Feedback Lunch: Deep Feedback Codes for Wiretap Channels
Abstract
Seeded modular codes with feedback enable positive secrecy rates in Gaussian wiretap channels by overcoming wiretapper advantages and improving communication reliability.
We consider reversely-degraded wiretap channels, for which the secrecy capacity is zero if there is no channel feedback. This work focuses on a seeded modular code design for the Gaussian wiretap channel with channel output feedback, combining universal hash functions for security and learned feedback-based codes for reliability to achieve positive secrecy rates. We study the trade-off between communication reliability and information leakage, illustrating that feedback enables agreeing on a secret key shared between legitimate parties, overcoming the security advantage of the wiretapper. Our findings also motivate code designs for sensing-assisted secure communication, to be used in next-generation integrated sensing and communication methods.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper