new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 3

Muon: Training and Trade-offs with Latent Attention and MoE

We present a comprehensive theoretical and empirical study of the Muon optimizer for training transformers only with a small to medium decoder (30M - 200M parameters), with an emphasis on its mathematical foundations, convergence properties and synergistic interactions with modern architectural optimizations. Building on recent work showing Muon's scalability, we provide rigorous theoretical analysis including: (i)showing the convergence rate under standard assumptions, (ii) spectral regularization properties that prevent gradient explosion, (iii) connection to natural gradient descent on the Stiefel manifold, and (iv) equivalence to steepest gradient descent under the spectral norm. Crucially, we demonstrate that Muon expands the Pareto frontier in the compute-time trade-off by maintaining superior data efficiency at large batch sizes, a key finding of~essentialai2025muon that we validate across our model scales. Empirically, Muon reaches the target loss with 48-52\% of the training calculated by AdamW while maintaining or improving the final perplexity, consistent with larger-scale results. When combined with Multi-Head Latent Attention (MLA) and Mixture-of-Experts (MoE), we observe multiplicative efficiency gains: MLA+MoE+Muon achieves 68\% memory reduction and 3.2times inference speedup, while improving perplexity by 8-12\%. We provide detailed procedures on 15 architectural and optimizer components, stability analyzes across 100+ training runs, and practical implementation guidelines including Newton-Schulz coefficients (3.4445, -4.7750, 2.0315) optimized by~su2024muonblog. Our theoretical analysis and comprehensive experiments establish Muon as a principled, robust alternative to AdamW that particularly excels when combined with modern efficiency techniques and large-batch training regimes.

  • 4 authors
·
Sep 29

NorMuon: Making Muon more efficient and scalable

The choice of optimizer significantly impacts the training efficiency and computational costs of large language models (LLMs). Recently, the Muon optimizer has demonstrated promising results by orthogonalizing parameter updates, improving optimization geometry through better conditioning. Despite Muon's emergence as a candidate successor to Adam, the potential for jointly leveraging their strengths has not been systematically explored. In this work, we bridge this gap by proposing NorMuon (Neuron-wise Normalized Muon), an optimizer that synergistically combines orthogonalization with neuron-level adaptive learning rates. Our analysis reveals that while Muon effectively reduces condition numbers, the resulting updates exhibit highly non-uniform neuron norms, causing certain neurons to dominate the optimization process. NorMuon addresses this imbalance by maintaining second-order momentum statistics for each neuron and applying row-wise normalization after orthogonalization, ensuring balanced parameter utilization while preserving Muon's conditioning benefits. To enable practical deployment at scale, we develop an efficient distributed implementation under the FSDP2 framework that strategically distributes orthogonalization computations across devices. Experiments across multiple model scales demonstrate that NorMuon consistently outperforms both Adam and Muon, achieving 21.74% better training efficiency than Adam and 11.31% improvement over Muon on 1.1 B pretraining setting, while maintaining a comparable memory footprint to Muon. Our findings suggest that orthogonalization and adaptive learning rates are complementary rather than competing approaches, opening new avenues for optimizer design in large-scale deep learning.

