55 CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation Retrieval-Augmented Generation (RAG) has become a powerful paradigm for enhancing large language models (LLMs) through external knowledge retrieval. Despite its widespread attention, existing academic research predominantly focuses on single-turn RAG, leaving a significant gap in addressing the complexities of multi-turn conversations found in real-world applications. To bridge this gap, we introduce CORAL, a large-scale benchmark designed to assess RAG systems in realistic multi-turn conversational settings. CORAL includes diverse information-seeking conversations automatically derived from Wikipedia and tackles key challenges such as open-domain coverage, knowledge intensity, free-form responses, and topic shifts. It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling. We propose a unified framework to standardize various conversational RAG methods and conduct a comprehensive evaluation of these methods on CORAL, demonstrating substantial opportunities for improving existing approaches. 9 authors · Oct 30, 2024 3
1 The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs Coral reefs are declining worldwide due to climate change and local stressors. To inform effective conservation or restoration, monitoring at the highest possible spatial and temporal resolution is necessary. Conventional coral reef surveying methods are limited in scalability due to their reliance on expert labor time, motivating the use of computer vision tools to automate the identification and abundance estimation of live corals from images. However, the design and evaluation of such tools has been impeded by the lack of large high quality datasets. We release the Coralscapes dataset, the first general-purpose dense semantic segmentation dataset for coral reefs, covering 2075 images, 39 benthic classes, and 174k segmentation masks annotated by experts. Coralscapes has a similar scope and the same structure as the widely used Cityscapes dataset for urban scene segmentation, allowing benchmarking of semantic segmentation models in a new challenging domain which requires expert knowledge to annotate. We benchmark a wide range of semantic segmentation models, and find that transfer learning from Coralscapes to existing smaller datasets consistently leads to state-of-the-art performance. Coralscapes will catalyze research on efficient, scalable, and standardized coral reef surveying methods based on computer vision, and holds the potential to streamline the development of underwater ecological robotics. 6 authors · Mar 25
- AI-driven Dispensing of Coral Reseeding Devices for Broad-scale Restoration of the Great Barrier Reef Coral reefs are on the brink of collapse, with climate change, ocean acidification, and pollution leading to a projected 70-90% loss of coral species within the next decade. Restoration efforts are crucial, but their success hinges on introducing automation to upscale efforts. We present automated deployment of coral re-seeding devices powered by artificial intelligence, computer vision, and robotics. Specifically, we perform automated substrate classification, enabling detection of areas of the seafloor suitable for coral growth, thus significantly reducing reliance on human experts and increasing the range and efficiency of restoration. Real-world testing of the algorithms on the Great Barrier Reef leads to deployment accuracy of 77.8%, sub-image patch classification of 89.1%, and real-time model inference at 5.5 frames per second. Further, we present and publicly contribute a large collection of annotated substrate image data to foster future research in this area. 3 authors · Aug 31
- CoralVQA: A Large-Scale Visual Question Answering Dataset for Coral Reef Image Understanding Coral reefs are vital yet vulnerable ecosystems that require continuous monitoring to support conservation. While coral reef images provide essential information in coral monitoring, interpreting such images remains challenging due to the need for domain expertise. Visual Question Answering (VQA), powered by Large Vision-Language Models (LVLMs), has great potential in user-friendly interaction with coral reef images. However, applying VQA to coral imagery demands a dedicated dataset that addresses two key challenges: domain-specific annotations and multidimensional questions. In this work, we introduce CoralVQA, the first large-scale VQA dataset for coral reef analysis. It contains 12,805 real-world coral images from 67 coral genera collected from 3 oceans, along with 277,653 question-answer pairs that comprehensively assess ecological and health-related conditions. To construct this dataset, we develop a semi-automatic data construction pipeline in collaboration with marine biologists to ensure both scalability and professional-grade data quality. CoralVQA presents novel challenges and provides a comprehensive benchmark for studying vision-language reasoning in the context of coral reef images. By evaluating several state-of-the-art LVLMs, we reveal key limitations and opportunities. These insights form a foundation for future LVLM development, with a particular emphasis on supporting coral conservation efforts. 5 authors · Jul 14
