Upload 5 files
Browse files- model-00002-of-00006.safetensors +3 -0
- modeling_omchat.py +1354 -0
- preprocessor_config.json +67 -0
- special_tokens_map.json +20 -0
- tokenizer_config.json +44 -0
model-00002-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:018699a8dac60053fc0d0916584af81a7f50f672914020e295e45e2f15ad5856
|
| 3 |
+
size 4937253320
|
modeling_omchat.py
ADDED
|
@@ -0,0 +1,1354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
from torch import nn
|
| 9 |
+
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from .configuration_omchat import OmChatConfig
|
| 12 |
+
|
| 13 |
+
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM
|
| 14 |
+
from transformers.utils import logging
|
| 15 |
+
from transformers.modeling_outputs import ModelOutput
|
| 16 |
+
from transformers.utils import (
|
| 17 |
+
add_start_docstrings,
|
| 18 |
+
add_start_docstrings_to_model_forward,
|
| 19 |
+
logging,
|
| 20 |
+
replace_return_docstrings,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
_CONFIG_FOR_DOC = "OmChatConfig"
|
| 28 |
+
|
| 29 |
+
from typing import Optional, Tuple, Union
|
| 30 |
+
|
| 31 |
+
import torch
|
| 32 |
+
import torch.nn.functional as F
|
| 33 |
+
import torch.utils.checkpoint
|
| 34 |
+
from einops import rearrange
|
| 35 |
+
from timm.models.layers import DropPath
|
| 36 |
+
from torch import nn
|
| 37 |
+
from transformers.activations import ACT2FN
|
| 38 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 39 |
+
BaseModelOutputWithPooling)
|
| 40 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 41 |
+
from transformers.utils import logging
|
| 42 |
+
|
| 43 |
+
from .configuration_omchat import InternVisionConfig
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
from .flash_attention import FlashAttention
|
| 47 |
+
has_flash_attn = True
|
| 48 |
+
except:
|
| 49 |
+
print('FlashAttention is not installed.')
|
| 50 |
+
has_flash_attn = False
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
logger = logging.get_logger(__name__)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class InternRMSNorm(nn.Module):
|
| 57 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 60 |
+
self.variance_epsilon = eps
|
| 61 |
+
|
| 62 |
+
def forward(self, hidden_states):
|
| 63 |
+
input_dtype = hidden_states.dtype
|
| 64 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 65 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 66 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 67 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
from apex.normalization import FusedRMSNorm
|
| 72 |
+
|
| 73 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
| 74 |
+
|
| 75 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
| 76 |
+
except ImportError:
|
| 77 |
+
# using the normal InternRMSNorm
|
| 78 |
+
pass
|
| 79 |
+
except Exception:
|
| 80 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
| 81 |
+
pass
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class InternVisionEmbeddings(nn.Module):
|
| 85 |
+
def __init__(self, config: InternVisionConfig):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.config = config
|
| 88 |
+
self.embed_dim = config.hidden_size
|
| 89 |
+
self.image_size = config.image_size
|
| 90 |
+
self.patch_size = config.patch_size
|
| 91 |
+
|
| 92 |
+
self.class_embedding = nn.Parameter(
|
| 93 |
+
torch.randn(1, 1, self.embed_dim),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
self.patch_embedding = nn.Conv2d(
|
| 97 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 101 |
+
self.num_positions = self.num_patches + 1
|
| 102 |
+
|
| 103 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
| 104 |
+
|
| 105 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
| 106 |
+
target_dtype = pos_embed.dtype
|
| 107 |
+
pos_embed = pos_embed.float().reshape(
|
| 108 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
| 109 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
|
| 110 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
| 111 |
+
return pos_embed
|
| 112 |
+
|
| 113 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 114 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 115 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 116 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 117 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 118 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
| 119 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 120 |
+
position_embedding = torch.cat([
|
| 121 |
+
self.position_embedding[:, :1, :],
|
| 122 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
| 123 |
+
], dim=1)
|
| 124 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
| 125 |
+
return embeddings
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class InternAttention(nn.Module):
|
| 129 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 130 |
+
|
| 131 |
+
def __init__(self, config: InternVisionConfig):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.config = config
|
| 134 |
+
self.embed_dim = config.hidden_size
|
| 135 |
+
self.num_heads = config.num_attention_heads
|
| 136 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 137 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 138 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 139 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 140 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 141 |
+
raise ValueError(
|
| 142 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 143 |
+
f' {self.num_heads}).'
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
self.scale = self.head_dim ** -0.5
|
| 147 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 148 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 149 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 150 |
+
|
| 151 |
+
self.qk_normalization = config.qk_normalization
|
| 152 |
+
|
| 153 |
+
if self.qk_normalization:
|
| 154 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 155 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 156 |
+
|
| 157 |
+
if self.use_flash_attn:
|
| 158 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 159 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 160 |
+
|
| 161 |
+
def _naive_attn(self, x):
|
| 162 |
+
B, N, C = x.shape
|
| 163 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 164 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 165 |
+
|
| 166 |
+
if self.qk_normalization:
|
| 167 |
+
B_, H_, N_, D_ = q.shape
|
| 168 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 169 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 170 |
+
|
| 171 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 172 |
+
attn = attn.softmax(dim=-1)
|
| 173 |
+
attn = self.attn_drop(attn)
|
| 174 |
+
|
| 175 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 176 |
+
x = self.proj(x)
|
| 177 |
+
x = self.proj_drop(x)
|
| 178 |
+
return x
|
| 179 |
+
|
| 180 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 181 |
+
qkv = self.qkv(x)
|
| 182 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 183 |
+
|
| 184 |
+
if self.qk_normalization:
|
| 185 |
+
q, k, v = qkv.unbind(2)
|
| 186 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 187 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 188 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 189 |
+
|
| 190 |
+
context, _ = self.inner_attn(
|
| 191 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 192 |
+
)
|
| 193 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 194 |
+
outs = self.proj_drop(outs)
|
| 195 |
+
return outs
|
| 196 |
+
|
| 197 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 198 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 199 |
+
return x
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
class InternMLP(nn.Module):
|
| 203 |
+
def __init__(self, config: InternVisionConfig):
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.config = config
|
| 206 |
+
self.act = ACT2FN[config.hidden_act]
|
| 207 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 208 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 209 |
+
|
| 210 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 211 |
+
hidden_states = self.fc1(hidden_states)
|
| 212 |
+
hidden_states = self.act(hidden_states)
|
| 213 |
+
hidden_states = self.fc2(hidden_states)
|
| 214 |
+
return hidden_states
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
class InternVisionEncoderLayer(nn.Module):
|
| 218 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
| 219 |
+
super().__init__()
|
| 220 |
+
self.embed_dim = config.hidden_size
|
| 221 |
+
self.intermediate_size = config.intermediate_size
|
| 222 |
+
|
| 223 |
+
self.attn = InternAttention(config)
|
| 224 |
+
self.mlp = InternMLP(config)
|
| 225 |
+
self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 226 |
+
self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 227 |
+
|
| 228 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 229 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 230 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 231 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 232 |
+
|
| 233 |
+
def forward(
|
| 234 |
+
self,
|
| 235 |
+
hidden_states: torch.Tensor,
|
| 236 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 237 |
+
"""
|
| 238 |
+
Args:
|
| 239 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 240 |
+
"""
|
| 241 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
| 242 |
+
|
| 243 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
| 244 |
+
|
| 245 |
+
return hidden_states
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class InternVisionEncoder(nn.Module):
|
| 249 |
+
"""
|
| 250 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 251 |
+
[`InternEncoderLayer`].