The Mu3e Experiment: Status and Short-Term Plans

Mu3e is an experiment currently under construction at the Paul Scherrer Institute in Switzerland, designed to search for the Lepton Flavor Violating (LFV) decay mu^+ rightarrow e^+e^-e^+. In extensions of the Standard Model (SM) that account for neutrino masses, this decay is theoretically allowed but occurs only through extremely rare loop processes, with a predicted branching ratio of approximately O(10^{-54}). Such a small probability implies that any observation of this decay would provide clear evidence for physics beyond the SM. The Mu3e experiment aims to probe the mu^+ rightarrow e^+e^-e^+ decay with a sensitivity of approximately O(10^{-15}) in its Phase-1 and plans to achieve a sensitivity of O(10^{-16}) after future upgrades. To reach its Phase-1 ambitious goals, Mu3e is going to use the most intense continuous muon beam in the world, generating 10^{8} muon stops per second in the target placed at the center of the Mu3e. Mu3e will use three main technologies for particle detection. The tracking will done through ultra-thin (50 - 70 mu m) pixel detectors based on MuPix11 sensors. These are high-voltage monolithic active pixel sensors (HV-MAPS) with a sim 23~mum spatial resolution. The timing will be done through scintillating fibres (sim 250 ps) and tiles (sim 40 ps), coupled to silicon photomultipliers and read out by MuTRiG3 ASICs. A triggerless DAQ system based on FPGAs will collect data from the detectors, which will then undergo reconstruction in a GPU filter farm. The assembly of the detectors has started, with a detector commissioning beam time planned for 2025. This document reports on the status of the construction, installation, and data-taking plans for the near future.

  • 1 authors
·
Jan 24

Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections

Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.

  • 55 authors
·
Feb 18

Muon Outperforms Adam in Tail-End Associative Memory Learning

The Muon optimizer is consistently faster than Adam in training Large Language Models (LLMs), yet the mechanism underlying its success remains unclear. This paper demystifies this mechanism through the lens of associative memory. By ablating the transformer components optimized by Muon, we reveal that the associative memory parameters of LLMs, namely the Value and Output (VO) attention weights and Feed-Forward Networks (FFNs), are the primary contributors to Muon's superiority. Motivated by this associative memory view, we then explain Muon's superiority on real-world corpora, which are intrinsically heavy-tailed: a few classes (tail classes) appear far less frequently than others. The superiority is explained through two key properties: (i) its update rule consistently yields a more isotropic singular spectrum than Adam; and as a result, (ii) on heavy-tailed data, it optimizes tail classes more effectively than Adam. Beyond empirical evidence, we theoretically confirm these findings by analyzing a one-layer associative memory model under class-imbalanced data. We prove that Muon consistently achieves balanced learning across classes regardless of feature embeddings, whereas Adam can induce large disparities in learning errors depending on embedding properties. In summary, our empirical observations and theoretical analyses reveal Muon's core advantage: its update rule aligns with the outer-product structure of linear associative memories, enabling more balanced and effective learning of tail classes in heavy-tailed distributions than Adam.

  • 9 authors
·
Sep 30 2

The Muonic Portal to Vector Dark Matter:connecting precision muon physics, cosmology, and colliders

We present a comprehensive study of the Muonic Portal to Vector Dark Matter (MPVDM), a minimal yet phenomenologically rich extension of the Standard Model featuring a new SU(2)_D gauge symmetry and vector-like muons. In this framework the dark sector interacts with the Standard Model only through these heavy leptons, linking dark matter and the muon sector. The MPVDM can simultaneously explain the observed relic abundance and the muon anomalous magnetic moment a_mu under both the "tension" and "compatibility" scenarios motivated by recent (g-2)_mu results. A key finding is a generic off-resonance velocity suppression mechanism that allows light (<1 GeV) vector dark matter to evade CMB limits near 2*m_DM ~ m_H_D. Unlike scenarios based on ultra narrow Breit-Wigner resonances and early kinetic decoupling, the suppression follows from the temperature evolution of the annihilation cross section in a moderately detuned near resonant regime, where being 10-20 percent below resonance gives the required CMB era suppression without fine tuning. A five dimensional parameter scan shows that the tension scenario requires sub GeV dark matter with g_D ~ 1e-3 and TeV scale vector like muons, while the compatibility scenario admits a broad mass range up to multi TeV. Recasting ATLAS and CMS searches for mu+ mu- + E_T^miss sets a lower bound of about 850 GeV on vector like muons. The MPVDM thus offers a unified, predictive, and experimentally accessible framework linking dark matter and muon physics across cosmological and collider frontiers.

