--- license: mit library_name: onnxruntime_genai datasets: - FractalAIResearch/Fathom-V0.4-SFT-Shortest-Chains - FractalAIResearch/Fathom-V0.6-Iterative-Curriculum-Learning base_model: - Prince-1/Fathom-R1-14B-Onnx tags: - onnx - onnxruntime_genai --- # 🧮 Fathom-R1-14B: $499 Training Recipe for Unlocking Math Reasoning at o4-mini level using R1-distilled-14B model under 16K context
- **Second Stage (Leveraging SFT to improve reasoning efficiently at higher sequence length):** We build upon the RL checkpoint and perform SFT under a **16K context window** to encourage more detailed reasoning that would be required for solving more complex problems. For this stage, we strategically curate a dataset consisting of hard problems — specifically, questions with lower solve rates (0 < pass_rate <=0.4). Then, we obtain the shortest possible reasoning chains for these questions forming the **SFT Shortest Chains dataset** comprising of 9.5K examples. Through supervised fine-tuning on this dataset, the model is able to stablize its reasoning at sequence length upto 16K. The resulting model is named **Fathom-R1-14B-v0.4**, optimized for concise yet accurate mathematical reasoning.
Total H100 GPU Hours: 293
Cost: $831
### Training Recipe for Fathom-R1-14B-v0.4
Given the performance improvement we noticed during the second fine-tuning stage of developing Fathom-R1-14B-v0.4-RS and in attempt to further reduce the cost, we experiment by eliminating RL and directly performing second stage SFT on Deepseek-R1-Distilled-Qwen-14B base model.
Total H100 GPU Hours: 128
Cost: $363
## Model Merging
Given v0.6 and v0.4 models have been developed by following different training methodologies, we perform linear merging to combine the strengths to obtain final 2 checkpoints.
- **Fathom-R1-14B**: Obtained via merging Fathom-R1-14B-V0.6 (Iterative Curriculum SFT) and Fathom-R1-14B-V0.4 (SFT-Shortest-Chains)
- **Fathom-R1-14B-RS**: Obtained via merging Fathom-R1-14B-V0.6 (Iterative Curriculum SFT) and Fathom-R1-14B-V0.4 (RL-compression + SFT-Shortest-Chains)
## 💰 Post-Training Cost
We developed **Fathom-R1-14B** models using a focused, resource-efficient strategy that balances performance with compute budget. Below is the GPU time utilized and the cost incurred
| Model Weights | GPU Hours (H100) | Cost(USD) |
|----------------------------|------------------|------|
| Fathom-R1-14B-V0.4-RS | 293 | 831 |
| Fathom-R1-14B-V0.4 | 128 | 363 |
| Fathom-R1-14B-V0.6 | 48 | 136 |
| Fathom-R1-14B-RS | 341 | 967 |
| **Fathom-R1-14B** | **176** | **499** |
So, the final Fathom-R1-14B took just 499$ to be trained overall! This low training cost highlights the efficiency of our method — enabling high-level mathematical reasoning comparable to **o4-mini** in **$499** , all within a **16k sequence length budget**.
---
## 📊 Evaluation
We evaluate Fathom‑R1-14B using the same metrics and sampling configuration introduced in the DeepSeek‑R1 paper, namely **pass@1** and **cons@64**. However, our evaluation is conducted under a reduced output budget of 16,384 tokens, compared to DeepSeek‑R1’s 32,768 tokens, to better reflect practical deployment constraints.
- **pass@1**: Pass@1 is computed as the average correctness over k sampled solution chains per problem (in our experiments we keep k=64).
- **cons@64**: Assesses consistency by sampling 64 reasoning chains per question and computing the majority vote accuracy.
**Evaluation Configuration**:
- Temperature: 0.6
- top_p: 0.95
- Number of sampled chains: 64
- Context: 16,384 tokens
This setup allows us to benchmark Fathom-R1-14B’s reasoning performance and stability under realistic memory and inference budgets, while maintaining compatibility with the DeepSeek‑R1 evaluation protocol.
We utilize the evaluation framework provided by the [LIMO](https://github.com/GAIR-NLP/LIMO) repository to run inference and compute metrics.