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
config (`InternConfig`):
|
| 255 |
+
The corresponding vision configuration for the `InternEncoder`.
|
| 256 |
+
"""
|
| 257 |
+
|
| 258 |
+
def __init__(self, config: InternVisionConfig):
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.config = config
|
| 261 |
+
# stochastic depth decay rule
|
| 262 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 263 |
+
self.layers = nn.ModuleList([
|
| 264 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 265 |
+
self.gradient_checkpointing = True
|
| 266 |
+
|
| 267 |
+
def forward(
|
| 268 |
+
self,
|
| 269 |
+
inputs_embeds,
|
| 270 |
+
output_hidden_states: Optional[bool] = None,
|
| 271 |
+
return_dict: Optional[bool] = None,
|
| 272 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 273 |
+
r"""
|
| 274 |
+
Args:
|
| 275 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 276 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 277 |
+
output_hidden_states (`bool`, *optional*):
|
| 278 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 279 |
+
for more detail.
|
| 280 |
+
return_dict (`bool`, *optional*):
|
| 281 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 282 |
+
"""
|
| 283 |
+
output_hidden_states = (
|
| 284 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 285 |
+
)
|
| 286 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 287 |
+
|
| 288 |
+
encoder_states = () if output_hidden_states else None
|
| 289 |
+
hidden_states = inputs_embeds
|
| 290 |
+
|
| 291 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 292 |
+
if output_hidden_states:
|
| 293 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 294 |
+
if self.gradient_checkpointing and self.training:
|
| 295 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 296 |
+
encoder_layer,
|
| 297 |
+
hidden_states)
|
| 298 |
+
else:
|
| 299 |
+
layer_outputs = encoder_layer(
|
| 300 |
+
hidden_states,
|
| 301 |
+
)
|
| 302 |
+
hidden_states = layer_outputs
|
| 303 |
+
|
| 304 |
+
if output_hidden_states:
|
| 305 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 306 |
+
|
| 307 |
+
if not return_dict:
|
| 308 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 309 |
+
return BaseModelOutput(
|
| 310 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class InternVisionModel(PreTrainedModel):
|
| 315 |
+
main_input_name = 'pixel_values'
|
| 316 |
+
config_class = InternVisionConfig
|
| 317 |
+
_no_split_modules=["InternVisionEncoderLayer"]
|
| 318 |
+
|
| 319 |
+
def __init__(self, config: InternVisionConfig):
|
| 320 |
+
super().__init__(config)
|
| 321 |
+
self.config = config
|
| 322 |
+
|
| 323 |
+
self.embeddings = InternVisionEmbeddings(config)
|
| 324 |
+
self.encoder = InternVisionEncoder(config)
|
| 325 |
+
|
| 326 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
| 327 |
+
pos_emb = self.embeddings.position_embedding
|
| 328 |
+
_, num_positions, embed_dim = pos_emb.shape
|
| 329 |
+
cls_emb = pos_emb[:, :1, :]
|
| 330 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
| 331 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
| 332 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
| 333 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
| 334 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
| 335 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
| 336 |
+
|
| 337 |
+
def get_input_embeddings(self):
|
| 338 |
+
return self.embeddings
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 343 |
+
output_hidden_states: Optional[bool] = None,
|
| 344 |
+
return_dict: Optional[bool] = None,
|
| 345 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 346 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 347 |
+
output_hidden_states = (
|
| 348 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 349 |
+
)
|
| 350 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 351 |
+
|
| 352 |
+
if pixel_values is None and pixel_embeds is None:
|
| 353 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 354 |
+
|
| 355 |
+
if pixel_embeds is not None:
|
| 356 |
+
hidden_states = pixel_embeds
|
| 357 |
+
else:
|
| 358 |
+
if len(pixel_values.shape) == 4:
|
| 359 |
+
hidden_states = self.embeddings(pixel_values)
|
| 360 |
+
else:
|
| 361 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 362 |
+
encoder_outputs = self.encoder(
|
| 363 |
+
inputs_embeds=hidden_states,
|
| 364 |
+
output_hidden_states=output_hidden_states,
|
| 365 |
+
return_dict=return_dict,
|
| 366 |
+
)
|
| 367 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 368 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 369 |
+
|
| 370 |
+
if not return_dict:
|
| 371 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 372 |
+
|
| 373 |
+
return BaseModelOutputWithPooling(
|
| 374 |
+
last_hidden_state=last_hidden_state,
|
| 375 |
+
pooler_output=pooled_output,
|
| 376 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 377 |
+
attentions=encoder_outputs.attentions,
|
| 378 |
+
)
|
| 379 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
| 380 |
+
"""
|
| 381 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
| 382 |
+
|
| 383 |
+
Args:
|
| 384 |
+
image_size (`tuple`):
|
| 385 |
+
The size of the input image in the format (width, height).
|
| 386 |
+
grid_pinpoints (`List`):
|
| 387 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
| 388 |
+
of the form `(height, width)`.
|
| 389 |
+
patch_size (`int`):
|
| 390 |
+
The size of each image patch.
|
| 391 |
+
|
| 392 |
+
Returns:
|
| 393 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
| 394 |
+
"""
|
| 395 |
+
if not isinstance(grid_pinpoints, list):
|
| 396 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
| 397 |
+
|
| 398 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
| 399 |
+
if not isinstance(image_size, (list, tuple)):
|
| 400 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
| 401 |
+
raise TypeError(
|
| 402 |
+
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
| 403 |
+
)
|
| 404 |
+
image_size = image_size.tolist()
|
| 405 |
+
|
| 406 |
+
height, width = select_best_resolution(image_size, grid_pinpoints)
|
| 407 |
+
return height // patch_size, width // patch_size
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
| 411 |
+
"""
|
| 412 |
+
Calculate the number of patches after the preprocessing for images of any resolution.
|
| 413 |
+
|
| 414 |
+
Args:
|
| 415 |
+
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
|
| 416 |
+
The size of the input image in the format (height, width). ?
|
| 417 |
+
grid_pinpoints (`List`):
|
| 418 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
| 419 |
+
of the form `(height, width)`.
|
| 420 |
+
patch_size (`int`):
|
| 421 |
+
The size of each image patch.
