new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 5

BESSTIE: A Benchmark for Sentiment and Sarcasm Classification for Varieties of English

Despite large language models (LLMs) being known to exhibit bias against non-mainstream varieties, there are no known labeled datasets for sentiment analysis of English. To address this gap, we introduce BESSTIE, a benchmark for sentiment and sarcasm classification for three varieties of English: Australian (en-AU), Indian (en-IN), and British (en-UK). Using web-based content from two domains, namely, Google Place reviews and Reddit comments, we collect datasets for these language varieties using two methods: location-based and topic-based filtering. Native speakers of the language varieties manually annotate the datasets with sentiment and sarcasm labels. To assess whether the dataset accurately represents these varieties, we conduct two validation steps: (a) manual annotation of language varieties and (b) automatic language variety prediction. Subsequently, we fine-tune nine large language models (LLMs) (representing a range of encoder/decoder and mono/multilingual models) on these datasets, and evaluate their performance on the two tasks. Our results reveal that the models consistently perform better on inner-circle varieties (i.e., en-AU and en-UK), with significant performance drops for en-IN, particularly in sarcasm detection. We also report challenges in cross-variety generalisation, highlighting the need for language variety-specific datasets such as ours. BESSTIE promises to be a useful evaluative benchmark for future research in equitable LLMs, specifically in terms of language varieties. The BESSTIE datasets, code, and models will be publicly available upon acceptance.

  • 4 authors
·
Dec 5, 2024

Evaluating ChatGPT as a Recommender System: A Rigorous Approach

Recent popularity surrounds large AI language models due to their impressive natural language capabilities. They contribute significantly to language-related tasks, including prompt-based learning, making them valuable for various specific tasks. This approach unlocks their full potential, enhancing precision and generalization. Research communities are actively exploring their applications, with ChatGPT receiving recognition. Despite extensive research on large language models, their potential in recommendation scenarios still needs to be explored. This study aims to fill this gap by investigating ChatGPT's capabilities as a zero-shot recommender system. Our goals include evaluating its ability to use user preferences for recommendations, reordering existing recommendation lists, leveraging information from similar users, and handling cold-start situations. We assess ChatGPT's performance through comprehensive experiments using three datasets (MovieLens Small, Last.FM, and Facebook Book). We compare ChatGPT's performance against standard recommendation algorithms and other large language models, such as GPT-3.5 and PaLM-2. To measure recommendation effectiveness, we employ widely-used evaluation metrics like Mean Average Precision (MAP), Recall, Precision, F1, normalized Discounted Cumulative Gain (nDCG), Item Coverage, Expected Popularity Complement (EPC), Average Coverage of Long Tail (ACLT), Average Recommendation Popularity (ARP), and Popularity-based Ranking-based Equal Opportunity (PopREO). Through thoroughly exploring ChatGPT's abilities in recommender systems, our study aims to contribute to the growing body of research on the versatility and potential applications of large language models. Our experiment code is available on the GitHub repository: https://github.com/sisinflab/Recommender-ChatGPT

  • 6 authors
·
Sep 7, 2023

GenUP: Generative User Profilers as In-Context Learners for Next POI Recommender Systems

Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP.

  • 3 authors
·
Oct 27, 2024

Erasing Labor with Labor: Dark Patterns and Lockstep Behaviors on Google Play

Google Play's policy forbids the use of incentivized installs, ratings, and reviews to manipulate the placement of apps. However, there still exist apps that incentivize installs for other apps on the platform. To understand how install-incentivizing apps affect users, we examine their ecosystem through a socio-technical lens and perform a mixed-methods analysis of their reviews and permissions. Our dataset contains 319K reviews collected daily over five months from 60 such apps that cumulatively account for over 160.5M installs. We perform qualitative analysis of reviews to reveal various types of dark patterns that developers incorporate in install-incentivizing apps, highlighting their normative concerns at both user and platform levels. Permissions requested by these apps validate our discovery of dark patterns, with over 92% apps accessing sensitive user information. We find evidence of fraudulent reviews on install-incentivizing apps, following which we model them as an edge stream in a dynamic bipartite graph of apps and reviewers. Our proposed reconfiguration of a state-of-the-art microcluster anomaly detection algorithm yields promising preliminary results in detecting this fraud. We discover highly significant lockstep behaviors exhibited by reviews that aim to boost the overall rating of an install-incentivizing app. Upon evaluating the 50 most suspicious clusters of boosting reviews detected by the algorithm, we find (i) near-identical pairs of reviews across 94% (47 clusters), and (ii) over 35% (1,687 of 4,717 reviews) present in the same form near-identical pairs within their cluster. Finally, we conclude with a discussion on how fraud is intertwined with labor and poses a threat to the trust and transparency of Google Play.

  • 7 authors
·
Feb 9, 2022