the financial domain. FEVO systemically enhances LLM performance by using continued pre-training (CPT) to expand financial domain knowledge, supervised fine-tuning (SFT) to instill structured, elaborate reasoning patterns, and reinforcement learning (RL) to further integrate the expanded financial domain knowledge with the learned structured reasoning. To ensure effective and efficient training, we leverage frontier reasoning models and rule-based filtering to curate FEVO-Train, high-quality datasets specifically designed for the different post-training phases. Using our framework, we train the FEVO series of models - C32B, S32B, R32B - from Qwen2.5-32B and evaluate them on seven benchmarks to assess financial and general capabilities, with results showing that FEVO-R32B achieves state-of-the-art performance on five financial benchmarks against much larger models as well as specialist models. More significantly, FEVO-R32B demonstrates markedly better performance than FEVO-R32B-0 (trained from Qwen2.5-32B-Instruct using only RL), thus validating the effectiveness of financial domain knowledge expansion and structured, logical reasoning distillation

  • 9 authors
·
Jul 8

Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources

The reproduction of state-of-the-art multimodal LLM pre-training faces barriers at every stage of the pipeline, including high-quality data filtering, multimodal data mixture strategies, sequence packing techniques, and training frameworks. We introduce Open-Qwen2VL, a fully open-source 2B-parameter Multimodal Large Language Model pre-trained efficiently on 29M image-text pairs using only 442 A100-40G GPU hours. Our approach employs low-to-high dynamic image resolution and multimodal sequence packing to significantly enhance pre-training efficiency. The training dataset was carefully curated using both MLLM-based filtering techniques (e.g., MLM-Filter) and conventional CLIP-based filtering methods, substantially improving data quality and training efficiency. The Open-Qwen2VL pre-training is conducted on academic level 8xA100-40G GPUs at UCSB on 5B packed multimodal tokens, which is 0.36\% of 1.4T multimodal pre-training tokens of Qwen2-VL. The final instruction-tuned Open-Qwen2VL outperforms partially-open state-of-the-art MLLM Qwen2-VL-2B on various multimodal benchmarks of MMBench, SEEDBench, MMstar, and MathVista, indicating the remarkable training efficiency of Open-Qwen2VL. We open-source all aspects of our work, including compute-efficient and data-efficient training details, data filtering methods, sequence packing scripts, pre-training data in WebDataset format, FSDP-based training codebase, and both base and instruction-tuned model checkpoints. We redefine "fully open" for multimodal LLMs as the complete release of: 1) the training codebase, 2) detailed data filtering techniques, and 3) all pre-training and supervised fine-tuning data used to develop the model.

  • 5 authors
·
Apr 1 7

Unraveling the Capabilities of Language Models in News Summarization

Given the recent introduction of multiple language models and the ongoing demand for improved Natural Language Processing tasks, particularly summarization, this work provides a comprehensive benchmarking of 20 recent language models, focusing on smaller ones for the news summarization task. In this work, we systematically test the capabilities and effectiveness of these models in summarizing news article texts which are written in different styles and presented in three distinct datasets. Specifically, we focus in this study on zero-shot and few-shot learning settings and we apply a robust evaluation methodology that combines different evaluation concepts including automatic metrics, human evaluation, and LLM-as-a-judge. Interestingly, including demonstration examples in the few-shot learning setting did not enhance models' performance and, in some cases, even led to worse quality of the generated summaries. This issue arises mainly due to the poor quality of the gold summaries that have been used as reference summaries, which negatively impacts the models' performance. Furthermore, our study's results highlight the exceptional performance of GPT-3.5-Turbo and GPT-4, which generally dominate due to their advanced capabilities. However, among the public models evaluated, certain models such as Qwen1.5-7B, SOLAR-10.7B-Instruct-v1.0, Meta-Llama-3-8B and Zephyr-7B-Beta demonstrated promising results. These models showed significant potential, positioning them as competitive alternatives to large models for the task of news summarization.

  • 2 authors
·
Jan 29 3

ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation

Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.

  • 4 authors
·
Jun 23 1

Improving Low-Resource Translation with Dictionary-Guided Fine-Tuning and RL: A Spanish-to-Wayuunaiki Study

Low-resource machine translation remains a significant challenge for large language models (LLMs), which often lack exposure to these languages during pretraining and have limited parallel data for fine-tuning. We propose a novel approach that enhances translation for low-resource languages by integrating an external dictionary tool and training models end-to-end using reinforcement learning, in addition to supervised fine-tuning. Focusing on the Spanish-Wayuunaiki language pair, we frame translation as a tool-augmented decision-making problem in which the model can selectively consult a bilingual dictionary during generation. Our method combines supervised instruction tuning with Guided Reward Policy Optimization (GRPO), enabling the model to learn both when and how to use the tool effectively. BLEU similarity scores are used as rewards to guide this learning process. Preliminary results show that our tool-augmented models achieve up to +3.37 BLEU improvement over previous work, and a 18% relative gain compared to a supervised baseline without dictionary access, on the Spanish-Wayuunaiki test set from the AmericasNLP 2025 Shared Task. We also conduct ablation studies to assess the effects of model architecture and training strategy, comparing Qwen2.5-0.5B-Instruct with other models such as LLaMA and a prior NLLB-based system. These findings highlight the promise of combining LLMs with external tools and the role of reinforcement learning in improving translation quality in low-resource language settings.

  • 4 authors
·
Aug 26

Tracing LLM Reasoning Processes with Strategic Games: A Framework for Planning, Revision, and Resource-Constrained Decision Making

Large language models (LLMs) are increasingly used for tasks that require complex reasoning. Most benchmarks focus on final outcomes but overlook the intermediate reasoning steps - such as planning, revision, and decision making under resource constraints. We argue that measuring these internal processes is essential for understanding model behavior and improving reliability. We propose using strategic games as a natural evaluation environment: closed, rule-based systems with clear states, limited resources, and automatic feedback. We introduce a framework that evaluates LLMs along three core dimensions: planning, revision, and resource-constrained decision making. To operationalize this, we define metrics beyond win rate, including overcorrection risk rate, correction success rate, improvement slope, and over-budget ratio. In 4320 adversarial rounds across 12 leading models, ChatGPT-o3-mini achieves the top composite score, with a win rate of 74.7 percent, a correction success rate of 78.6 percent, and an improvement slope of 0.041. By contrast, Qwen-Plus, despite an overcorrection risk rate of 81.6 percent, wins only 25.6 percent of its matches - primarily due to excessive resource use. We also observe a negative correlation between overcorrection risk rate and correction success rate (Pearson r = -0.51, p = 0.093), suggesting that more frequent edits do not always improve outcomes. Our findings highlight the value of assessing not only what LLMs decide but how they arrive at those decisions

  • 8 authors
·
Jun 13

MiroMind-M1: An Open-Source Advancement in Mathematical Reasoning via Context-Aware Multi-Stage Policy Optimization

Large language models have recently evolved from fluent text generation to advanced reasoning across diverse domains, giving rise to reasoning language models. Among these domains, mathematical reasoning serves as a representative benchmark as it requires precise multi-step logic and abstract reasoning, which can be generalized to other tasks. While closed-source RLMs such as GPT-o3 demonstrate impressive reasoning capabilities, their proprietary nature limits transparency and reproducibility. Although many open-source projects aim to close this gap, most of them lack sufficient openness by omitting critical resources such as datasets and detailed training configurations, which hinders reproducibility. To contribute toward greater transparency in RLM development, we introduce the MiroMind-M1 series, a set of fully open-source RLMs built on the Qwen-2.5 backbone that match or exceed the performance of existing open-source RLMs. Specifically, our models are trained in two stages: SFT on a carefully curated corpus of 719K math-reasoning problems with verified CoT trajectories, followed by RLVR on 62K challenging and verifiable problems. To enhance the robustness and efficiency of the RLVR process, we introduce Context-Aware Multi-Stage Policy Optimization, an algorithm that integrates length-progressive training with an adaptive repetition penalty to encourage context-aware RL training. Our model achieves state-of-the-art or competitive performance and superior token efficiency among Qwen-2.5-based open-source 7B and 32B models on the AIME24, AIME25, and MATH benchmarks. To facilitate reproducibility, we release the complete stack: models (MiroMind-M1-SFT-7B, MiroMind-M1-RL-7B, MiroMind-M1-RL-32B); datasets (MiroMind-M1-SFT-719K, MiroMind-M1-RL-62K); and all training and evaluation configurations. We hope these resources will support further research and foster community advancement.

  • 18 authors
·
Jul 19 2

GWQ: Gradient-Aware Weight Quantization for Large Language Models

Large language models (LLMs) show impressive performance in solving complex language tasks. However, its large number of parameters present significant challenges for the deployment and application of the model on edge devices. Compressing large language models to low bits can enable them to run on resource-constrained devices, often leading to performance degradation. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the weights corresponding to the top 1% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit format. GWQ found experimentally that utilizing the sensitive weights in the gradient localization model is more scientific compared to utilizing the sensitive weights in the Hessian matrix localization model. Compared to current quantization methods, GWQ can be applied to multiple language models and achieves lower PPL on the WikiText2 and C4 dataset. In the zero-shot task, GWQ quantized models have higher accuracy compared to other quantization methods. GWQ is also suitable for multimodal model quantization, and the quantized Qwen-VL family model is more accurate than other methods. Zero-shot target detection task dataset RefCOCO outperforms the current stat-of-the-arts method SPQR. GWQ achieves 1.2 times inference speedup in comparison to the original model, and effectively reduces the inference memory.