|
| 422 |
+
|
| 423 |
+
Returns:
|
| 424 |
+
int: the number of patches
|
| 425 |
+
"""
|
| 426 |
+
if not isinstance(grid_pinpoints, list):
|
| 427 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
| 428 |
+
|
| 429 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
| 430 |
+
if not isinstance(image_size, (list, tuple)):
|
| 431 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
| 432 |
+
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
| 433 |
+
image_size = image_size.tolist()
|
| 434 |
+
|
| 435 |
+
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
| 436 |
+
height, width = best_resolution
|
| 437 |
+
num_patches = 0
|
| 438 |
+
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
|
| 439 |
+
for i in range(0, height, patch_size):
|
| 440 |
+
for j in range(0, width, patch_size):
|
| 441 |
+
num_patches += 1
|
| 442 |
+
# add the base patch
|
| 443 |
+
num_patches += 1
|
| 444 |
+
return num_patches
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def unpad_image(tensor, original_size):
|
| 448 |
+
"""
|
| 449 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
| 450 |
+
|
| 451 |
+
Args:
|
| 452 |
+
tensor (`torch.Tensor`):
|
| 453 |
+
The image tensor, assumed to be of shape (num_channels, height, width).
|
| 454 |
+
original_size (`tuple`):
|
| 455 |
+
The original size of the image (height, width).
|
| 456 |
+
|
| 457 |
+
Returns:
|
| 458 |
+
`torch.Tensor`: The unpadded image tensor.
|
| 459 |
+
"""
|
| 460 |
+
original_height, original_width = original_size
|
| 461 |
+
current_height, current_width = tensor.shape[1:]
|
| 462 |
+
|
| 463 |
+
original_aspect_ratio = original_width / original_height
|
| 464 |
+
current_aspect_ratio = current_width / current_height
|
| 465 |
+
|
| 466 |
+
if original_aspect_ratio > current_aspect_ratio:
|
| 467 |
+
scale_factor = current_width / original_width
|
| 468 |
+
new_height = int(original_height * scale_factor)
|
| 469 |
+
padding = (current_height - new_height) // 2
|
| 470 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
| 471 |
+
else:
|
| 472 |
+
scale_factor = current_height / original_height
|
| 473 |
+
new_width = int(original_width * scale_factor)
|
| 474 |
+
padding = (current_width - new_width) // 2
|
| 475 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
| 476 |
+
|
| 477 |
+
return unpadded_tensor
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
@dataclass
|
| 481 |
+
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->OmChat
|
| 482 |
+
class OmChatCausalLMOutputWithPast(ModelOutput):
|
| 483 |
+
"""
|
| 484 |
+
Base class for OmChat causal language model (or autoregressive) outputs.
|
| 485 |
+
|
| 486 |
+
Args:
|
| 487 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 488 |
+
Language modeling loss (for next-token prediction).
|
| 489 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 490 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 491 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 492 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 493 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 494 |
+
|
| 495 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 496 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 497 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 498 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 499 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 500 |
+
|
| 501 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 502 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 503 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 504 |
+
sequence_length)`.
|
| 505 |
+
|
| 506 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 507 |
+
heads.
|
| 508 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
| 509 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
| 510 |
+
sequence_length, hidden_size)`.
|
| 511 |
+
|
| 512 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
| 513 |
+
"""
|
| 514 |
+
|
| 515 |
+
loss: Optional[torch.FloatTensor] = None
|
| 516 |
+
logits: torch.FloatTensor = None
|
| 517 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 518 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 519 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 520 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->OmChat
|
| 524 |
+
class OmChatMultiModalProjector(nn.Module):
|
| 525 |
+
def __init__(self, config: OmChatConfig):
|
| 526 |
+
super().__init__()
|
| 527 |
+
|
| 528 |
+
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
| 529 |
+
self.act = nn.GELU()
|
| 530 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
| 531 |
+
|
| 532 |
+
def forward(self, image_features):
|
| 533 |
+
hidden_states = self.linear_1(image_features)
|
| 534 |
+
hidden_states = self.act(hidden_states)
|
| 535 |
+
hidden_states = self.linear_2(hidden_states)
|
| 536 |
+
return hidden_states
|
| 537 |
+
|
| 538 |
+
OMCHAT_START_DOCSTRING = r"""
|
| 539 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 540 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 541 |
+
etc.)
|
| 542 |
+
|
| 543 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 544 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 545 |
+
and behavior.
|
| 546 |
+
|
| 547 |
+
Parameters:
|
| 548 |
+
config ([`OmChatConfig`] or [`OmChatVisionConfig`]):
|
| 549 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 550 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 551 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 552 |
+
"""
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
@add_start_docstrings(
|
| 556 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 557 |
+
OMCHAT_START_DOCSTRING,
|
| 558 |
+
)
|
| 559 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->OmChat,llava->omchat
|
| 560 |
+
class OmChatPreTrainedModel(PreTrainedModel):
|
| 561 |
+
config_class = OmChatConfig
|
| 562 |
+
base_model_prefix = "model"
|
| 563 |
+
supports_gradient_checkpointing = True
|
| 564 |
+
_no_split_modules = ["OmChatVisionAttention"]
|
| 565 |
+
_skip_keys_device_placement = "past_key_values"
|
| 566 |
+
_supports_flash_attn_2 = True
|
| 567 |
+
_supports_cache_class = True
|
| 568 |
+
|
| 569 |
+
def _init_weights(self, module):
|
| 570 |
+
# important: this ported version of OmChat isn't meant for training from scratch - only
|
| 571 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
| 572 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/omchat should serve for that purpose
|
| 573 |
+
std = (
|
| 574 |
+
self.config.initializer_range
|
| 575 |
+
if hasattr(self.config, "initializer_range")
|
| 576 |
+
else self.config.text_config.initializer_range
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
if hasattr(module, "class_embedding"):
|
| 580 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 581 |
+
|
| 582 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 583 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 584 |
+
if module.bias is not None:
|
| 585 |
+
module.bias.data.zero_()
|
| 586 |
+
elif isinstance(module, nn.Embedding):
|
| 587 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 588 |
+
if module.padding_idx is not None:
|
| 589 |
+
module.weight.data[module.padding_idx].zero_()
|
| 590 |
+
|
| 591 |
+
@property
|
| 592 |
+
def _supports_sdpa(self):
|
| 593 |
+
"""
|
| 594 |
+
Retrieve language_model's attribute to check whether the model supports
|
| 595 |
+
SDPA or not.
|
| 596 |
+
"""
|
| 597 |
+
return self.language_model._supports_sdpa
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
OMCHAT_INPUTS_DOCSTRING = r"""
|
| 601 |
+
Args:
|
| 602 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 603 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 604 |
+
it.
|
| 605 |
+
|
| 606 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 607 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 608 |
+
|
| 609 |
+
[What are input IDs?](../glossary#input-ids)
|
| 610 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
| 611 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
| 612 |
+
[`AutoImageProcessor`]. See [`OmChatImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
|
| 613 |
+
[`OmChatImageProcessor`] for processing images.
|
| 614 |
+
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
|
| 615 |
+
The sizes of the images in the batch, being (height, width) for each image.
|
| 616 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 617 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 618 |
+
|
| 619 |
+
- 1 for tokens that are **not masked**,
|
| 620 |
+
- 0 for tokens that are **masked**.
|
| 621 |
+
|
| 622 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 623 |
+
|
| 624 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 625 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 626 |
+
|
| 627 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 628 |
+
`past_key_values`).
|
| 629 |
+
|
| 630 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 631 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 632 |
+
information on the default strategy.