  • 4 authors
·
Oct 21

European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background

We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A<3.0times 10^{-15} at a reference frequency of 1yr^{-1} and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Omega_gw(f)h^2 < 1.1times10^{-9} at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of sim 5times10^{-9}~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gmu/c^2, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gmu/c^2<1.3times10^{-7}, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-ell Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Omega^relic_gw(f)h^2<1.2 times10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.

  • 36 authors
·
Apr 14, 2015

Measurement of the properties of Higgs boson production at s = 13 TeV in the Htoγγ channel using 139 fb^{-1} of pp collision data with the ATLAS experiment

Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb^{-1} of pp collision data at s = 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be 1.04^{+0.10}_{-0.09}. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a W or Z boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a p-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

  • 1 authors
·
Jul 1, 2022

Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift

We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties.

  • 5 authors
·
Mar 18

Constraints on Cosmic Rays Acceleration in Bright Gamma-ray Bursts with Observations of Fermi

Gamma-ray bursts (GRBs) are widely suggested as potential sources of ultrahigh-energy cosmic rays (UHECRs). The kinetic energy of the jets dissipates, leading to the production of an enormous amount of gamma-ray photons and possibly also the acceleration of protons. The accelerated protons will interact with the radiation of the GRB via the photomeson and Bethe-Heitler processes, which can initiate electromagnetic cascades. This process can give rise to broadband radiation up to the GeV-TeV gamma-ray regime. The expected gamma-ray flux from cascades depends on properties of the GRB jet, such as the dissipation radius R_{rm diss}, the bulk Lorentz factor Gamma, and the baryon loading factor eta_p. Therefore, observations of Fermi-LAT can impose constraints on these important parameters. In this study, we select 12 GRBs of high keV-MeV fluence and constrain the baryon loading factor, under different combinations of the bulk Lorentz factor and the dissipation radius based on Fermi-LAT's measurements. Our findings indicate a strong constraint of eta_p<10 for most selected GRBs over a large parameter space except for large dissipation radii (gtrsim 10^{15}rm cm) and high bulk Lorentz factors (gtrsim 600). The constraint is comparable to, and in some GRBs even stronger than, that from high-energy neutrinos for stacked GRBs. Our results suggest that for typical bulk Lorentz factor of several hundreds, the dissipation radii of GRBs need be large to avoid overshooting the GeV gamma-ray flux during the prompt emission phase of GRBs, which can be used to constrain GRBs.

  • 6 authors
·
Jan 16

Quarks to Cosmos: Particles and Plasma in Cosmological evolution

We describe in the context of the particle physics (PP) standard model (SM) `PP-SM' the understanding of the primordial properties and composition of the Universe in the temperature range 130GeV>T>20keV. The Universe evolution is described using FLRW cosmology. We present a global view on particle content across time and describe the different evolution eras using deceleration parameter q. We follow the arrow of time in the expanding and cooling Universe: After the PP-SM heavies (t, h, W, Z) diminish in abundance below Tsimeq 50GeV, the PP-SM plasma in the Universe is governed by the strongly interacting Quark-Gluon content. Once the temperature drops below Tsimeq 150MeV, quarks and gluons hadronize into strongly interacting matter particles. Rapid disappearance of baryonic antimatter completes at T_B=38.2MeV. We study the ensuing disappearance of strangeness and mesons in general. We show that the different eras defined by particle populations are barely separated from each other with abundance of muons fading out just prior to T=O(2.5)MeV, the era of emergence of the free-streaming neutrinos. We discuss the two relevant fundamental constants controlling the decoupling of neutrinos. We subsequently follow the primordial Universe as it passes through the hot dense electron-positron plasma epoch. The high density of positron antimatter disappears near T=20.3keV: Nuclear reactions occur in the presence of a highly mobile and relatively strongly interacting electron-positron plasma phase. We apply plasma theory methods to describe the strong screening effects between heavy dust particle (nucleons). We analyze the paramagnetic characteristics of the electron-positron plasma when exposed to an external primordial magnetic field.

  • 5 authors
·
Sep 26, 2024