For detailed instructions and implementation details, please refer to [`eval/README.md`](https://github.com/FractalAIResearchLabs/Fathom-R1/blob/main/eval/readme.md).
---
## Results
We evaluate and compare **Fathom‑R1-14B** with several baseline models across 3 challenging benchmarks: **AIME25**, **HMMT25**, and **GPQA**. For each, we report `pass@1` and `cons@64`, following the same evaluation configuration.
| Model | AIME25 | | HMMT25 | |
|------------------|----------------|---------------|----------------|---------------|
| | pass@1 | cons@64 | pass@1 | cons@64 |
| **Closed-Source Models** | | | | |
| o1‑mini | 50.71 | 63.33 | 35.15 | 46.67 |
| o3‑mini‑low | 42.60 | 53.33 | 26.61 | 33.33 |
| o3‑mini‑medium | 72.24 | 83.33 | 49.21 | 60.00 |
| o4-mini-low | 60.20 | 76.67 | 39.11 | 53.33 |
| o1‑preview | 33.33 | 36.67 | 17.78 | 20.00 |
| gpt‑4.5‑preview | 34.44 | 40.00 | 16.67 | 20.00 |
| **Open-Source Models** | | | | |
| DeepSeek-R1-Distill-Qwen-14B | 45.50 | 63.33 | 30.00 | 50.00 |
| DeepSeek-R1-Distill-Qwen-32B | 49.64 | 73.33 | 33.02 | 53.33 |
| DeepSeekR1‑670B | 61.25 | 83.33 | 42.19 | 56.67 |
| LightR1‑14B | 51.15 | 76.67 | 33.75 | 50.00 |
| Fathom‑R1-14B-V0.4-RS | 50.94 | 73.33 | 33.70 | 40.00 |
| Fathom‑R1-14B-V0.4 | 50.94 | 70.00 | 34.53 | 56.67 |
| Fathom‑R1-14B-V0.6 | 50.63 | 76.67 | 32.19 | 50.00 |
| Fathom‑R1-14B-RS | 52.03 | 76.67 | 35.00 | 53.33 |
| **Fathom‑R1-14B** | **52.71** | **76.67** | **35.26** | **56.67** |
**Fathom‑R1-14B** demonstrates highly competitive performance across all datasets, improving over the original R1-distilled models while closely matching or surpassing other strong baselines in several settings.
On both AIME 25 and HMMT 25, our model shows the highest pass@1 as well as cons@64 scores among all the open-source models (including the bigger R1-Distilled-32B model), with R1-670B being the only exception.
In fact, we observe that Fathom-R1-14B is superior to the first two generations of OpenAI's mini-reasoning models, including **o1-mini** and **o3-mini-low-** and it's performance closely matches that of newly released **o4-mini-low** (self-consistency decoding).
---
## 🌍 Generalization Beyond Math: GPQA-Diamond
Notably, we also observe out-of-domain improvement in **GPQA-Diamond**, even though there wasn't a single instance of non-math questions in our training data.
This indicates that our training methodology mentioned above and training on math wuestions facilitates generalization across diverse domains, a finding similar to what LightR1-14B & LIMO had observed.
#### ✅ GPQA Benchmark Comparison (16k)
| **Model** | **pass@1** | **cons@64** |
|-------------------|------------|-------------|
| DeepSeek-R1-Distill-Qwen-14B | 54.19 | 64.14 |
| LightR1‑14B | 56.94 | 65.15 |
| Fathom‑R1-14B-RS | 59.13 | 66.16 |
| **Fathom‑R1-14B** | **59.46** | **66.16** |
---
## ✂️ Ablation Study on Token Efficiency
To assess reasoning token efficiency, we compare the **average response token count**, under 16k context length, across AIME25, and HMMT25. On AIME25, Fathom‑R1-14B-RS uses 10% fewer response tokens than LightR1-14B despite having higher pass@1. HMMT25 questions are relatively tougher compared to AIME'25 and tougher questions usually require more thinking tokens. On HMMT25, Fathom‑R1-14B-RS uses 4.5% fewer response tokens than LightR1-14B despite having higher pass@1.