  • 16 authors
·
Oct 30, 2024

Multimodal Representation Alignment for Image Generation: Text-Image Interleaved Control Is Easier Than You Think

The field of advanced text-to-image generation is witnessing the emergence of unified frameworks that integrate powerful text encoders, such as CLIP and T5, with Diffusion Transformer backbones. Although there have been efforts to control output images with additional conditions, like canny and depth map, a comprehensive framework for arbitrary text-image interleaved control is still lacking. This gap is especially evident when attempting to merge concepts or visual elements from multiple images in the generation process. To mitigate the gap, we conducted preliminary experiments showing that large multimodal models (LMMs) offer an effective shared representation space, where image and text can be well-aligned to serve as a condition for external diffusion models. Based on this discovery, we propose Dream Engine, an efficient and unified framework designed for arbitrary text-image interleaved control in image generation models. Building on powerful text-to-image models like SD3.5, we replace the original text-only encoders by incorporating versatile multimodal information encoders such as QwenVL. Our approach utilizes a two-stage training paradigm, consisting of joint text-image alignment and multimodal interleaved instruction tuning. Our experiments demonstrate that this training method is effective, achieving a 0.69 overall score on the GenEval benchmark, and matching the performance of state-of-the-art text-to-image models like SD3.5 and FLUX.

  • 8 authors
·
Feb 27 3

Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions

With the proliferation of large language models (LLMs), the comprehensive alignment of such models across multiple tasks has emerged as a critical area of research. Existing alignment methodologies primarily address single task, such as multi-turn dialogue, coding, mathematical problem-solving, and tool usage. However, AI-driven products that leverage language models usually necessitate a fusion of these abilities to function effectively in real-world scenarios. Moreover, the considerable computational resources required for proper alignment of LLMs underscore the need for a more robust, efficient, and encompassing approach to multi-task alignment, ensuring improved generative performance. In response to these challenges, we introduce a novel technique termed Mixture-of-Instructions (MoI), which employs a strategy of instruction concatenation combined with diverse system prompts to boost the alignment efficiency of language models. We have also compiled a diverse set of seven benchmark datasets to rigorously evaluate the alignment efficacy of the MoI-enhanced language model. Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI. This enhanced model demonstrates significant advancements in generative capabilities across coding, mathematics, and tool use tasks.

  • 4 authors
·
Apr 28, 2024

Energy-Aware Code Generation with LLMs: Benchmarking Small vs. Large Language Models for Sustainable AI Programming

Large Language Models (LLMs) are widely used for code generation. However, commercial models like ChatGPT require significant computing power, which leads to high energy use and carbon emissions. This has raised concerns about their environmental impact. In this study, we evaluate open-source Small Language Models (SLMs) trained explicitly for code generation and compare their performance and energy efficiency against large LLMs and efficient human-written Python code. The goal is to investigate whether SLMs can match the performance of LLMs on certain types of programming problems while producing more energy-efficient code. We evaluate 150 coding problems from LeetCode, evenly distributed across three difficulty levels: easy, medium, and hard. Our comparison includes three small open-source models, StableCode-3B, StarCoderBase-3B, and Qwen2.5-Coder-3B-Instruct, and two large commercial models, GPT-4.0 and DeepSeek-Reasoner. The generated code is evaluated using four key metrics: run-time, memory usage, energy consumption, and correctness. We use human-written solutions as a baseline to assess the quality and efficiency of the model-generated code. Results indicate that LLMs achieve the highest correctness across all difficulty levels, but SLMs are often more energy-efficient when their outputs are correct. In over 52% of the evaluated problems, SLMs consumed the same or less energy than LLMs.

  • 5 authors
·
Aug 10

ExecRepoBench: Multi-level Executable Code Completion Evaluation

Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.

  • 12 authors
·
Dec 16, 2024

QueST: Incentivizing LLMs to Generate Difficult Problems

Large Language Models have achieved strong performance on reasoning tasks, solving competition-level coding and math problems. However, their scalability is limited by human-labeled datasets and the lack of large-scale, challenging coding problem training data. Existing competitive coding datasets contain only thousands to tens of thousands of problems. Previous synthetic data generation methods rely on either augmenting existing instruction datasets or selecting challenging problems from human-labeled data. In this paper, we propose QueST, a novel framework which combines difficulty-aware graph sampling and difficulty-aware rejection fine-tuning that directly optimizes specialized generators to create challenging coding problems. Our trained generators demonstrate superior capability compared to even GPT-4o at creating challenging problems that benefit downstream performance. We leverage QueST to generate large-scale synthetic coding problems, which we then use to distill from strong teacher models with long chain-of-thought or to conduct reinforcement learning for smaller models, proving effective in both scenarios. Our distillation experiments demonstrate significant performance gains. Specifically, after fine-tuning Qwen3-8B-base on 100K difficult problems generated by QueST, we surpass the performance of the original Qwen3-8B on LiveCodeBench. With an additional 112K examples (i.e., 28K human-written problems paired with multiple synthetic solutions), our 8B model matches the performance of the much larger DeepSeek-R1-671B. These findings indicate that generating complex problems via QueST offers an effective and scalable approach to advancing the frontiers of competitive coding and reasoning for large language models.

microsoft Microsoft
·
Oct 20 3

Unleashing the Reasoning Potential of Pre-trained LLMs by Critique Fine-Tuning on One Problem

We have witnessed that strong LLMs like Qwen-Math, MiMo, and Phi-4 possess immense reasoning potential inherited from the pre-training stage. With reinforcement learning (RL), these models can improve dramatically on reasoning tasks. Recent studies have shown that even RL on a single problem can unleash these models' reasoning capabilities. However, RL is not only expensive but also unstable. Even one-shot RL requires hundreds of GPU hours. This raises a critical question: Is there a more efficient way to unleash the reasoning potential of these powerful base LLMs? In this work, we demonstrate that Critique Fine-Tuning (CFT) on only one problem can effectively unleash the reasoning potential of LLMs. Our method constructs critique data by collecting diverse model-generated solutions to a single problem and using teacher LLMs to provide detailed critiques. We fine-tune Qwen and Llama family models, ranging from 1.5B to 14B parameters, on the CFT data and observe significant performance gains across diverse reasoning tasks. For example, with just 5 GPU hours of training, Qwen-Math-7B-CFT show an average improvement of 15% on six math benchmarks and 16% on three logic reasoning benchmarks. These results are comparable to or even surpass the results from RL with 20x less compute. Ablation studies reveal the robustness of one-shot CFT across different prompt problems. These results highlight one-shot CFT as a simple, general, and compute-efficient approach to unleashing the reasoning capabilities of modern LLMs.

  • 5 authors
·
Jun 3 2

Prithvi WxC: Foundation Model for Weather and Climate

Triggered by the realization that AI emulators can rival the performance of traditional numerical weather prediction models running on HPC systems, there is now an increasing number of large AI models that address use cases such as forecasting, downscaling, or nowcasting. While the parallel developments in the AI literature focus on foundation models -- models that can be effectively tuned to address multiple, different use cases -- the developments on the weather and climate side largely focus on single-use cases with particular emphasis on mid-range forecasting. We close this gap by introducing Prithvi WxC, a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Prithvi WxC employs an encoder-decoder-based architecture, incorporating concepts from various recent transformer models to effectively capture both regional and global dependencies in the input data. The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions. Furthermore, it is trained with a mixed objective that combines the paradigms of masked reconstruction with forecasting. We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation. The pretrained model with 2.3 billion parameters, along with the associated fine-tuning workflows, has been publicly released as an open-source contribution via Hugging Face.

  • 29 authors
·
Sep 20, 2024 4

Composition of Experts: A Modular Compound AI System Leveraging Large Language Models

Large Language Models (LLMs) have achieved remarkable advancements, but their monolithic nature presents challenges in terms of scalability, cost, and customization. This paper introduces the Composition of Experts (CoE), a modular compound AI system leveraging multiple expert LLMs. CoE leverages a router to dynamically select the most appropriate expert for a given input, enabling efficient utilization of resources and improved performance. We formulate the general problem of training a CoE and discuss inherent complexities associated with it. We propose a two-step routing approach to address these complexities that first uses a router to classify the input into distinct categories followed by a category-to-expert mapping to obtain desired experts. CoE offers a flexible and cost-effective solution to build compound AI systems. Our empirical evaluation demonstrates the effectiveness of CoE in achieving superior performance with reduced computational overhead. Given that CoE comprises of many expert LLMs it has unique system requirements for cost-effective serving. We present an efficient implementation of CoE leveraging SambaNova SN40L RDUs unique three-tiered memory architecture. CoEs obtained using open weight LLMs Qwen/Qwen2-7B-Instruct, google/gemma-2-9b-it, google/gemma-2-27b-it, meta-llama/Llama-3.1-70B-Instruct and Qwen/Qwen2-72B-Instruct achieve a score of 59.4 with merely 31 billion average active parameters on Arena-Hard and a score of 9.06 with 54 billion average active parameters on MT-Bench.