|
| 633 |
+
|
| 634 |
+
- 1 indicates the head is **not masked**,
|
| 635 |
+
- 0 indicates the head is **masked**.
|
| 636 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 637 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 638 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
| 639 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 640 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 641 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 642 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 643 |
+
|
| 644 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 645 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 646 |
+
|
| 647 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 648 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 649 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 650 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 651 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 652 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 653 |
+
model's internal embedding lookup matrix.
|
| 654 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
| 655 |
+
The index of the layer to select the vision feature.
|
| 656 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
| 657 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 658 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
| 659 |
+
If `"full"`, the full vision features are used.
|
| 660 |
+
use_cache (`bool`, *optional*):
|
| 661 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 662 |
+
`past_key_values`).
|
| 663 |
+
output_attentions (`bool`, *optional*):
|
| 664 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 665 |
+
tensors for more detail.
|
| 666 |
+
output_hidden_states (`bool`, *optional*):
|
| 667 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 668 |
+
more detail.
|
| 669 |
+
return_dict (`bool`, *optional*):
|
| 670 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 671 |
+
"""
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
@add_start_docstrings(
|
| 675 |
+
"""The OmChat model which consists of a vision backbone and a language model.""",
|
| 676 |
+
OMCHAT_START_DOCSTRING,
|
| 677 |
+
)
|
| 678 |
+
class OmChatForConditionalGeneration(OmChatPreTrainedModel):
|
| 679 |
+
def __init__(self, config: OmChatConfig):
|
| 680 |
+
super().__init__(config)
|
| 681 |
+
self.vision_tower = InternVisionModel(InternVisionConfig())
|
| 682 |
+
|
| 683 |
+
self.multi_modal_projector = OmChatMultiModalProjector(config)
|
| 684 |
+
self.vocab_size = config.text_config.vocab_size
|
| 685 |
+
self.language_model = Qwen2ForCausalLM._from_config(
|
| 686 |
+
config.text_config, attn_implementation=config._attn_implementation
|
| 687 |
+
)
|
| 688 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
| 689 |
+
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
| 690 |
+
self.post_init()
|
| 691 |
+
|
| 692 |
+
@property
|
| 693 |
+
def padding_side(self):
|
| 694 |
+
return self._padding_side
|
| 695 |
+
|
| 696 |
+
@padding_side.setter
|
| 697 |
+
def padding_side(self, padding_side: str):
|
| 698 |
+
if padding_side not in ["left", "right"]:
|
| 699 |
+
raise ValueError(f"{padding_side} is not `left` or `right`.")
|
| 700 |
+
self._padding_side = padding_side
|
| 701 |
+
|
| 702 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
|
| 703 |
+
def get_input_embeddings(self):
|
| 704 |
+
return self.language_model.get_input_embeddings()
|
| 705 |
+
|
| 706 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
|
| 707 |
+
def set_input_embeddings(self, value):
|
| 708 |
+
self.language_model.set_input_embeddings(value)
|
| 709 |
+
|
| 710 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
|
| 711 |
+
def get_output_embeddings(self):
|
| 712 |
+
return self.language_model.get_output_embeddings()
|
| 713 |
+
|
| 714 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
|
| 715 |
+
def set_output_embeddings(self, new_embeddings):
|
| 716 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 717 |
+
|
| 718 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
|
| 719 |
+
def set_decoder(self, decoder):
|
| 720 |
+
self.language_model.set_decoder(decoder)
|
| 721 |
+
|
| 722 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
|
| 723 |
+
def get_decoder(self):
|
| 724 |
+
return self.language_model.get_decoder()
|
| 725 |
+
|
| 726 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
|
| 727 |
+
def tie_weights(self):
|
| 728 |
+
return self.language_model.tie_weights()
|
| 729 |
+
|
| 730 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
|
| 731 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
| 732 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
| 733 |
+
# update vocab size
|
| 734 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
| 735 |
+
self.vocab_size = model_embeds.num_embeddings
|
| 736 |
+
return model_embeds
|
| 737 |
+
|
| 738 |
+
def get_vision_tower(self):
|
| 739 |
+
if isinstance(self.vision_tower, list):
|
| 740 |
+
return self.vision_tower[0]
|
| 741 |
+
return self.vision_tower
|
| 742 |
+
|
| 743 |
+
def get_model(self):
|
| 744 |
+
return self.language_model.model
|
| 745 |
+
|
| 746 |
+
def encode_images(self, images):
|
| 747 |
+
vision_tower = self.get_vision_tower()
|
| 748 |
+
image_features = self.vision_tower_forward(images)
|
| 749 |
+
return self.multi_modal_projector(image_features.to(torch.float16))
|
| 750 |
+
|
| 751 |
+
def feature_select(self, image_forward_outs):
|
| 752 |
+
image_features = image_forward_outs.hidden_states[-1]
|
| 753 |
+
image_features = image_features[:, 1:]
|
| 754 |
+
return image_features
|
| 755 |
+
|
| 756 |
+
def vision_tower_forward(self, images):
|
| 757 |
+
if type(images) is list:
|
| 758 |
+
image_features = []
|
| 759 |
+
for image in images:
|
| 760 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
| 761 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
| 762 |
+
image_features.append(image_feature)
|
| 763 |
+
else:
|
| 764 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=torch.float16), output_hidden_states=True)
|
| 765 |
+
#image_forward_outs = self.vision_tower(images, output_hidden_states=True)
|
| 766 |
+
image_features = self.feature_select(image_forward_outs)
|
| 767 |
+
|
| 768 |
+
return image_features
|
| 769 |
+
|
| 770 |
+
def prepare_inputs_labels_for_multimodal(
|
| 771 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
|
| 772 |
+
):
|
| 773 |
+
|
| 774 |
+
vision_tower = self.get_vision_tower()
|
| 775 |
+
video_tower = self.get_vision_tower()
|
| 776 |
+
if (vision_tower is None and video_tower is None) or images is None or input_ids.shape[1] == 1:
|
| 777 |
+
if past_key_values is not None and (vision_tower is not None or video_tower is not None) and images is not None and input_ids.shape[1] == 1:
|
| 778 |
+
target_shape = past_key_values[-1][-1].shape[-2] + 1
|
| 779 |
+
attention_mask = torch.cat((attention_mask, torch.ones(
|
| 780 |
+
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
| 781 |
+
dtype=attention_mask.dtype,
|
| 782 |
+
device=attention_mask.device
|
| 783 |
+
)), dim=1)
|
| 784 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
| 785 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
| 786 |
+
|
| 787 |
+
image_idx = [idx for idx, img in enumerate(images) if img.ndim == 3]
|
| 788 |
+
is_all_image = len(image_idx) == len(images)
|
| 789 |
+
video_idx = [idx for idx, vid in enumerate(images) if vid.ndim == 4]
|
| 790 |
+