#### Average Response Length (Tokens)
| Model | AIME25 | HMMT25 |
|------------------|--------|--------|
| LightR1-14B | 11330 | 12680 |
| DeepSeek-R1-Distill-Qwen-14B | 10878 | 12263 |
| Fathom‑R1-14B-V0.4 | 10570 | 11950 |
| Fathom‑R1-14B | 10956 | 12125 |
| **Fathom‑R1-14B-RS** | **10083** | **12100** |
---
## Data Decontimination
Both benchmarks used (AIME 25 and HMMT 25) were released a few weeks after the release of the base model, ensuring no contamination occurred during the model's pre-training. The dataset corpora (Numina-Math 1.5 & OpenR1-Math) were released around the same time as these exams, with a cutoff date no later than 2024. Additionally, we conduct checks to verify there is no contamination in the training data.
---
## Release Assets
- Training Recipe Blog: [🤗 $499 training recipe for creating Fathom-R1-14B](https://huggingface.co/FractalAIResearch/Fathom-R1-14B)
- Final Merged Models: [🤗 Fathom-R1-14B](https://huggingface.co/FractalAIResearch/Fathom-R1-14B), [🤗 Fathom-R1-14B-RS](https://huggingface.co/FractalAIResearch/Fathom-R1-14B-RS)
- Intermediate Models: [🤗 Fathom-R1-14B-V0.6](https://huggingface.co/FractalAIResearch/Fathom-R1-14B-V0.6), [🤗 Fathom-R1-14B-V0.4](https://huggingface.co/FractalAIResearch/Fathom-R1-14B-V0.4), [🤗 Fathom-R1-14B-V0.4-RS](https://huggingface.co/FractalAIResearch/Fathom-R1-14B-V0.4-RS)
- Fathom-R1-14B Datasets: [🤗 V0.6-Iterative-Curriculum-Learning](https://huggingface.co/datasets/FractalAIResearch/Fathom-V0.6-Iterative-Curriculum-Learning), [🤗 V0.4-SFT-Shortest-Chains](https://huggingface.co/datasets/FractalAIResearch/Fathom-V0.4-SFT-Shortest-Chains), [🤗 V0.4-RL-Compression](https://huggingface.co/datasets/FractalAIResearch/Fathom-V0.4-RL-Compression)
---
## 📜 License
This repository and all the release assets are available under the MIT License, underscoring our dedication to open and inclusive AI innovation. By freely sharing our work, we aim to democratize AI technology, empowering researchers, developers, and enthusiasts everywhere to use, adapt, and expand upon it without limitation. This open and permissive approach promotes global collaboration, accelerates innovation, and enriches the AI community as a whole.
## Acknowledgments
We would like to acknowledge the following works for enabling our project:
- [Deepseek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B)
- [NuminaMath-1.5](https://huggingface.co/datasets/AI-MO/NuminaMath-1.5)
- [OpenR1-Math](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k)
- [360-LLAMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)
- [verl](https://github.com/volcengine/verl)
- [LIMO](https://github.com/GAIR-NLP/LIMO)
- [FuseAI](https://github.com/fanqiwan/FuseAI)
---
## 📖 Citation
```bibtex
@misc{fathom14b2025,
title={Fathom-R1: $499 Training Recipe for Unlocking Math Reasoning at o4-mini level with just 14B parameters under 16K context},
author={Kunal Singh and Pradeep Moturi and Ankan Biswas and Siva Gollapalli and Sayandeep Bhowmick},
howpublished={\url{https://huggingface.co/FractalAIResearch/Fathom-R1-14B}},
note={Hugging Face},
year={2025}
}
```
## About Project Ramanujan
We initiated Project Ramanujan approximately one year ago, aiming to unlock intelligence and enhance AI agents by pushing the boundaries of advanced reasoning. Our key accomplishments include:
- ICLR'25 & NeurIPS'24-MATH-AI: [SBSC: Step-By-Step Coding for Improving Mathematical Olympiad Performance](https://arxiv.org/abs/2502.16666)
- Winners of HackerCupAI@NeurIPS'24 & ICLR'25-VerifAI: [Stress Testing Based Self-Consistency For Olympiad Programming](https://openreview.net/forum?id=7SlCSjhBsq)
- CVPR'25-MULA: [TRISHUL: Towards Region Identification and Screen Hierarchy Understanding for Large VLM based GUI Agents
](https://arxiv.org/abs/2502.08226))
- Silver Medal in AIMO'24