  • 11 authors
·
Dec 2, 2024

QwenLong-CPRS: Towards infty-LLMs with Dynamic Context Optimization

This technical report presents QwenLong-CPRS, a context compression framework designed for explicit long-context optimization, addressing prohibitive computation overhead during the prefill stage and the "lost in the middle" performance degradation of large language models (LLMs) during long sequence processing. Implemented through a novel dynamic context optimization mechanism, QwenLong-CPRS enables multi-granularity context compression guided by natural language instructions, achieving both efficiency gains and improved performance. Evolved from the Qwen architecture series, QwenLong-CPRS introduces four key innovations: (1) Natural language-guided dynamic optimization, (2) Bidirectional reasoning layers for enhanced boundary awareness, (3) Token critic mechanisms with language modeling heads, and (4) Window-parallel inference. Comprehensive evaluations across five benchmarks (4K-2M word contexts) demonstrate QwenLong-CPRS's threefold effectiveness: (1) Consistent superiority over other context management methods like RAG and sparse attention in both accuracy and efficiency. (2) Architecture-agnostic integration with all flagship LLMs, including GPT-4o, Gemini2.0-pro, Claude3.7-sonnet, DeepSeek-v3, and Qwen2.5-max, achieves 21.59times context compression alongside 19.15-point average performance gains; (3) Deployed with Qwen2.5-32B-Instruct, QwenLong-CPRS surpasses leading proprietary LLMs by 4.85 and 10.88 points on Ruler-128K and InfiniteBench, establishing new SOTA performance.

ExTrans: Multilingual Deep Reasoning Translation via Exemplar-Enhanced Reinforcement Learning

In recent years, the emergence of large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, has shown impressive capabilities in complex problems, e.g., mathematics and coding. Some pioneering studies attempt to bring the success of LRMs in neural machine translation (MT). They try to build LRMs with deep reasoning MT ability via reinforcement learning (RL). Despite some progress that has been made, these attempts generally focus on several high-resource languages, e.g., English and Chinese, leaving the performance on other languages unclear. Besides, the reward modeling methods in previous work do not fully unleash the potential of reinforcement learning in MT. In this work, we first design a new reward modeling method that compares the translation results of the policy MT model with a strong LRM (i.e., DeepSeek-R1-671B), and quantifies the comparisons to provide rewards. Experimental results demonstrate the superiority of the reward modeling method. Using Qwen2.5-7B-Instruct as the backbone, the trained model achieves the new state-of-the-art performance in literary translation, and outperforms strong LRMs including OpenAI-o1 and DeepSeeK-R1. Furthermore, we extend our method to the multilingual settings with 11 languages. With a carefully designed lightweight reward modeling in RL, we can simply transfer the strong MT ability from a single direction into multiple (i.e., 90) translation directions and achieve impressive multilingual MT performance.

  • 3 authors
·
May 19 2

Baichuan Alignment Technical Report

We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.

  • 25 authors
·
Oct 18, 2024 2

QMoE: Practical Sub-1-Bit Compression of Trillion-Parameter Models

Mixture-of-Experts (MoE) architectures offer a general solution to the high inference costs of large language models (LLMs) via sparse routing, bringing faster and more accurate models, at the cost of massive parameter counts. For example, the SwitchTransformer-c2048 model has 1.6 trillion parameters, requiring 3.2TB of accelerator memory to run efficiently, which makes practical deployment challenging and expensive. In this paper, we present a solution to this memory problem, in form of a new compression and execution framework called QMoE. Specifically, QMoE consists of a scalable algorithm which accurately compresses trillion-parameter MoEs to less than 1 bit per parameter, in a custom format co-designed with bespoke GPU decoding kernels to facilitate efficient end-to-end compressed inference, with minor runtime overheads relative to uncompressed execution. Concretely, QMoE can compress the 1.6 trillion parameter SwitchTransformer-c2048 model to less than 160GB (20x compression, 0.8 bits per parameter) at only minor accuracy loss, in less than a day on a single GPU. This enables, for the first time, the execution of a trillion-parameter model on affordable commodity hardware, like a single server with 4x NVIDIA A6000 or 8x NVIDIA 3090 GPUs, at less than 5% runtime overhead relative to ideal uncompressed inference. The source code and compressed models are available at github.com/IST-DASLab/qmoe.

  • 2 authors
·
Oct 25, 2023 3

WisWheat: A Three-Tiered Vision-Language Dataset for Wheat Management

Wheat management strategies play a critical role in determining yield. Traditional management decisions often rely on labour-intensive expert inspections, which are expensive, subjective and difficult to scale. Recently, Vision-Language Models (VLMs) have emerged as a promising solution to enable scalable, data-driven management support. However, due to a lack of domain-specific knowledge, directly applying VLMs to wheat management tasks results in poor quantification and reasoning capabilities, ultimately producing vague or even misleading management recommendations. In response, we propose WisWheat, a wheat-specific dataset with a three-layered design to enhance VLM performance on wheat management tasks: (1) a foundational pretraining dataset of 47,871 image-caption pairs for coarsely adapting VLMs to wheat morphology; (2) a quantitative dataset comprising 7,263 VQA-style image-question-answer triplets for quantitative trait measuring tasks; and (3) an Instruction Fine-tuning dataset with 4,888 samples targeting biotic and abiotic stress diagnosis and management plan for different phenological stages. Extensive experimental results demonstrate that fine-tuning open-source VLMs (e.g., Qwen2.5 7B) on our dataset leads to significant performance improvements. Specifically, the Qwen2.5 VL 7B fine-tuned on our wheat instruction dataset achieves accuracy scores of 79.2% and 84.6% on wheat stress and growth stage conversation tasks respectively, surpassing even general-purpose commercial models such as GPT-4o by a margin of 11.9% and 34.6%.

  • 6 authors
·
Jun 6

When Models Can't Follow: Testing Instruction Adherence Across 256 LLMs

Despite widespread deployment of Large Language Models, systematic evaluation of instruction-following capabilities remains challenging. While comprehensive benchmarks exist, focused assessments that quickly diagnose specific instruction adherence patterns are valuable. As newer models may be trained on existing benchmarks, novel evaluation approaches are needed to assess genuine capabilities rather than memorized performance. This paper presents a streamlined evaluation framework using twenty carefully designed prompts to assess LLM instruction-following across diverse task categories. We demonstrate this framework through a large-scale empirical study conducted on October 14, 2025, testing 256 verified working models from 331 available via OpenRouter. To ensure methodological rigor and prevent selection bias, we first verified each model's basic functionality before inclusion. Unlike large-scale benchmarks requiring extensive computational resources, our approach offers a practical diagnostic tool researchers and practitioners can readily apply. Our methodology builds upon verifiable instructions while introducing a compact test suite balancing comprehensiveness with efficiency. Each prompt targets distinct aspects of instruction following, including format compliance, content constraints, logical sequencing, and multi-step task execution. We evaluate models from major providers (OpenAI, Anthropic, Google, Meta, Mistral) and emerging implementations (Qwen, DeepSeek, community models), providing comparative performance analysis. Our findings reveal consistent failure modes and identify specific instruction types posing particular challenges. This work contributes both a practical evaluation tool and one of the most comprehensive empirical analyses of instruction-following capabilities across the contemporary LLM landscape.

  • 3 authors
·
Oct 18

LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters!

Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT) that incorporate reflection, backtracking, and self-validation. However, the training techniques and data requirements to elicit Long CoT remain poorly understood. In this work, we find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA). With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks, including 56.7% (+40.0%) on AIME 2024 and 57.0% (+8.1%) on LiveCodeBench, competitive to the proprietary o1-preview model's score of 44.6% and 59.1%. More importantly, we find that the structure of Long CoT is critical to the learning process, whereas the content of individual reasoning steps has minimal impact. Perturbations affecting content, such as training on incorrect samples or removing reasoning keywords, have little impact on performance. In contrast, structural modifications that disrupt logical consistency in the Long CoT, such as shuffling or deleting reasoning steps, significantly degrade accuracy. For example, a model trained on Long CoT samples with incorrect answers still achieves only 3.2% lower accuracy compared to training with fully correct samples. These insights deepen our understanding of how to elicit reasoning capabilities in LLMs and highlight key considerations for efficiently training the next generation of reasoning models. This is the academic paper of our previous released Sky-T1-32B-Preview model. Codes are available at https://github.com/NovaSky-AI/SkyThought.

  • 9 authors
·
Feb 11 2

FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale

FourCastNet 3 advances global weather modeling by implementing a scalable, geometric machine learning (ML) approach to probabilistic ensemble forecasting. The approach is designed to respect spherical geometry and to accurately model the spatially correlated probabilistic nature of the problem, resulting in stable spectra and realistic dynamics across multiple scales. FourCastNet 3 delivers forecasting accuracy that surpasses leading conventional ensemble models and rivals the best diffusion-based methods, while producing forecasts 8 to 60 times faster than these approaches. In contrast to other ML approaches, FourCastNet 3 demonstrates excellent probabilistic calibration and retains realistic spectra, even at extended lead times of up to 60 days. All of these advances are realized using a purely convolutional neural network architecture tailored for spherical geometry. Scalable and efficient large-scale training on 1024 GPUs and more is enabled by a novel training paradigm for combined model- and data-parallelism, inspired by domain decomposition methods in classical numerical models. Additionally, FourCastNet 3 enables rapid inference on a single GPU, producing a 60-day global forecast at 0.25{\deg}, 6-hourly resolution in under 4 minutes. Its computational efficiency, medium-range probabilistic skill, spectral fidelity, and rollout stability at subseasonal timescales make it a strong candidate for improving meteorological forecasting and early warning systems through large ensemble predictions.

  • 10 authors
·
Jul 16

Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling

Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks. However, existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling. While reinforcement learning (RL) holds promise for enabling self-exploration and learning from feedback, recent attempts yield only modest improvements in complex reasoning. In this paper, we present T1 to scale RL by encouraging exploration and understand inference scaling. We first initialize the LLM using synthesized chain-of-thought data that integrates trial-and-error and self-verification. To scale RL training, we promote increased sampling diversity through oversampling. We further employ an entropy bonus as an auxiliary loss, alongside a dynamic anchor for regularization to facilitate reward optimization. We demonstrate that T1 with open LLMs as its base exhibits inference scaling behavior and achieves superior performance on challenging math reasoning benchmarks. For example, T1 with Qwen2.5-32B as the base model outperforms the recent Qwen QwQ-32B-Preview model on MATH500, AIME2024, and Omni-math-500. More importantly, we present a simple strategy to examine inference scaling, where increased inference budgets directly lead to T1's better performance without any additional verification. We will open-source the T1 models and the data used to train them at https://github.com/THUDM/T1.