images_minibatch = torch.stack([images[idx] for idx in image_idx]) if len(image_idx) > 0 else [] # mini_b c h w
|
| 791 |
+
videos_minibatch = torch.stack([images[idx] for idx in video_idx]) if len(video_idx) > 0 else [] # mini_b c t h w
|
| 792 |
+
|
| 793 |
+
tmp_image_features = [None] * (len(image_idx) + len(video_idx))
|
| 794 |
+
if getattr(images_minibatch, 'ndim', 0) == 4: # batch consists of images, [mini_b, c, h, w]
|
| 795 |
+
if vision_tower is not None:
|
| 796 |
+
image_features_minibatch = self.encode_images(images_minibatch) # [mini_b, l, c]
|
| 797 |
+
else:
|
| 798 |
+
image_features_minibatch = torch.randn(1).to(self.device) # dummy feature for video-only training under tuning
|
| 799 |
+
for i, pos in enumerate(image_idx):
|
| 800 |
+
tmp_image_features[pos] = image_features_minibatch[i]
|
| 801 |
+
if getattr(videos_minibatch, 'ndim', 0) == 5: # batch consists of videos, [mini_b, c, t, h, w]
|
| 802 |
+
video_features_minibatch = self.encode_images(videos_minibatch) # fake list [mini_b, t, l, c]
|
| 803 |
+
for i, pos in enumerate(video_idx):
|
| 804 |
+
tmp_image_features[pos] = video_features_minibatch[i]
|
| 805 |
+
new_tmp = []
|
| 806 |
+
for image in tmp_image_features:
|
| 807 |
+
if isinstance(image, list):
|
| 808 |
+
t = len(image)
|
| 809 |
+
for i in range(t):
|
| 810 |
+
new_tmp.append(image[i])
|
| 811 |
+
else:
|
| 812 |
+
new_tmp.append(image)
|
| 813 |
+
image_features = new_tmp
|
| 814 |
+
|
| 815 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
| 816 |
+
raise NotImplementedError
|
| 817 |
+
|
| 818 |
+
_labels = labels
|
| 819 |
+
_position_ids = position_ids
|
| 820 |
+
_attention_mask = attention_mask
|
| 821 |
+
if attention_mask is None:
|
| 822 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
| 823 |
+
else:
|
| 824 |
+
attention_mask = attention_mask.bool()
|
| 825 |
+
if position_ids is None:
|
| 826 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
| 827 |
+
if labels is None:
|
| 828 |
+
labels = torch.full_like(input_ids, -100)
|
| 829 |
+
|
| 830 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
| 831 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
| 832 |
+
new_input_embeds = []
|
| 833 |
+
new_labels = []
|
| 834 |
+
cur_image_idx = 0
|
| 835 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
| 836 |
+
num_images = (cur_input_ids == -200).sum()
|
| 837 |
+
if num_images == 0:
|
| 838 |
+
cur_image_features = image_features[cur_image_idx]
|
| 839 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
| 840 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
| 841 |
+
new_input_embeds.append(cur_input_embeds)
|
| 842 |
+
new_labels.append(labels[batch_idx])
|
| 843 |
+
cur_image_idx += 1
|
| 844 |
+
continue
|
| 845 |
+
|
| 846 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == -200)[0].tolist() + [cur_input_ids.shape[0]]
|
| 847 |
+
cur_input_ids_noim = []
|
| 848 |
+
cur_labels = labels[batch_idx]
|
| 849 |
+
cur_labels_noim = []
|
| 850 |
+
for i in range(len(image_token_indices) - 1):
|
| 851 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 852 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 853 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
| 854 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
| 855 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
| 856 |
+
|
| 857 |
+
cur_new_input_embeds = []
|
| 858 |
+
cur_new_labels = []
|
| 859 |
+
|
| 860 |
+
for i in range(num_images + 1):
|
| 861 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
| 862 |
+
cur_new_labels.append(cur_labels_noim[i])
|
| 863 |
+
if i < num_images:
|
| 864 |
+
cur_image_features = image_features[cur_image_idx].to(self.device)
|
| 865 |
+
cur_image_idx += 1
|
| 866 |
+
cur_new_input_embeds.append(cur_image_features)
|
| 867 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), -100, device=cur_labels.device, dtype=cur_labels.dtype))
|
| 868 |
+
|
| 869 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
| 870 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
| 871 |
+
|
| 872 |
+
new_input_embeds.append(cur_new_input_embeds)
|
| 873 |
+
new_labels.append(cur_new_labels)
|
| 874 |
+
|
| 875 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
| 876 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
| 877 |
+
if tokenizer_model_max_length is not None:
|
| 878 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
| 879 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
| 880 |
+
|
| 881 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
| 882 |
+
batch_size = len(new_input_embeds)
|
| 883 |
+
|
| 884 |
+
new_input_embeds_padded = []
|
| 885 |
+
new_labels_padded = torch.full((batch_size, max_len), -100, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
| 886 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
| 887 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
| 888 |
+
|
| 889 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
| 890 |
+
cur_len = cur_new_embed.shape[0]
|
| 891 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
| 892 |
+
new_input_embeds_padded.append(torch.cat((
|
| 893 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
| 894 |
+
cur_new_embed
|
| 895 |
+
), dim=0))
|
| 896 |
+
if cur_len > 0:
|
| 897 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
| 898 |
+
attention_mask[i, -cur_len:] = True
|
| 899 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 900 |
+
else:
|
| 901 |
+
new_input_embeds_padded.append(torch.cat((
|
| 902 |
+
cur_new_embed,
|
| 903 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
| 904 |
+
), dim=0))
|
| 905 |
+
if cur_len > 0:
|
| 906 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
| 907 |
+
attention_mask[i, :cur_len] = True
|
| 908 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 909 |
+
|
| 910 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
| 911 |
+
if _labels is None:
|
| 912 |
+
new_labels = None
|
| 913 |
+
else:
|
| 914 |
+
new_labels = new_labels_padded
|
| 915 |
+
|
| 916 |
+
if _attention_mask is None:
|
| 917 |
+
attention_mask = None
|
| 918 |
+
else:
|
| 919 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
| 920 |
+
|
| 921 |
+
if _position_ids is None:
|
| 922 |
+
position_ids = None
|
| 923 |
+
|
| 924 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
def _merge_input_ids_with_image_features(
|
| 928 |
+
self,
|
| 929 |
+
image_features,
|
| 930 |
+
feature_lens,
|
| 931 |
+
inputs_embeds,
|
| 932 |
+
input_ids,
|
| 933 |
+
attention_mask,
|
| 934 |
+
position_ids=None,
|
| 935 |
+
labels=None,
|
| 936 |
+
image_token_index=None,
|
| 937 |
+
ignore_index=-100,
|
| 938 |
+
):
|
| 939 |
+
"""
|
| 940 |
+
Merge input_ids with with image features into final embeddings
|
| 941 |
+
|
| 942 |
+
Args:
|
| 943 |
+
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
|
| 944 |
+
All vision vectors of all images in the batch
|
| 945 |
+
feature_lens (`torch.LongTensor` of shape `(num_images)`):
|
| 946 |
+
The length of visual embeddings of each image as stacked in `image_features`
|
| 947 |
+
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
|
| 948 |
+
Token embeddings before merging with visual embeddings
|
| 949 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 950 |
+
Input_ids of tokens, possibly filled with image token
|
| 951 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 952 |
+
Mask to avoid performing attention on padding token indices.
|
| 953 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 954 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 955 |
+
config.n_positions - 1]`.