- CORAL: Learning Consistent Representations across Multi-step Training with Lighter Speculative Drafter Speculative decoding is a powerful technique that accelerates Large Language Model (LLM) inference by leveraging a lightweight speculative draft model. However, existing designs suffers in performance due to misalignment between training and inference. Recent methods have tried to solve this issue by adopting a multi-step training strategy, but the complex inputs of different training steps make it harder for the draft model to converge. To address this, we propose CORAL, a novel framework that improves both accuracy and efficiency in speculative drafting. CORAL introduces Cross-Step Representation Alignment, a method that enhances consistency across multiple training steps, significantly improving speculative drafting performance. Additionally, we identify the LM head as a major bottleneck in the inference speed of the draft model. We introduce a weight-grouping mechanism that selectively activates a subset of LM head parameters during inference, substantially reducing the latency of the draft model. We evaluate CORAL on three LLM families and three benchmark datasets, achieving speedup ratios of 2.50x-4.07x, outperforming state-of-the-art methods such as EAGLE-2 and HASS. Our results demonstrate that CORAL effectively mitigates training-inference misalignment and delivers significant speedup for modern LLMs with large vocabularies. 7 authors · Feb 24
- Robot Goes Fishing: Rapid, High-Resolution Biological Hotspot Mapping in Coral Reefs with Vision-Guided Autonomous Underwater Vehicles Coral reefs are fast-changing and complex ecosystems that are crucial to monitor and study. Biological hotspot detection can help coral reef managers prioritize limited resources for monitoring and intervention tasks. Here, we explore the use of autonomous underwater vehicles (AUVs) with cameras, coupled with visual detectors and photogrammetry, to map and identify these hotspots. This approach can provide high spatial resolution information in fast feedback cycles. To the best of our knowledge, we present one of the first attempts at using an AUV to gather visually-observed, fine-grain biological hotspot maps in concert with topography of a coral reefs. Our hotspot maps correlate with rugosity, an established proxy metric for coral reef biodiversity and abundance, as well as with our visual inspections of the 3D reconstruction. We also investigate issues of scaling this approach when applied to new reefs by using these visual detectors pre-trained on large public datasets. 4 authors · May 3, 2023
3 Anemoi: A Semi-Centralized Multi-agent System Based on Agent-to-Agent Communication MCP server from Coral Protocol Recent advances in generalist multi-agent systems (MAS) have largely followed a context-engineering plus centralized paradigm, where a planner agent coordinates multiple worker agents through unidirectional prompt passing. While effective under strong planner models, this design suffers from two critical limitations: (1) strong dependency on the planner's capability, which leads to degraded performance when a smaller LLM powers the planner; and (2) limited inter-agent communication, where collaboration relies on costly prompt concatenation and context injection, introducing redundancy and information loss. To address these challenges, we propose Anemoi, a semi-centralized MAS built on the Agent-to-Agent (A2A) communication MCP server from Coral Protocol. Unlike traditional designs, Anemoi enables structured and direct inter-agent collaboration, allowing all agents to monitor progress, assess results, identify bottlenecks, and propose refinements in real time. This paradigm reduces reliance on a single planner, supports adaptive plan updates, and minimizes redundant context passing, resulting in more scalable and cost-efficient execution. Evaluated on the GAIA benchmark, Anemoi achieved 52.73% accuracy with a small LLM (GPT-4.1-mini) as the planner, surpassing the strongest open-source baseline OWL (43.63%) by +9.09% under identical LLM settings. Our implementation is publicly available at https://github.com/Coral-Protocol/Anemoi. 9 authors · Aug 23
26 Beyond RAG: Task-Aware KV Cache Compression for Comprehensive Knowledge Reasoning Incorporating external knowledge in large language models (LLMs) enhances their utility across diverse applications, but existing methods have trade-offs. Retrieval-Augmented Generation (RAG) fetches evidence via similarity search, but key information may fall outside top ranked results. Long-context models can process multiple documents but are computationally expensive and limited by context window size. Inspired by students condensing study material for open-book exams, we propose task-aware key-value (KV) cache compression, which compresses external knowledge in a zero- or few-shot setup. This enables LLMs to reason efficiently over a compacted representation of all relevant information. Experiments show our approach outperforms both RAG and task-agnostic compression methods. On LongBench v2, it improves accuracy by up to 7 absolute points over RAG with a 30x compression rate, while reducing inference latency from 0.43s to 0.16s. A synthetic dataset highlights that RAG performs well when sparse evidence suffices, whereas task-aware compression is superior for broad knowledge tasks. 4 authors · Mar 6 7