  • 9 authors
·
Jan 20

CyberV: Cybernetics for Test-time Scaling in Video Understanding

Current Multimodal Large Language Models (MLLMs) may struggle with understanding long or complex videos due to computational demands at test time, lack of robustness, and limited accuracy, primarily stemming from their feed-forward processing nature. These limitations could be more severe for models with fewer parameters. To address these limitations, we propose a novel framework inspired by cybernetic principles, redesigning video MLLMs as adaptive systems capable of self-monitoring, self-correction, and dynamic resource allocation during inference. Our approach, CyberV, introduces a cybernetic loop consisting of an MLLM Inference System, a Sensor, and a Controller. Specifically, the sensor monitors forward processes of the MLLM and collects intermediate interpretations, such as attention drift, then the controller determines when and how to trigger self-correction and generate feedback to guide the next round. This test-time adaptive scaling framework enhances frozen MLLMs without requiring retraining or additional components. Experiments demonstrate significant improvements: CyberV boosts Qwen2.5-VL-7B by 8.3% and InternVL3-8B by 5.5% on VideoMMMU, surpassing the competitive proprietary model GPT-4o. When applied to Qwen2.5-VL-72B, it yields a 10.0% improvement, achieving performance even comparable to human experts. Furthermore, our method demonstrates consistent gains on general-purpose benchmarks, such as VideoMME and WorldSense, highlighting its effectiveness and generalization capabilities in making MLLMs more robust and accurate for dynamic video understanding. The code is released at https://github.com/marinero4972/CyberV.

ByteDance ByteDance
·
Jun 9 2

START: Self-taught Reasoner with Tools

Large reasoning models (LRMs) like OpenAI-o1 and DeepSeek-R1 have demonstrated remarkable capabilities in complex reasoning tasks through the utilization of long Chain-of-thought (CoT). However, these models often suffer from hallucinations and inefficiencies due to their reliance solely on internal reasoning processes. In this paper, we introduce START (Self-Taught Reasoner with Tools), a novel tool-integrated long CoT reasoning LLM that significantly enhances reasoning capabilities by leveraging external tools. Through code execution, START is capable of performing complex computations, self-checking, exploring diverse methods, and self-debugging, thereby addressing the limitations of LRMs. The core innovation of START lies in its self-learning framework, which comprises two key techniques: 1) Hint-infer: We demonstrate that inserting artificially designed hints (e.g., ``Wait, maybe using Python here is a good idea.'') during the inference process of a LRM effectively stimulates its ability to utilize external tools without the need for any demonstration data. Hint-infer can also serve as a simple and effective sequential test-time scaling method; 2) Hint Rejection Sampling Fine-Tuning (Hint-RFT): Hint-RFT combines Hint-infer and RFT by scoring, filtering, and modifying the reasoning trajectories with tool invocation generated by a LRM via Hint-infer, followed by fine-tuning the LRM. Through this framework, we have fine-tuned the QwQ-32B model to achieve START. On PhD-level science QA (GPQA), competition-level math benchmarks (AMC23, AIME24, AIME25), and the competition-level code benchmark (LiveCodeBench), START achieves accuracy rates of 63.6%, 95.0%, 66.7%, 47.1%, and 47.3%, respectively. It significantly outperforms the base QwQ-32B and achieves performance comparable to the state-of-the-art open-weight model R1-Distill-Qwen-32B and the proprietary model o1-Preview.

OTC: Optimal Tool Calls via Reinforcement Learning

Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.

  • 10 authors
·
Apr 21 2

Innovator: Scientific Continued Pretraining with Fine-grained MoE Upcycling

A large language model (LLM) with knowledge in both scientific and general tasks is the foundation of science general intelligence. However, directly continued pretraining an LLM using science data usually leads to catastrophic forgetting, which indicates severe degradation in general ability. In this report, we present Innovator, which solves this problem by upcycling a pre-trained dense LLM into a fine-grained Mixtures-of-Experts model during continued pretraining, where different experts are expected to learn science knowledge in different disciplines, and a shared expert is utilized for general tasks. Innovator introduces a four-stage upcycle training paradigm: (1) Scientific Expert Induction on discipline-specific data, (2) Fine-grained Expert Splitting via FFN dimension decomposition, (3) Science-Aware Routing warmup, and (4) Generalist-Scientist Integration training on hybrid datasets. Such a paradigm enables knowledge in the general domain, and different scientific disciplines can be decoupled, avoiding the negative influence among knowledge in different domains. With 53.3B total parameters and 13.3B activated, Innovator extends Qwen2.5-7B using a shared general expert and 64 specialized scientific experts with 8 activated. Trained on 300B tokens with tri-level quality-controlled data, Innovator achieves 25% average improvement across 30 scientific tasks with a win rate as 70%, while retaining 99% performance in general tasks. Furthermore, Innovator-Reason, which is post-trained from Innovator for reasoning boosting, exhibits excellent reasoning performance in solving complex scientific problems with improvements over 30%.

  • 21 authors
·
Jul 24

A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods

Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code and further information is available at https://probabilistic-inference-scaling.github.io.

Technical Report: Full-Stack Fine-Tuning for the Q Programming Language

Even though large language models are becoming increasingly capable, it is still unreasonable to expect them to excel at tasks that are under-represented on the Internet. Leveraging LLMs for specialized applications, particularly in niche programming languages and private domains, remains challenging and largely unsolved. In this work, we address this gap by presenting a comprehensive, open-source approach for adapting LLMs to the Q programming language, a popular tool in quantitative finance that is much less present on the Internet compared to Python, C, Java, and other ``mainstream" languages and is therefore not a strong suit of general-purpose AI models. We introduce a new Leetcode style evaluation dataset for Q, benchmark major frontier models on the dataset, then do pretraining, supervised fine tuning, and reinforcement learning to train a suite of reasoning and non-reasoning models based on the Qwen-2.5 series, spanning five parameter sizes (1.5B, 3B, 7B, 14B, 32B). Our best model achieves a pass@1 accuracy of 59 percent on our Q benchmark, surpassing the best-performing frontier model, Claude Opus-4 by 29.5 percent. Additionally, all models, even our 1.5B model, outperform GPT-4.1 on this task. In addition to releasing models, code, and data, we provide a detailed blueprint for dataset construction, model pretraining, supervised fine-tuning, and reinforcement learning. Our methodology is broadly applicable, and we discuss how these techniques can be extended to other tasks, including those where evaluation may rely on soft or subjective signals.

Stabilizing Reasoning in Medical LLMs with Continued Pretraining and Reasoning Preference Optimization

Large Language Models (LLMs) show potential in medicine, yet clinical adoption is hindered by concerns over factual accuracy, language-specific limitations (e.g., Japanese), and critically, their reliability when required to generate reasoning explanations -- a prerequisite for trust. This paper introduces Preferred-MedLLM-Qwen-72B, a 72B-parameter model optimized for the Japanese medical domain to achieve both high accuracy and stable reasoning. We employ a two-stage fine-tuning process on the Qwen2.5-72B base model: first, Continued Pretraining (CPT) on a comprehensive Japanese medical corpus instills deep domain knowledge. Second, Reasoning Preference Optimization (RPO), a preference-based method, enhances the generation of reliable reasoning pathways while preserving high answer accuracy. Evaluations on the Japanese Medical Licensing Exam benchmark (IgakuQA) show Preferred-MedLLM-Qwen-72B achieves state-of-the-art performance (0.868 accuracy), surpassing strong proprietary models like GPT-4o (0.866). Crucially, unlike baseline or CPT-only models which exhibit significant accuracy degradation (up to 11.5\% and 3.8\% respectively on IgakuQA) when prompted for explanations, our model maintains its high accuracy (0.868) under such conditions. This highlights RPO's effectiveness in stabilizing reasoning generation. This work underscores the importance of optimizing for reliable explanations alongside accuracy. We release the Preferred-MedLLM-Qwen-72B model weights to foster research into trustworthy LLMs for specialized, high-stakes applications.

  • 3 authors
·
Apr 25

MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm

We introduce MonkeyOCR, a vision-language model for document parsing that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline (as in MinerU's modular approach) and avoids the inefficiencies of processing full pages with giant end-to-end models (e.g., large multimodal LLMs like Qwen-VL). In SRR, document parsing is abstracted into three fundamental questions - "Where is it?" (structure), "What is it?" (recognition), and "How is it organized?" (relation) - corresponding to layout analysis, content identification, and logical ordering. This focused decomposition balances accuracy and speed: it enables efficient, scalable processing without sacrificing precision. To train and evaluate this approach, we introduce the MonkeyDoc (the most comprehensive document parsing dataset to date), with 3.9 million instances spanning over ten document types in both Chinese and English. Experiments show that MonkeyOCR outperforms MinerU by an average of 5.1%, with particularly notable improvements on challenging content such as formulas (+15.0%) and tables (+8.6%). Remarkably, our 3B-parameter model surpasses much larger and top-performing models, including Qwen2.5-VL (72B) and Gemini 2.5 Pro, achieving state-of-the-art average performance on English document parsing tasks. In addition, MonkeyOCR processes multi-page documents significantly faster (0.84 pages per second compared to 0.65 for MinerU and 0.12 for Qwen2.5-VL-7B). The 3B model can be efficiently deployed for inference on a single NVIDIA 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.