|
| 956 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
|
| 957 |
+
:abels need to be recalculated to support training (if provided)
|
| 958 |
+
image_token_index (`int`, *optional*)
|
| 959 |
+
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
|
| 960 |
+
ignore_index (`int`, *optional*)
|
| 961 |
+
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
|
| 962 |
+
Returns:
|
| 963 |
+
final_embedding, final_attention_mask, position_ids, final_labels
|
| 964 |
+
|
| 965 |
+
Explanation:
|
| 966 |
+
each image has variable length embeddings, with length specified by feature_lens
|
| 967 |
+
image_features is concatenation of all visual embed vectors
|
| 968 |
+
task: fill each <image> with the correct number of visual embeddings
|
| 969 |
+
Example:
|
| 970 |
+
X (5 patches), Y (3 patches), Z (8)
|
| 971 |
+
X, Y are in the same sequence (in-context learning)
|
| 972 |
+
if right padding
|
| 973 |
+
input_ids: [
|
| 974 |
+
a b c d e f X g h i j k Y l m
|
| 975 |
+
o p q r Z s t u v _ _ _ _ _ _
|
| 976 |
+
]
|
| 977 |
+
input_ids should be: [
|
| 978 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
| 979 |
+
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
|
| 980 |
+
]
|
| 981 |
+
labels should be: [
|
| 982 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
| 983 |
+
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
|
| 984 |
+
]
|
| 985 |
+
elif left padding
|
| 986 |
+
input_ids: [
|
| 987 |
+
a b c d e f X g h i j k Y l m
|
| 988 |
+
_ _ _ _ _ _ o p q r Z s t u v
|
| 989 |
+
]
|
| 990 |
+
input_ids should be: [
|
| 991 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
| 992 |
+
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
|
| 993 |
+
]
|
| 994 |
+
labels should be: [
|
| 995 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
| 996 |
+
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
|
| 997 |
+
]
|
| 998 |
+
Edge cases:
|
| 999 |
+
* If tokens are same but image token sizes are different, then cannot infer left or right padding
|
| 1000 |
+
```python
|
| 1001 |
+
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
| 1002 |
+
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
|
| 1003 |
+
prompts = [
|
| 1004 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
| 1005 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
| 1006 |
+
]
|
| 1007 |
+
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
|
| 1008 |
+
chart_img has 2634 tokens, while cat_img has 2340 tokens
|
| 1009 |
+
```
|
| 1010 |
+
|
| 1011 |
+
input_ids: [
|
| 1012 |
+
a b c d X g h
|
| 1013 |
+
i j Y k l m n
|
| 1014 |
+
]
|
| 1015 |
+
where X is 3 tokens while Y is 5, this mean after merge
|
| 1016 |
+
if left-padding (batched generation)
|
| 1017 |
+
input_ids should be: [
|
| 1018 |
+
_ _ a b c d X X X g h
|
| 1019 |
+
i j Y Y Y Y Y k l m n
|
| 1020 |
+
]
|
| 1021 |
+
elif (right padding) (training)
|
| 1022 |
+
input_ids should be: [
|
| 1023 |
+
a b c d X X X g h _ _
|
| 1024 |
+
i j Y Y Y Y Y k l m n
|
| 1025 |
+
]
|
| 1026 |
+
"""
|
| 1027 |
+
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
|
| 1028 |
+
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
|
| 1029 |
+
|
| 1030 |
+
with torch.no_grad():
|
| 1031 |
+
# ! in llava 1.6, number of patches is variable
|
| 1032 |
+
num_images = feature_lens.size(0)
|
| 1033 |
+
num_image_features, embed_dim = image_features.shape
|
| 1034 |
+
if feature_lens.sum() != num_image_features:
|
| 1035 |
+
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
|
| 1036 |
+
batch_size = input_ids.shape[0]
|
| 1037 |
+
_left_padding = torch.any(attention_mask[:, 0] == 0)
|
| 1038 |
+
_right_padding = torch.any(attention_mask[:, -1] == 0)
|
| 1039 |
+
|
| 1040 |
+
left_padding = True if not self.training else False
|
| 1041 |
+
if batch_size > 1 and not self.training:
|
| 1042 |
+
if _left_padding and not _right_padding:
|
| 1043 |
+
left_padding = True
|
| 1044 |
+
elif not _left_padding and _right_padding:
|
| 1045 |
+
left_padding = False
|
| 1046 |
+
elif not _left_padding and not _right_padding:
|
| 1047 |
+
# both side is 1, so cannot tell
|
| 1048 |
+
left_padding = self.padding_side == "left"
|
| 1049 |
+
else:
|
| 1050 |
+
# invalid attention_mask
|
| 1051 |
+
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
|
| 1052 |
+
|
| 1053 |
+
# Whether to turn off right padding
|
| 1054 |
+
# 1. Create a mask to know where special image tokens are
|
| 1055 |
+
special_image_token_mask = input_ids == image_token_index
|
| 1056 |
+
# special_image_token_mask: [bsz, seqlen]
|
| 1057 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
| 1058 |
+
# num_special_image_tokens: [bsz]
|
| 1059 |
+
# Reserve for padding of num_images
|
| 1060 |
+
total_num_special_image_tokens = torch.sum(special_image_token_mask)
|
| 1061 |
+
if total_num_special_image_tokens != num_images:
|
| 1062 |
+
raise ValueError(
|
| 1063 |
+
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
|
| 1064 |
+
)
|
| 1065 |
+
# Compute the maximum embed dimension
|
| 1066 |
+
# max_image_feature_lens is max_feature_lens per batch
|
| 1067 |
+
feature_lens = feature_lens.to(input_ids.device)
|
| 1068 |
+
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
|
| 1069 |
+
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
|
| 1070 |
+
embed_sequence_lengths = (
|
| 1071 |
+
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
|
| 1072 |
+
)
|
| 1073 |
+
max_embed_dim = embed_sequence_lengths.max()
|
| 1074 |
+
|
| 1075 |
+
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
|
| 1076 |
+
# 2. Compute the positions where text should be written
|
| 1077 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
| 1078 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
|
| 1079 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
| 1080 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
| 1081 |
+
# ! instead of special_image_token_mask * (num_image_patches - 1)
|
| 1082 |
+
# special_image_token_mask * (num_feature_len - 1)
|
| 1083 |
+
special_image_token_mask = special_image_token_mask.long()
|
| 1084 |
+
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
|
| 1085 |
+
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
|
| 1086 |
+
if left_padding:
|
| 1087 |
+
# shift right token positions so that they are ending at the same number
|
| 1088 |
+
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
|
| 1089 |
+
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
|
| 1090 |
+
|
| 1091 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
| 1092 |
+
|
| 1093 |
+
# 3. Create the full embedding, already padded to the maximum position
|
| 1094 |
+
final_embedding = torch.zeros(
|
| 1095 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
| 1096 |
+
)
|
| 1097 |
+
final_attention_mask = torch.zeros(
|
| 1098 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
| 1099 |
+
)
|
| 1100 |
+
final_input_ids = torch.full(
|
| 1101 |
+
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
|
| 1102 |
+
)