18 Finch: Prompt-guided Key-Value Cache Compression Recent large language model applications, such as Retrieval-Augmented Generation and chatbots, have led to an increased need to process longer input contexts. However, this requirement is hampered by inherent limitations. Architecturally, models are constrained by a context window defined during training. Additionally, processing extensive texts requires substantial GPU memory. We propose a novel approach, Finch, to compress the input context by leveraging the pre-trained model weights of the self-attention. Given a prompt and a long text, Finch iteratively identifies the most relevant Key (K) and Value (V) pairs over chunks of the text conditioned on the prompt. Only such pairs are stored in the KV cache, which, within the space constrained by the context window, ultimately contains a compressed version of the long text. Our proposal enables models to consume large inputs even with high compression (up to 93x) while preserving semantic integrity without the need for fine-tuning. 2 authors · Jul 31, 2024 6
1 Continuous-Time Functional Diffusion Processes We introduce Functional Diffusion Processes (FDPs), which generalize score-based diffusion models to infinite-dimensional function spaces. FDPs require a new mathematical framework to describe the forward and backward dynamics, and several extensions to derive practical training objectives. These include infinite-dimensional versions of Girsanov theorem, in order to be able to compute an ELBO, and of the sampling theorem, in order to guarantee that functional evaluations in a countable set of points are equivalent to infinite-dimensional functions. We use FDPs to build a new breed of generative models in function spaces, which do not require specialized network architectures, and that can work with any kind of continuous data. Our results on real data show that FDPs achieve high-quality image generation, using a simple MLP architecture with orders of magnitude fewer parameters than existing diffusion models. 6 authors · Mar 1, 2023
22 SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers Large Language Models (LLMs) have achieved human-level proficiency across diverse tasks, but their ability to perform rigorous mathematical problem solving remains an open challenge. In this work, we investigate a fundamental yet computationally intractable problem: determining whether a given multivariate polynomial is nonnegative. This problem, closely related to Hilbert's Seventeenth Problem, plays a crucial role in global polynomial optimization and has applications in various fields. First, we introduce SoS-1K, a meticulously curated dataset of approximately 1,000 polynomials, along with expert-designed reasoning instructions based on five progressively challenging criteria. Evaluating multiple state-of-the-art LLMs, we find that without structured guidance, all models perform only slightly above the random guess baseline 50%. However, high-quality reasoning instructions significantly improve accuracy, boosting performance up to 81%. Furthermore, our 7B model, SoS-7B, fine-tuned on SoS-1K for just 4 hours, outperforms the 671B DeepSeek-V3 and GPT-4o-mini in accuracy while only requiring 1.8% and 5% of the computation time needed for letters, respectively. Our findings highlight the potential of LLMs to push the boundaries of mathematical reasoning and tackle NP-hard problems. 5 authors · Feb 27 2
- Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data Large Language Models (LLMs) like ChatGPT demonstrate significant potential in the medical field, often evaluated using multiple-choice questions (MCQs) similar to those found on the USMLE. Despite their prevalence in medical education, MCQs have limitations that might be exacerbated when assessing LLMs. To evaluate the effectiveness of MCQs in assessing the performance of LLMs, we developed a fictional medical benchmark focused on a non-existent gland, the Glianorex. This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities. We used GPT-4 to generate a comprehensive textbook on the Glianorex in both English and French and developed corresponding multiple-choice questions in both languages. We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting. The models achieved average scores around 67%, with minor performance differences between larger and smaller models. Performance was slightly higher in English than in French. Fine-tuned medical models showed some improvement over their base versions in English but not in French. The uniformly high performance across models suggests that traditional MCQ-based benchmarks may not accurately measure LLMs' clinical knowledge and reasoning abilities, instead highlighting their pattern recognition skills. This study underscores the need for more robust evaluation methods to better assess the true capabilities of LLMs in medical contexts. 4 authors · Jun 4, 2024