  • 10 authors
·
Jun 5

DeepCritic: Deliberate Critique with Large Language Models

As Large Language Models (LLMs) are rapidly evolving, providing accurate feedback and scalable oversight on their outputs becomes an urgent and critical problem. Leveraging LLMs as critique models to achieve automated supervision is a promising solution. In this work, we focus on studying and enhancing the math critique ability of LLMs. Current LLM critics provide critiques that are too shallow and superficial on each step, leading to low judgment accuracy and struggling to offer sufficient feedback for the LLM generator to correct mistakes. To tackle this issue, we propose a novel and effective two-stage framework to develop LLM critics that are capable of deliberately critiquing on each reasoning step of math solutions. In the first stage, we utilize Qwen2.5-72B-Instruct to generate 4.5K long-form critiques as seed data for supervised fine-tuning. Each seed critique consists of deliberate step-wise critiques that includes multi-perspective verifications as well as in-depth critiques of initial critiques for each reasoning step. Then, we perform reinforcement learning on the fine-tuned model with either existing human-labeled data from PRM800K or our automatically annotated data obtained via Monte Carlo sampling-based correctness estimation, to further incentivize its critique ability. Our developed critique model built on Qwen2.5-7B-Instruct not only significantly outperforms existing LLM critics (including the same-sized DeepSeek-R1-distill models and GPT-4o) on various error identification benchmarks, but also more effectively helps the LLM generator refine erroneous steps through more detailed feedback.

  • 4 authors
·
May 1 8

Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning

Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.

  • 6 authors
·
May 30 3

TÜLU 3: Pushing Frontiers in Open Language Model Post-Training

Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. T\"ULU 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the T\"ULU 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the T\"ULU 3 approach to more domains.

  • 23 authors
·
Nov 22, 2024 3

ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation

Pre-trained models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. Recent works such as T5 and GPT-3 have shown that scaling up pre-trained language models can improve their generalization abilities. Particularly, the GPT-3 model with 175 billion parameters shows its strong task-agnostic zero-shot/few-shot learning capabilities. Despite their success, these large-scale models are trained on plain texts without introducing knowledge such as linguistic knowledge and world knowledge. In addition, most large-scale models are trained in an auto-regressive way. As a result, this kind of traditional fine-tuning approach demonstrates relatively weak performance when solving downstream language understanding tasks. In order to solve the above problems, we propose a unified framework named ERNIE 3.0 for pre-training large-scale knowledge enhanced models. It fuses auto-regressive network and auto-encoding network, so that the trained model can be easily tailored for both natural language understanding and generation tasks with zero-shot learning, few-shot learning or fine-tuning. We trained the model with 10 billion parameters on a 4TB corpus consisting of plain texts and a large-scale knowledge graph. Empirical results show that the model outperforms the state-of-the-art models on 54 Chinese NLP tasks, and its English version achieves the first place on the SuperGLUE benchmark (July 3, 2021), surpassing the human performance by +0.8% (90.6% vs. 89.8%).

  • 22 authors
·
Jul 5, 2021

Do Language Models Use Their Depth Efficiently?

Modern LLMs are increasingly deep, and depth correlates with performance, albeit with diminishing returns. However, do these models use their depth efficiently? Do they compose more features to create higher-order computations that are impossible in shallow models, or do they merely spread the same kinds of computation out over more layers? To address these questions, we analyze the residual stream of the Llama 3.1 and Qwen 3 family of models. We find: First, comparing the output of the sublayers to the residual stream reveals that layers in the second half contribute much less than those in the first half, with a clear phase transition between the two halves. Second, skipping layers in the second half has a much smaller effect on future computations and output predictions. Third, for multihop tasks, we are unable to find evidence that models are using increased depth to compose subresults in examples involving many hops. Fourth, we seek to directly address whether deeper models are using their additional layers to perform new kinds of computation. To do this, we train linear maps from the residual stream of a shallow model to a deeper one. We find that layers with the same relative depth map best to each other, suggesting that the larger model simply spreads the same computations out over its many layers. All this evidence suggests that deeper models are not using their depth to learn new kinds of computation, but only using the greater depth to perform more fine-grained adjustments to the residual. This may help explain why increasing scale leads to diminishing returns for stacked Transformer architectures.

  • 3 authors
·
May 20

Routine: A Structural Planning Framework for LLM Agent System in Enterprise

The deployment of agent systems in an enterprise environment is often hindered by several challenges: common models lack domain-specific process knowledge, leading to disorganized plans, missing key tools, and poor execution stability. To address this, this paper introduces Routine, a multi-step agent planning framework designed with a clear structure, explicit instructions, and seamless parameter passing to guide the agent's execution module in performing multi-step tool-calling tasks with high stability. In evaluations conducted within a real-world enterprise scenario, Routine significantly increases the execution accuracy in model tool calls, increasing the performance of GPT-4o from 41.1% to 96.3%, and Qwen3-14B from 32.6% to 83.3%. We further constructed a Routine-following training dataset and fine-tuned Qwen3-14B, resulting in an accuracy increase to 88.2% on scenario-specific evaluations, indicating improved adherence to execution plans. In addition, we employed Routine-based distillation to create a scenario-specific, multi-step tool-calling dataset. Fine-tuning on this distilled dataset raised the model's accuracy to 95.5%, approaching GPT-4o's performance. These results highlight Routine's effectiveness in distilling domain-specific tool-usage patterns and enhancing model adaptability to new scenarios. Our experimental results demonstrate that Routine provides a practical and accessible approach to building stable agent workflows, accelerating the deployment and adoption of agent systems in enterprise environments, and advancing the technical vision of AI for Process.

  • 16 authors
·
Jul 18

Expect the Unexpected: FailSafe Long Context QA for Finance

We propose a new long-context financial benchmark, FailSafeQA, designed to test the robustness and context-awareness of LLMs against six variations in human-interface interactions in LLM-based query-answer systems within finance. We concentrate on two case studies: Query Failure and Context Failure. In the Query Failure scenario, we perturb the original query to vary in domain expertise, completeness, and linguistic accuracy. In the Context Failure case, we simulate the uploads of degraded, irrelevant, and empty documents. We employ the LLM-as-a-Judge methodology with Qwen2.5-72B-Instruct and use fine-grained rating criteria to define and calculate Robustness, Context Grounding, and Compliance scores for 24 off-the-shelf models. The results suggest that although some models excel at mitigating input perturbations, they must balance robust answering with the ability to refrain from hallucinating. Notably, Palmyra-Fin-128k-Instruct, recognized as the most compliant model, maintained strong baseline performance but encountered challenges in sustaining robust predictions in 17% of test cases. On the other hand, the most robust model, OpenAI o3-mini, fabricated information in 41% of tested cases. The results demonstrate that even high-performing models have significant room for improvement and highlight the role of FailSafeQA as a tool for developing LLMs optimized for dependability in financial applications. The dataset is available at: https://huggingface.co/datasets/Writer/FailSafeQA

  • 6 authors
·
Feb 10 4

Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks

Leading large language models have demonstrated impressive capabilities in reasoning-intensive tasks, such as standardized educational testing. However, they often require extensive training in low-resource settings with inaccessible infrastructure. Small or compact models, though more efficient, frequently lack sufficient support for underrepresented languages, leaving a performance gap in critical domains. This work explores the potential of parameter-efficient fine-tuning of compact open-weight language models to handle reasoning-intensive tasks in the underrepresented Ukrainian language, building on the findings of the ZNO-Eval benchmark. Parameter-efficient fine-tuning of LLaMA 3.1 (8 billion parameters), LLaMA 3.2 (3 billion parameters), and Gemma 2 (9 billion parameters) models on chain-of-thought solutions resulted in a modest test score improvement of up to 17.4% on complex matching tasks and 1.6% overall compared to tuning on answer letters alone, offering enhanced interpretability and robustness. In addition, the proposed tuning method with joint task topic and step-by-step solution generation outperforms standard chain-of-thought tuning in matching tasks and provides a 5.4% gain over the best LLaMA 3.2 model due to guiding the model to recall and apply domain-relevant information. Contrasting obtained results with zero-shot evaluations of leading open-weight and proprietary models such as Qwen, DeepSeek R1, OpenAI o1 and o3, Gemini, and Claude, highlight that fine-tuning LLaMA and Gemma models with 2,032 step-by-step solutions and 20 to 50 million trainable parameters on a single A100 GPU lets them outperform GPT-4o mini, Mistral Large, and larger open-weight models. This research also evaluates how merging the quantized adapter with the base model influences the generation quality. Source code and tuned models are available at https://github.com/NLPForUA/ZNO.

  • 3 authors
·
Mar 18

dInfer: An Efficient Inference Framework for Diffusion Language Models

Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on 8times H800 GPUs. Compared to prior systems, dInfer delivers a 10times speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a 2-3times speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.

MergeBench: A Benchmark for Merging Domain-Specialized LLMs

Model merging provides a scalable alternative to multi-task training by combining specialized finetuned models through parameter arithmetic, enabling efficient deployment without the need for joint training or access to all task data. While recent methods have shown promise, existing evaluations are limited in both model scale and task diversity, leaving open questions about their applicability to large, domain-specialized LLMs. To tackle the challenges, we introduce MergeBench, a comprehensive evaluation suite designed to assess model merging at scale. MergeBench builds on state-of-the-art open-source language models, including Llama and Gemma families at 2B to 9B scales, and covers five key domains: instruction following, mathematics, multilingual understanding, coding and safety. We standardize finetuning and evaluation protocols, and assess eight representative merging methods across multi-task performance, forgetting and runtime efficiency. Based on extensive experiments, we provide practical guidelines for algorithm selection and share insights showing that model merging tends to perform better on stronger base models, with techniques such as merging coefficient tuning and sparsification improving knowledge retention. However, several challenges remain, including the computational cost on large models, the gap for in-domain performance compared to multi-task models, and the underexplored role of model merging in standard LLM training pipelines. We hope MergeBench provides a foundation for future research to advance the understanding and practical application of model merging. Our project page is at https://yifei-he.github.io/mergebench/{https://yifei-he.github.io/mergebench/}.