|
| 1103 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
| 1104 |
+
# set the corresponding tensors into their correct target device.
|
| 1105 |
+
target_device = inputs_embeds.device
|
| 1106 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
| 1107 |
+
batch_indices.to(target_device),
|
| 1108 |
+
non_image_indices.to(target_device),
|
| 1109 |
+
text_to_overwrite.to(target_device),
|
| 1110 |
+
)
|
| 1111 |
+
attention_mask = attention_mask.to(target_device)
|
| 1112 |
+
input_ids = input_ids.to(target_device)
|
| 1113 |
+
|
| 1114 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
| 1115 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
| 1116 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
| 1117 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
| 1118 |
+
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
|
| 1119 |
+
final_labels = None
|
| 1120 |
+
if labels is not None:
|
| 1121 |
+
labels = labels.to(target_device)
|
| 1122 |
+
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
|
| 1123 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
| 1124 |
+
|
| 1125 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
| 1126 |
+
with torch.no_grad():
|
| 1127 |
+
image_to_overwrite = torch.full(
|
| 1128 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
| 1129 |
+
)
|
| 1130 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
| 1131 |
+
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
|
| 1132 |
+
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
|
| 1133 |
+
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
|
| 1134 |
+
|
| 1135 |
+
if left_padding:
|
| 1136 |
+
# exclude padding on the left
|
| 1137 |
+
max_embed_dim = max_embed_dim.to(target_device)
|
| 1138 |
+
val = (max_embed_dim - embed_indices) <= embed_seq_lens
|
| 1139 |
+
else:
|
| 1140 |
+
# exclude padding on the right
|
| 1141 |
+
val = embed_indices < embed_seq_lens
|
| 1142 |
+
image_to_overwrite &= val
|
| 1143 |
+
|
| 1144 |
+
if image_to_overwrite.sum() != num_image_features:
|
| 1145 |
+
raise ValueError(
|
| 1146 |
+
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
|
| 1147 |
+
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
| 1148 |
+
f" the number of image given to the model is {num_images}. "
|
| 1149 |
+
f"This prevents correct indexing and breaks batch generation."
|
| 1150 |
+
)
|
| 1151 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
| 1152 |
+
final_attention_mask |= image_to_overwrite
|
| 1153 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
| 1154 |
+
|
| 1155 |
+
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
|
| 1156 |
+
|
| 1157 |
+
def pack_image_features(self, image_features, image_sizes, image_newline=None):
|
| 1158 |
+
"""
|
| 1159 |
+
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
|
| 1160 |
+
|
| 1161 |
+
Args:
|
| 1162 |
+
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
|
| 1163 |
+
List of image feature tensor, each contains all the visual feature of all patches.
|
| 1164 |
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
| 1165 |
+
Actual image size of each images (H, W).
|
| 1166 |
+
image_newline (`torch.Tensor` of shape `(embed_dim)`)
|
| 1167 |
+
New line embedding vector.
|
| 1168 |
+
Returns:
|
| 1169 |
+
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
|
| 1170 |
+
feature_lens (`List[int]`)
|
| 1171 |
+
token length of each image in image_features
|
| 1172 |
+
"""
|
| 1173 |
+
new_image_features = []
|
| 1174 |
+
feature_lens = []
|
| 1175 |
+
for image_idx, image_feature in enumerate(image_features):
|
| 1176 |
+
if image_feature.shape[0] > 1:
|
| 1177 |
+
base_image_feature = image_feature[0]
|
| 1178 |
+
image_feature = image_feature[1:]
|
| 1179 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
| 1180 |
+
if height * width != base_image_feature.shape[0]:
|
| 1181 |
+
raise ValueError("The number of patches is not consistent with the image size.")
|
| 1182 |
+
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
|
| 1183 |
+
image_sizes[image_idx],
|
| 1184 |
+
self.config.image_grid_pinpoints,
|
| 1185 |
+
self.config.vision_config.image_size,
|
| 1186 |
+
)
|
| 1187 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
| 1188 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
| 1189 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
| 1190 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
| 1191 |
+
if image_newline is not None:
|
| 1192 |
+
image_feature = torch.cat(
|
| 1193 |
+
(
|
| 1194 |
+
image_feature,
|
| 1195 |
+
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
|
| 1196 |
+
),
|
| 1197 |
+
dim=-1,
|
| 1198 |
+
)
|
| 1199 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
| 1200 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
| 1201 |
+
else:
|
| 1202 |
+
image_feature = image_feature[0]
|
| 1203 |
+
if image_newline is not None:
|
| 1204 |
+
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
|
| 1205 |
+
new_image_features.append(image_feature)
|
| 1206 |
+
feature_lens.append(image_feature.size(0))
|
| 1207 |
+
image_features = torch.cat(new_image_features, dim=0)
|
| 1208 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
| 1209 |
+
return image_features, feature_lens
|
| 1210 |
+
|
| 1211 |
+
@add_start_docstrings_to_model_forward(OMCHAT_INPUTS_DOCSTRING)
|
| 1212 |
+
@replace_return_docstrings(output_type=OmChatCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1213 |
+
def forward(
|
| 1214 |
+
self,
|
| 1215 |
+
input_ids: torch.LongTensor = None,
|
| 1216 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1217 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1218 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1219 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1220 |
+
vision_feature_layer: Optional[int] = None,
|
| 1221 |
+
vision_feature_select_strategy: Optional[str] = None,
|
| 1222 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1223 |
+
use_cache: Optional[bool] = None,
|
| 1224 |
+
output_attentions: Optional[bool] = None,
|
| 1225 |
+
output_hidden_states: Optional[bool] = None,
|
| 1226 |
+
images: Optional[torch.FloatTensor] = None,
|
| 1227 |
+
return_dict: Optional[bool] = None,
|
| 1228 |
+
) -> Union[Tuple, OmChatCausalLMOutputWithPast]:
|
| 1229 |
+
r"""
|
| 1230 |
+
Args:
|
| 1231 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1232 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1233 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1234 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1235 |
+
|
| 1236 |
+
Returns:
|
| 1237 |
+
|
| 1238 |
+
Example:
|
| 1239 |
+
|
| 1240 |
+
```python
|
| 1241 |
+
>>> from PIL import Image
|
| 1242 |
+
>>> import requests
|
| 1243 |
+
>>> from transformers import AutoProcessor, OmChatForConditionalGeneration