  • 6 authors
·
May 16

DualTune: Decoupled Fine-Tuning for On-Device Agentic Systems

The deployment of Large Language Models (LLMs) as agentic orchestrators has revolutionized task automation, but the need for privacy-preserving, cost-effective solutions demands on-device inference capabilities. However, local LLMs consistently underperform compared to frontier models in tool calling scenarios, struggling with both tool selection from large tool sets and accurate argument generation for complex parameter structures. We introduce a methodology that disaggregates a tool-calling task into two distinct subtasks: tool selection and argument generation. We propose "decoupled fine-tuning", a novel post-training approach that employs LoRA fine-tuning to create dedicated LoRA adapters for tool selection and tool-specific argument generation using separate loss masking for each of the subtasks. Furthermore, we present DualTune, an inference framework that leverages the LoRA adapters created using decoupled fine-tuning to perform efficient agent orchestration with the help of local models on end-user devices. DualTune decomposes the tool-call generation step into tool selection and argument generation, and dynamically loads the corresponding LoRA adapters to generate tool calls. Additionally, DualTune implements hierarchical orchestration to restrict the number of tools required for tool selection. Our experiments on the MCP-Bench benchmark demonstrate that the Qwen-2.5-7B model trained using decoupled fine-tuning improves the tool calling accuracy of the base model by 46%, and outperforms other local reasoning, non-reasoning and fine-tuned models of similar size in all cases, and models that are 2x larger, in most cases.

  • 8 authors
·
Sep 30

MachineLearningLM: Continued Pretraining Language Models on Millions of Synthetic Tabular Prediction Tasks Scales In-Context ML

Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.

  • 5 authors
·
Sep 8 7

Towards Understanding the Cognitive Habits of Large Reasoning Models

Large Reasoning Models (LRMs), which autonomously produce a reasoning Chain of Thought (CoT) before producing final responses, offer a promising approach to interpreting and monitoring model behaviors. Inspired by the observation that certain CoT patterns -- e.g., ``Wait, did I miss anything?'' -- consistently emerge across tasks, we explore whether LRMs exhibit human-like cognitive habits. Building on Habits of Mind, a well-established framework of cognitive habits associated with successful human problem-solving, we introduce CogTest, a principled benchmark designed to evaluate LRMs' cognitive habits. CogTest includes 16 cognitive habits, each instantiated with 25 diverse tasks, and employs an evidence-first extraction method to ensure reliable habit identification. With CogTest, we conduct a comprehensive evaluation of 16 widely used LLMs (13 LRMs and 3 non-reasoning ones). Our findings reveal that LRMs, unlike conventional LLMs, not only exhibit human-like habits but also adaptively deploy them according to different tasks. Finer-grained analyses further uncover patterns of similarity and difference in LRMs' cognitive habit profiles, particularly certain inter-family similarity (e.g., Qwen-3 models and DeepSeek-R1). Extending the study to safety-related tasks, we observe that certain habits, such as Taking Responsible Risks, are strongly associated with the generation of harmful responses. These findings suggest that studying persistent behavioral patterns in LRMs' CoTs is a valuable step toward deeper understanding of LLM misbehavior. The code is available at: https://github.com/jianshuod/CogTest.

  • 5 authors
·
Jun 13

Resource-Aware Arabic LLM Creation: Model Adaptation, Integration, and Multi-Domain Testing

This paper presents a novel approach to fine-tuning the Qwen2-1.5B model for Arabic language processing using Quantized Low-Rank Adaptation (QLoRA) on a system with only 4GB VRAM. We detail the process of adapting this large language model to the Arabic domain, using diverse datasets including Bactrian, OpenAssistant, and Wikipedia Arabic corpora. Our methodology involves custom data preprocessing, model configuration, and training optimization techniques such as gradient accumulation and mixed-precision training. We address specific challenges in Arabic NLP, including morphological complexity, dialectal variations, and diacritical mark handling. Experimental results over 10,000 training steps show significant performance improvements, with the final loss converging to 0.1083. We provide comprehensive analysis of GPU memory usage, training dynamics, and model evaluation across various Arabic language tasks, including text classification, question answering, and dialect identification. The fine-tuned model demonstrates robustness to input perturbations and improved handling of Arabic-specific linguistic phenomena. This research contributes to multilingual AI by demonstrating a resource-efficient approach for creating specialized language models, potentially democratizing access to advanced NLP technologies for diverse linguistic communities. Our work paves the way for future research in low-resource language adaptation and efficient fine-tuning of large language models.

  • 1 authors
·
Dec 23, 2024

Chain-of-Focus: Adaptive Visual Search and Zooming for Multimodal Reasoning via RL

Vision language models (VLMs) have achieved impressive performance across a variety of computer vision tasks. However, the multimodal reasoning capability has not been fully explored in existing models. In this paper, we propose a Chain-of-Focus (CoF) method that allows VLMs to perform adaptive focusing and zooming in on key image regions based on obtained visual cues and the given questions, achieving efficient multimodal reasoning. To enable this CoF capability, we present a two-stage training pipeline, including supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct the MM-CoF dataset, comprising 3K samples derived from a visual agent designed to adaptively identify key regions to solve visual tasks with different image resolutions and questions. We use MM-CoF to fine-tune the Qwen2.5-VL model for cold start. In the RL stage, we leverage the outcome accuracies and formats as rewards to update the Qwen2.5-VL model, enabling further refining the search and reasoning strategy of models without human priors. Our model achieves significant improvements on multiple benchmarks. On the V* benchmark that requires strong visual reasoning capability, our model outperforms existing VLMs by 5% among 8 image resolutions ranging from 224 to 4K, demonstrating the effectiveness of the proposed CoF method and facilitating the more efficient deployment of VLMs in practical applications.

  • 11 authors
·
May 21

1.4 Million Open-Source Distilled Reasoning Dataset to Empower Large Language Model Training

The AM-DeepSeek-R1-Distilled is a large-scale dataset with thinking traces for general reasoning tasks, composed of high-quality and challenging reasoning problems. These problems are collected from a multitude of open-source datasets, subjected to semantic deduplication and meticulous cleaning to eliminate test set contamination. All responses within the dataset are distilled from reasoning models (predominantly DeepSeek-R1) and have undergone rigorous verification procedures. Mathematical problems are validated by checking against reference answers, code problems are verified using test cases, and other tasks are evaluated with the aid of a reward model. The AM-Distill-Qwen-32B model, which was trained through only simple Supervised Fine-Tuning (SFT) using this batch of data, outperformed the DeepSeek-R1-Distill-Qwen-32B model on four benchmarks: AIME2024, MATH-500, GPQA-Diamond, and LiveCodeBench. Additionally, the AM-Distill-Qwen-72B model surpassed the DeepSeek-R1-Distill-Llama-70B model on all benchmarks as well. We are releasing these 1.4 million problems and their corresponding responses to the research community with the objective of fostering the development of powerful reasoning-oriented Large Language Models (LLMs). The dataset was published in https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M}.

  • 8 authors
·
Mar 25

OIG-Bench: A Multi-Agent Annotated Benchmark for Multimodal One-Image Guides Understanding

Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities. However, evaluating their capacity for human-like understanding in One-Image Guides remains insufficiently explored. One-Image Guides are a visual format combining text, imagery, and symbols to present reorganized and structured information for easier comprehension, which are specifically designed for human viewing and inherently embody the characteristics of human perception and understanding. Here, we present OIG-Bench, a comprehensive benchmark focused on One-Image Guide understanding across diverse domains. To reduce the cost of manual annotation, we developed a semi-automated annotation pipeline in which multiple intelligent agents collaborate to generate preliminary image descriptions, assisting humans in constructing image-text pairs. With OIG-Bench, we have conducted a comprehensive evaluation of 29 state-of-the-art MLLMs, including both proprietary and open-source models. The results show that Qwen2.5-VL-72B performs the best among the evaluated models, with an overall accuracy of 77%. Nevertheless, all models exhibit notable weaknesses in semantic understanding and logical reasoning, indicating that current MLLMs still struggle to accurately interpret complex visual-text relationships. In addition, we also demonstrate that the proposed multi-agent annotation system outperforms all MLLMs in image captioning, highlighting its potential as both a high-quality image description generator and a valuable tool for future dataset construction. Datasets are available at https://github.com/XiejcSYSU/OIG-Bench.

  • 8 authors
·
Sep 29

When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs

As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.

  • 8 authors
·
Aug 5 2

Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs

Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data. The models also need to be fine-tuned with specific instructions to maintain their ability to follow instructions accurately. Typically, LLMs are released in two versions: the Base LLM, pre-trained on diverse data, and the instruction-refined LLM, additionally trained with specific instructions for better instruction following. The question arises as to which model should undergo continuous pre-training to maintain its instruction-following abilities while also staying current with the latest data. In this study, we delve into the intricate relationship between continuous pre-training and instruction fine-tuning of the LLMs and investigate the impact of continuous pre-training on the instruction following abilities of both the base and its instruction finetuned model. Further, the instruction fine-tuning process is computationally intense and requires a substantial number of hand-annotated examples for the model to learn effectively. This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning. We empirically prove our findings on the LLaMa 3, 3.1 and Qwen 2, 2.5 family of base and instruction models, providing a comprehensive exploration of our hypotheses across varying sizes of pre-training data corpus and different LLMs settings.

  • 5 authors
·
Oct 14, 2024 1

Systematic Optimization of Open Source Large Language Models for Mathematical Reasoning

This paper presents a practical investigation into fine-tuning model parameters for mathematical reasoning tasks through experimenting with various configurations including randomness control, reasoning depth, and sampling strategies, careful tuning demonstrates substantial improvements in efficiency as well as performance. A holistically optimized framework is introduced for five state-of-the-art models on mathematical reasoning tasks, exhibiting significant performance boosts while maintaining solution correctness. Through systematic parameter optimization across Qwen2.5-72B, Llama-3.1-70B, DeepSeek-V3, Mixtral-8x22B, and Yi-Lightning, consistent efficiency gains are demonstrated with 100% optimization success rate. The methodology achieves an average 29.4% reduction in computational cost and 23.9% improvement in inference speed across all tested models. This framework systematically searches parameter spaces including temperature (0.1-0.5), reasoning steps (4-12), planning periods (1-4), and nucleus sampling (0.85-0.98), determining optimal configurations through testing on mathematical reasoning benchmarks. Critical findings show that lower temperature regimes (0.1-0.4) and reduced reasoning steps (4-6) consistently enhance efficiency without compromising accuracy. DeepSeek-V3 achieves the highest accuracy at 98%, while Mixtral-8x22B delivers the most cost-effective performance at 361.5 tokens per accurate response. Key contributions include: (1) the first comprehensive optimization study for five diverse SOTA models in mathematical reasoning, (2) a standardized production-oriented parameter optimization framework, (3) discovery of universal optimization trends applicable across model architectures, and (4) production-ready configurations with extensive performance characterization.

  • 6 authors
·
Sep 8

SSR-Zero: Simple Self-Rewarding Reinforcement Learning for Machine Translation

Large language models (LLMs) have recently demonstrated remarkable capabilities in machine translation (MT). However, most advanced MT-specific LLMs heavily rely on external supervision signals during training, such as human-annotated reference data or trained reward models (RMs), which are often expensive to obtain and challenging to scale. To overcome this limitation, we propose a Simple Self-Rewarding (SSR) Reinforcement Learning (RL) framework for MT that is reference-free, fully online, and relies solely on self-judging rewards. Training with SSR using 13K monolingual examples and Qwen-2.5-7B as the backbone, our model SSR-Zero-7B outperforms existing MT-specific LLMs, e.g., TowerInstruct-13B and GemmaX-28-9B, as well as larger general LLMs like Qwen2.5-32B-Instruct in English leftrightarrow Chinese translation tasks from WMT23, WMT24, and Flores200 benchmarks. Furthermore, by augmenting SSR with external supervision from COMET, our strongest model, SSR-X-Zero-7B, achieves state-of-the-art performance in English leftrightarrow Chinese translation, surpassing all existing open-source models under 72B parameters and even outperforming closed-source models, e.g., GPT-4o and Gemini 1.5 Pro. Our analysis highlights the effectiveness of the self-rewarding mechanism compared to the external LLM-as-a-judge approach in MT and demonstrates its complementary benefits when combined with trained RMs. Our findings provide valuable insight into the potential of self-improving RL methods. We have publicly released our code, data and models.

  • 4 authors
·
May 22

MUSCLE: A Model Update Strategy for Compatible LLM Evolution

Large Language Models (LLMs) are frequently updated due to data or architecture changes to improve their performance. When updating models, developers often focus on increasing overall performance metrics with less emphasis on being compatible with previous model versions. However, users often build a mental model of the functionality and capabilities of a particular machine learning model they are interacting with. They have to adapt their mental model with every update -- a draining task that can lead to user dissatisfaction. In practice, fine-tuned downstream task adapters rely on pretrained LLM base models. When these base models are updated, these user-facing downstream task models experience instance regression or negative flips -- previously correct instances are now predicted incorrectly. This happens even when the downstream task training procedures remain identical. Our work aims to provide seamless model updates to a user in two ways. First, we provide evaluation metrics for a notion of compatibility to prior model versions, specifically for generative tasks but also applicable for discriminative tasks. We observe regression and inconsistencies between different model versions on a diverse set of tasks and model updates. Second, we propose a training strategy to minimize the number of inconsistencies in model updates, involving training of a compatibility model that can enhance task fine-tuned language models. We reduce negative flips -- instances where a prior model version was correct, but a new model incorrect -- by up to 40% from Llama 1 to Llama 2.

  • 7 authors
·
Jul 12, 2024 2

Speculative Thinking: Enhancing Small-Model Reasoning with Large Model Guidance at Inference Time

Recent advances leverage post-training to enhance model reasoning performance, which typically requires costly training pipelines and still suffers from inefficient, overly lengthy outputs. We introduce Speculative Thinking, a training-free framework that enables large reasoning models to guide smaller ones during inference at the reasoning level, distinct from speculative decoding, which operates at the token level. Our approach is based on two observations: (1) reasoning-supportive tokens such as "wait" frequently appear after structural delimiters like "\n\n", serving as signals for reflection or continuation; and (2) larger models exhibit stronger control over reflective behavior, reducing unnecessary backtracking while improving reasoning quality. By strategically delegating reflective steps to a more capable model, our method significantly boosts the reasoning accuracy of reasoning models while shortening their output. With the assistance of the 32B reasoning model, the 1.5B model's accuracy on MATH500 increases from 83.2% to 89.4%, marking a substantial improvement of 6.2%. Simultaneously, the average output length is reduced from 5439 tokens to 4583 tokens, representing a 15.7% decrease. Moreover, when applied to a non-reasoning model (Qwen-2.5-7B-Instruct), our framework boosts its accuracy from 74.0% to 81.8% on the same benchmark, achieving a relative improvement of 7.8%.

  • 4 authors
·
Apr 12

OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data

Instruction fine-tuning pretrained LLMs for diverse downstream tasks has demonstrated remarkable success and has captured the interest of both academics and practitioners. To ensure such fine-tuned LLMs align with human preferences, techniques such as RLHF and DPO have emerged. At the same time, there is increasing interest in smaller parameter counts for models. In this work, using OpenLLaMA 3Bv2 as a base model, we describe the recipe used to fine-tune the OpenBezoar family of models. In this recipe: We first generate synthetic instruction fine-tuning data using an open and commercially non-restrictive instruction fine-tuned variant of the Falcon-40B model under three schemes based on: LaMini-LM, WizardLM/Evol-Instruct (with databricks-dolly-15k as a seed dataset) and Orca (with the Flan Collection as a seed dataset), then filter these generations using GPT-4 as a human proxy. We then perform cost-effective QLoRA-based supervised fine-tuning sequentially with each scheme. The resulting checkpoint is further fine-tuned with a subset of the HH-RLHF dataset to minimize distribution shift prior to using the DPO loss to obtain the final checkpoint. Evaluation is done with the LM Eval Harness tasks/metrics as well as on MT-Bench using the "LLM-as-a-judge" framework with Claude 2.1, with the finding that the final checkpoint, "OpenBezoar-HH-RLHF-DPO", demonstrates superior performance over many models at the 3B parameter scale, even outperforming the top model in one of the categories on the Huggingface Open LLM Leaderboard. We release "OpenBezoar-SFT", "OpenBezoar-HH-RLHF-SFT", "OpenBezoar-HH-RLHF-DPO" checkpoints, alongside our generated datasets on HuggingFace at https://huggingface.co/collections/SurgeGlobal/open-bezoar-6620a24923e12127e9e2b9cc and our codebase at https://bitbucket.org/paladinanalytics/workspace/projects/OP.

  • 4 authors
·
Apr 18, 2024 1

Multi-Agent Evolve: LLM Self-Improve through Co-evolution

Reinforcement Learning (RL) has demonstrated significant potential in enhancing the reasoning capabilities of large language models (LLMs). However, the success of RL for LLMs heavily relies on human-curated datasets and verifiable rewards, which limit their scalability and generality. Recent Self-Play RL methods, inspired by the success of the paradigm in games and Go, aim to enhance LLM reasoning capabilities without human-annotated data. However, their methods primarily depend on a grounded environment for feedback (e.g., a Python interpreter or a game engine); extending them to general domains remains challenging. To address these challenges, we propose Multi-Agent Evolve (MAE), a framework that enables LLMs to self-evolve in solving diverse tasks, including mathematics, reasoning, and general knowledge Q&A. The core design of MAE is based on a triplet of interacting agents (Proposer, Solver, Judge) that are instantiated from a single LLM, and applies reinforcement learning to optimize their behaviors. The Proposer generates questions, the Solver attempts solutions, and the Judge evaluates both while co-evolving. Experiments on Qwen2.5-3B-Instruct demonstrate that MAE achieves an average improvement of 4.54% on multiple benchmarks. These results highlight MAE as a scalable, data-efficient method for enhancing the general reasoning abilities of LLMs with minimal reliance on human-curated supervision.

GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning

We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. Reinforcement Learning with Curriculum Sampling (RLCS) then unlocks the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding, among others. To facilitate research in this field, we open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.