|
| 1244 |
+
|
| 1245 |
+
>>> model = OmChatForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
| 1246 |
+
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
| 1247 |
+
|
| 1248 |
+
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
| 1249 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
| 1250 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1251 |
+
|
| 1252 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 1253 |
+
|
| 1254 |
+
>>> # Generate
|
| 1255 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
| 1256 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1257 |
+
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
|
| 1258 |
+
```"""
|
| 1259 |
+
|
| 1260 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1261 |
+
output_hidden_states = (
|
| 1262 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1263 |
+
)
|
| 1264 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1265 |
+
vision_feature_layer = (
|
| 1266 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
| 1267 |
+
)
|
| 1268 |
+
vision_feature_select_strategy = (
|
| 1269 |
+
vision_feature_select_strategy
|
| 1270 |
+
if vision_feature_select_strategy is not None
|
| 1271 |
+
else self.config.vision_feature_select_strategy
|
| 1272 |
+
)
|
| 1273 |
+
if inputs_embeds is None:
|
| 1274 |
+
(
|
| 1275 |
+
input_ids,
|
| 1276 |
+
position_ids,
|
| 1277 |
+
attention_mask,
|
| 1278 |
+
past_key_values,
|
| 1279 |
+
inputs_embeds,
|
| 1280 |
+
labels
|
| 1281 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 1282 |
+
input_ids,
|
| 1283 |
+
position_ids,
|
| 1284 |
+
attention_mask,
|
| 1285 |
+
past_key_values,
|
| 1286 |
+
labels,
|
| 1287 |
+
images
|
| 1288 |
+
)
|
| 1289 |
+
outputs = self.language_model(
|
| 1290 |
+
input_ids=input_ids,
|
| 1291 |
+
attention_mask=attention_mask,
|
| 1292 |
+
position_ids=position_ids,
|
| 1293 |
+
past_key_values=past_key_values,
|
| 1294 |
+
inputs_embeds=inputs_embeds,
|
| 1295 |
+
use_cache=use_cache,
|
| 1296 |
+
output_attentions=output_attentions,
|
| 1297 |
+
output_hidden_states=output_hidden_states,
|
| 1298 |
+
return_dict=return_dict
|
| 1299 |
+
)
|
| 1300 |
+
return outputs
|
| 1301 |
+
logits = outputs[0]
|
| 1302 |
+
|
| 1303 |
+
loss = None
|
| 1304 |
+
if labels is not None:
|
| 1305 |
+
# Shift so that tokens < n predict n
|
| 1306 |
+
if attention_mask is not None:
|
| 1307 |
+
shift_attention_mask = attention_mask[..., 1:]
|
| 1308 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
| 1309 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
| 1310 |
+
else:
|
| 1311 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1312 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1313 |
+
# Flatten the tokens
|
| 1314 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1315 |
+
loss = loss_fct(
|
| 1316 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
| 1317 |
+
)
|
| 1318 |
+
|
| 1319 |
+
if not return_dict:
|
| 1320 |
+
output = (logits,) + outputs[1:]
|
| 1321 |
+
return (loss,) + output if loss is not None else output
|
| 1322 |
+
return OmChatCausalLMOutputWithPast(
|
| 1323 |
+
loss=loss,
|
| 1324 |
+
logits=logits,
|
| 1325 |
+
past_key_values=outputs.past_key_values,
|
| 1326 |
+
hidden_states=outputs.hidden_states,
|
| 1327 |
+
attentions=outputs.attentions,
|
| 1328 |
+
)
|
| 1329 |
+
|
| 1330 |
+
def prepare_inputs_for_generation(
|
| 1331 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1332 |
+
):
|
| 1333 |
+
if past_key_values:
|
| 1334 |
+
input_ids = input_ids[:, -1:]
|
| 1335 |
+
|
| 1336 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1337 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1338 |
+
else:
|
| 1339 |
+
model_inputs = {"input_ids": input_ids}
|
| 1340 |
+
|
| 1341 |
+
model_inputs.update(
|
| 1342 |
+
{
|
| 1343 |
+
"past_key_values": past_key_values,
|
| 1344 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1345 |
+
"attention_mask": attention_mask,
|
| 1346 |
+
"images": kwargs.get("images", None),
|
| 1347 |
+
}
|
| 1348 |
+
)
|
| 1349 |
+
return model_inputs
|
| 1350 |
+
|
| 1351 |
+
|
| 1352 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._reorder_cache
|
| 1353 |
+
def _reorder_cache(self, *args, **kwargs):
|
| 1354 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_omchat.OmChatProcessor",
|
| 4 |
+
"AutoImageProcessor": "image_processing_omchat.OmChatImageProcessor"
|
| 5 |
+
},
|
| 6 |
+
|
| 7 |
+
"crop_size": {
|
| 8 |
+
"height": 448,
|
| 9 |
+
"width": 448
|
| 10 |
+
},
|
| 11 |
+
"do_center_crop": true,
|
| 12 |
+
"do_convert_rgb": true,
|
| 13 |
+
"do_normalize": true,
|
| 14 |
+
"do_rescale": true,
|
| 15 |
+
"do_resize": true,
|
| 16 |
+
"image_grid_pinpoints": [
|
| 17 |
+
[
|
| 18 |
+
448,
|
| 19 |
+
896
|
| 20 |
+
],
|
| 21 |
+
[
|
| 22 |
+
896,
|
| 23 |
+
448
|
| 24 |
+
],
|
| 25 |
+
[
|
| 26 |
+
896,
|
| 27 |
+
896
|
| 28 |
+
],
|
| 29 |
+
[
|
| 30 |
+
1344,
|
| 31 |
+
448
|
| 32 |
+
],
|
| 33 |
+
[
|
| 34 |
+
448,
|
| 35 |
+
1344
|
| 36 |
+
],
|
| 37 |
+
[
|
| 38 |
+
1344,
|
| 39 |
+
896
|
| 40 |
+
],
|
| 41 |
+
[
|
| 42 |
+
896,
|
| 43 |
+
1344
|
| 44 |
+
],
|
| 45 |
+
[
|
| 46 |
+
1344,
|
| 47 |
+
1344
|
| 48 |
+
]
|
| 49 |
+
],
|
| 50 |
+
"image_mean": [
|
| 51 |
+
0.485,
|
| 52 |
+
0.456,
|
| 53 |
+
0.406
|
| 54 |
+
],
|
| 55 |
+
"image_processor_type": "OmChatImageProcessor",
|
| 56 |
+
"image_std": [
|
| 57 |
+
0.229,
|
| 58 |
+
0.224,
|
| 59 |
+
0.225
|
| 60 |
+
],
|
| 61 |
+
"processor_class": "OmChatProcessor",
|
| 62 |
+
"resample": 3,
|
| 63 |
+
"rescale_factor": 0.00392156862745098,
|
| 64 |
+
"size": {
|
| 65 |
+
"shortest_edge": 448
|
| 66 |
+
}
|
| 67 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>"
|
| 5 |
+
],
|
| 6 |
+
"eos_token": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"pad_token": {
|
| 14 |
+
"content": "<|endoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
}
|
| 20 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"151643": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"151644": {
|
| 13 |
+
"content": "<|im_start|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151645": {
|
| 21 |
+
"content": "<|im_end|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"additional_special_tokens": [
|
| 30 |
+
"<|im_start|>",
|
| 31 |
+
"<|im_end|>"
|
| 32 |
+
],
|
| 33 |
+
"bos_token": null,
|
| 34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 35 |
+
"clean_up_tokenization_spaces": false,
|
| 36 |
+
"eos_token": "<|endoftext|>",
|
| 37 |
+
"errors": "replace",
|
| 38 |
+
"model_max_length": 32768,
|
| 39 |
+
"pad_token": "<|endoftext|>",
|
| 40 |
+
"processor_class": "OmChatProcessor",
|
| 41 |
+
"split_special_tokens": false,
|
| 42 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 43 |
+
"unk_token": null
|
| 44 |
+
}
|