CoRT: Code-integrated Reasoning within Thinking

Large Reasoning Models (LRMs) like o1 and DeepSeek-R1 have shown remarkable progress in natural language reasoning with long chain-of-thought (CoT), yet they remain inefficient or inaccurate when handling complex mathematical operations. Addressing these limitations through computational tools (e.g., computation libraries and symbolic solvers) is promising, but it introduces a technical challenge: Code Interpreter (CI) brings external knowledge beyond the model's internal text representations, thus the direct combination is not efficient. This paper introduces CoRT, a post-training framework for teaching LRMs to leverage CI effectively and efficiently. As a first step, we address the data scarcity issue by synthesizing code-integrated reasoning data through Hint-Engineering, which strategically inserts different hints at appropriate positions to optimize LRM-CI interaction. We manually create 30 high-quality samples, upon which we post-train models ranging from 1.5B to 32B parameters, with supervised fine-tuning, rejection fine-tuning and reinforcement learning. Our experimental results demonstrate that Hint-Engineering models achieve 4\% and 8\% absolute improvements on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B respectively, across five challenging mathematical reasoning datasets. Furthermore, Hint-Engineering models use about 30\% fewer tokens for the 32B model and 50\% fewer tokens for the 1.5B model compared with the natural language models. The models and code are available at https://github.com/ChengpengLi1003/CoRT.

FLAMES: Improving LLM Math Reasoning via a Fine-Grained Analysis of the Data Synthesis Pipeline

Recent works improving LLM math reasoning with synthetic data have used unique setups, making comparison of data synthesis strategies impractical. This leaves many unanswered questions about the roles of different factors in the synthetic data pipeline, such as the impact of filtering low-quality problems. To address this gap, we introduce FLAMES, a Framework for LLM Assessment of Math rEasoning Data Synthesis, and perform a systematic study of 10 existing data synthesis strategies and multiple other factors impacting the performance of synthetic math reasoning data. Our FLAMES experiments provide several valuable insights about the optimal balance of difficulty and diversity of synthetic data. First, data agents designed to increase problem complexity lead to best improvements on most math metrics. Second, with a fixed data generation budget, keeping higher problem coverage is more important than keeping only problems with reliable solutions. Third, GSM8K- and MATH-based synthetic data can lead to improvements on competition-level benchmarks, showcasing easy-to-hard generalization. Leveraging insights from our FLAMES experiments, we design two novel data synthesis strategies for improving out-of-domain generalization and robustness. Further, we develop the FLAMES dataset, an effective blend of our novel and existing data synthesis strategies, outperforming public datasets on OlympiadBench (+15.7), CollegeMath (+4.5), GSMPlus (+6.5), and MATH (+3.1). Fine-tuning Qwen2.5-Math-7B on the FLAMES dataset achieves 81.4% on MATH, surpassing larger Llama3 405B, GPT-4o and Claude 3.5 Sonnet.

amazon Amazon
·
Aug 22 1

InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models

Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.

  • 7 authors
·
Mar 9

Draw-In-Mind: Learning Precise Image Editing via Chain-of-Thought Imagination

In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models will be available at https://github.com/showlab/DIM.

  • 4 authors
·
Sep 2

Chain-of-Model Learning for Language Model

In this paper, we propose a novel learning paradigm, termed Chain-of-Model (CoM), which incorporates the causal relationship into the hidden states of each layer as a chain style, thereby introducing great scaling efficiency in model training and inference flexibility in deployment. We introduce the concept of Chain-of-Representation (CoR), which formulates the hidden states at each layer as a combination of multiple sub-representations (i.e., chains) at the hidden dimension level. In each layer, each chain from the output representations can only view all of its preceding chains in the input representations. Consequently, the model built upon CoM framework can progressively scale up the model size by increasing the chains based on the previous models (i.e., chains), and offer multiple sub-models at varying sizes for elastic inference by using different chain numbers. Based on this principle, we devise Chain-of-Language-Model (CoLM), which incorporates the idea of CoM into each layer of Transformer architecture. Based on CoLM, we further introduce CoLM-Air by introducing a KV sharing mechanism, that computes all keys and values within the first chain and then shares across all chains. This design demonstrates additional extensibility, such as enabling seamless LM switching, prefilling acceleration and so on. Experimental results demonstrate our CoLM family can achieve comparable performance to the standard Transformer, while simultaneously enabling greater flexiblity, such as progressive scaling to improve training efficiency and offer multiple varying model sizes for elastic inference, paving a a new way toward building language models. Our code will be released in the future at: https://github.com/microsoft/CoLM.

  • 17 authors
·
May 17 8

MobileFlow: A Multimodal LLM For Mobile GUI Agent

Currently, the integration of mobile Graphical User Interfaces (GUIs) is ubiquitous in most people's daily lives. And the ongoing evolution of multimodal large-scale models, such as GPT-4v, Qwen-VL-Max, has significantly bolstered the capabilities of GUI comprehension and user action analysis, showcasing the potentiality of intelligent GUI assistants. However, current GUI Agents often need to access page layout information through calling system APIs, which may pose privacy risks. Fixing GUI (such as mobile interfaces) to a certain low resolution might result in the loss of fine-grained image details. At the same time, the multimodal large models built for GUI Agents currently have poor understanding and decision-making abilities for Chinese GUI interfaces, making them difficult to apply to a large number of Chinese apps. This paper introduces MobileFlow, a multimodal large language model meticulously crafted for mobile GUI agents. Transforming from the open-source model Qwen-VL-Chat into GUI domain, MobileFlow contains approximately 21 billion parameters and is equipped with novel hybrid visual encoders, making it possible for variable resolutions of image inputs and good support for multilingual GUI. By incorporating Mixture of Experts (MoE) expansions and pioneering alignment training strategies, MobileFlow has the capacity to fully interpret image data and comprehend user instructions for GUI interaction tasks. Finally, MobileFlow outperforms Qwen-VL-Max and GPT-4v in terms of task execution by GUI agents on both public and our proposed evaluation metrics, and has been successfully deployed in real-world business contexts, proving its effectiveness for practical applications.

  • 7 authors
·
Jul 5, 2024

UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning

The recent DeepSeek-R1 has showcased the emergence of reasoning capabilities in LLMs through reinforcement learning (RL) with rule-based rewards. Building on this idea, we are the first to explore how rule-based RL can enhance the reasoning capabilities of multimodal large language models (MLLMs) for graphic user interface (GUI) action prediction tasks. To this end, we curate a small yet high-quality dataset of 136 challenging tasks, encompassing five common action types on mobile devices. We also introduce a unified rule-based action reward, enabling model optimization via policy-based algorithms such as Group Relative Policy Optimization (GRPO). Experimental results demonstrate that our proposed data-efficient model, UI-R1-3B, achieves substantial improvements on both in-domain (ID) and out-of-domain (OOD) tasks. Specifically, on the ID benchmark AndroidControl, the action type accuracy improves by 15%, while grounding accuracy increases by 10.3%, compared with the base model (i.e. Qwen2.5-VL-3B). On the OOD GUI grounding benchmark ScreenSpot-Pro, our model surpasses the base model by 6.0% and achieves competitive performance with larger models (e.g., OS-Atlas-7B), which are trained via supervised fine-tuning (SFT) on 76K data. These results underscore the potential of rule-based reinforcement learning to advance GUI understanding and control, paving the way for future research in this domain.

  • 8 authors
·
Mar 27 9

Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing

Large Language Models (LLMs) have demonstrated human-like instruction-following abilities, particularly those exceeding 100 billion parameters. The combined capability of some smaller, resource-friendly LLMs can address most of the instructions that larger LLMs excel at. In this work, we explore how to route the best-performing LLM for each instruction to achieve better overall performance. We develop a new paradigm, constructing capability instructions with model capability representation, user instruction, and performance inquiry prompts to assess the performance. To learn from capability instructions, we introduce a new end-to-end framework called Model Selection with Aptitude Test (Model-SAT), which generates positive and negative samples based on what different models perform well or struggle with. Model-SAT uses a model capability encoder that extends its model representation to a lightweight LLM. Our experiments show that Model-SAT understands the performance dimensions of candidate models and provides the probabilities of their capability to handle various instructions. Additionally, during deployment, a new model can quickly infer its aptitude test results across 50 tasks, each with 20 shots. Model-SAT performs state-of-the-art model routing without candidate inference and in real-world new model-released scenarios. The code is available at https://github.com/Now-Join-Us/CIT-LLM-Routing

  • 3 authors
·
Feb 24

Prior Prompt Engineering for Reinforcement Fine-Tuning

This paper investigates prior prompt engineering (pPE) in the context of reinforcement fine-tuning (RFT), where language models (LMs) are incentivized to exhibit behaviors that maximize performance through reward signals. While existing RFT research has primarily focused on algorithms, reward shaping, and data curation, the design of the prior prompt--the instructions prepended to queries during training to elicit behaviors such as step-by-step reasoning--remains underexplored. We investigate whether different pPE approaches can guide LMs to internalize distinct behaviors after RFT. Inspired by inference-time prompt engineering (iPE), we translate five representative iPE strategies--reasoning, planning, code-based reasoning, knowledge recall, and null-example utilization--into corresponding pPE approaches. We experiment with Qwen2.5-7B using each of the pPE approaches, then evaluate performance on in-domain and out-of-domain benchmarks (e.g., AIME2024, HumanEval+, and GPQA-Diamond). Our results show that all pPE-trained models surpass their iPE-prompted counterparts, with the null-example pPE approach achieving the largest average performance gain and the highest improvement on AIME2024 and GPQA-Diamond, surpassing the commonly used reasoning approach. Furthermore, by adapting a behavior-classification framework, we demonstrate that different pPE strategies instill distinct behavioral styles in the resulting models. These findings position pPE as a powerful yet understudied axis for RFT.

  • 4 authors
·
May 20 2